Light-Induced Actuation of Poly(dimethylsiloxane) Filled with Graphene Oxide Grafted with Poly(2-(trimethylsilyloxy)ethyl Methacrylate)
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
16-20361Y
Grantová Agentura České Republiky
LO1504
Ministry of Education, Youth and Sports of the Czech Republic - program NPU I
APVV-15-0545 and APVV-14-0891
Agentúra na Podporu Výskumu a Vývoja
PubMed
30960984
PubMed Central
PMC6403827
DOI
10.3390/polym10101059
PII: polym10101059
Knihovny.cz E-resources
- Keywords
- SI-ATRP, dielectrics, dynamic mechanical analysis, graphene oxide, light-induced actuation, reduction,
- Publication type
- Journal Article MeSH
This study serves to combine two approaches into one single step, to achieve a significant improvement of the light-induced actuation capabilities. Graphene oxide (GO) is an inert material, from the electrical and thermal conductivity point of view, and is incompatible with the usually-used poly(dimethylsiloxane) (PDMS) matrix. During surface-modification by surface-initiated atom transfer radical polymerization, the GO was transformed into a conducting and compatible material with the PDMS showing enormous light-induced actuation capability. The GO surface-modification with poly(2-(trimethylsilyloxy)ethyl methacrylate) (PHEMATMS) chains was confirmed by transmission electron microscopy and thermogravimetric analysis, with an on-line monitoring of gasses using FTIR. The improved compatibility was elucidated using contact angle and dielectric properties measurements. The PHEMATMS shell was investigated using gel permeation chromatography and nuclear magnetic resonance. The improved electric conductivity was measured using the four-point probe method and by Raman spectroscopy. The very important mechanical properties were elucidated using dynamic mechanical analysis, and with the help of thermo-mechanic analysis for the light-induced actuation. The excellent actuation capabilities observed, with changes in the length of around 0.8% at 10% pre-strain, are very promising from the point of view of applications.
See more in PubMed
Yetisen A.K., Martinez-Hurtado J.L., Uenal B., Khademhosseini A., Butt H. Wearables in medicine. Adv. Mater. 2018;30:1706910. doi: 10.1002/adma.201706910. PubMed DOI PMC
Bisoyi H.K., Urbas A.M., Li Q. Soft materials driven by photothermal effect and their applications. Adv. Opt. Mater. 2018;6:21. doi: 10.1002/adom.201800458. DOI
He K., Wen Q.K., Wang C.W., Wang B.X., Yu S.S., Hao C.C., Chen K.Z. A facile synthesis of hierarchical flower-like TiO2 wrapped with MoS2 sheets nanostructure for enhanced electrorheological activity. Chem. Eng. J. 2018;349:416–427. doi: 10.1016/j.cej.2018.05.102. DOI
Stejskal J., Bober P., Trchova M., Horsky J., Walterova Z., Filippov S.K., Plachy T., Mrlik M. Oxidation of pyrrole with p-benzoquinone to semiconducting products and their application in electrorheology. New J. Chem. 2018;42:10167–10176. doi: 10.1039/C8NJ01283K. DOI
Hu T., Xuan S.H., Ding L., Gong X.L. Stretchable and magneto-sensitive strain sensor based on silver nanowire-polyurethane sponge enhanced magnetorheological elastomer. Mater. Des. 2018;156:528–537. doi: 10.1016/j.matdes.2018.07.024. DOI
Cvek M., Mrlik M., Ilcikova M., Mosnacek J., Munster L., Pavlinek V. Synthesis of silicone elastomers containing silyl-based polymer grafted carbonyl iron particles: An efficient way to improve magnetorheological, damping, and sensing performances. Macromolecules. 2017;50:2189–2200. doi: 10.1021/acs.macromol.6b02041. DOI
Zhang W.Z., Wang L.F., Sun K., Luo T., Yu Z.Z., Pan K. Graphene-based janus film with improved sensitive response capacity for smart actuators. Sens. Actuators B Chem. 2018;268:421–429. doi: 10.1016/j.snb.2018.04.104. DOI
Wang T.P., Li M.T., Zhang H., Sun Y.Y., Dong B. A multi- responsive bidirectional bending actuator based on polypyrrole and agar nanocomposites. J. Mater. Chem. C. 2018;6:6416–6422. doi: 10.1039/C8TC00747K. DOI
Zahoranova A., Mrlik M., Tomanova K., Kronek J., Luxenhofer R. Aba and bab triblock copolymers based on 2-methyl-2-oxazoline and 2-n-propyl-2-oxazoline: Synthesis and thermoresponsive behavior in water. Macromol. Chem. Phys. 2017;218:12. doi: 10.1002/macp.201700031. DOI
Shah A., Malik M.S., Khan G.S., Nosheen E., Iftikhar F.J., Khan F.A., Shukla S.S., Akhter M.S., Kraatz H.B., Aminabhavi T.M. Stimuli-responsive peptide-based biomaterials as drug delivery systems. Chem. Eng. J. 2018;353:559–583. doi: 10.1016/j.cej.2018.07.126. DOI
Li M., Wang Y., Chen A.P., Naidu A., Napier B.S., Li W.Y., Rodriguez C.L., Crooker S.A., Omenetto F.G. Flexible magnetic composites for light-controlled actuation and interfaces. Proc. Natl. Acad. Sci. USA. 2018;115:8119–8124. doi: 10.1073/pnas.1805832115. PubMed DOI PMC
Toshchevikov V., Petrova T., Saphiannikova M. Kinetics of ordering and deformation in photosensitive azobenzene lc networks. Polymers. 2018;10:20. doi: 10.3390/polym10050531. PubMed DOI PMC
Ilcikova M., Mrlik M., Sedlacek T., Slouf M., Zhigunov A., Koynov K., Mosnacek J. Synthesis of photoactuating acrylic thermoplastic elastomers containing diblock copolymer-grafted carbon nanotubes. ACS Macro Lett. 2014;3:999–1003. doi: 10.1021/mz500444m. PubMed DOI
Hu Y., Wu G., Lan T., Zhao J.J., Liu Y., Chen W. A graphene-based bimorph structure for design of high performance photoactuators. Adv. Mater. 2015;27:7867–7873. doi: 10.1002/adma.201502777. PubMed DOI
Yang Y.K., Zhan W.J., Peng R.G., He C.G., Pang X.C., Shi D., Jiang T., Lin Z.Q. Graphene-enabled superior and tunable photomechanical actuation in liquid crystalline elastomer nanocomposites. Adv. Mater. 2015;27:6376–6381. doi: 10.1002/adma.201503680. PubMed DOI
Pennacchio F.A., Fedele C., De Martino S., Cavalli S., Vecchione R., Netti P.A. Three-dimensional microstructured azobenzene-containing gelatin as a photoactuable cell confining system. Acs Appl. Mater. Interfaces. 2018;10:91–97. doi: 10.1021/acsami.7b13176. PubMed DOI
Li C., Yun J.H., Kim H., Cho M. Light propagation and photoactuation in densely cross-linked azobenzene-functionalized liquid-crystalline polymers: Contribution of host and concerted isomerism. Macromolecules. 2016;49:6012–6020. doi: 10.1021/acs.macromol.6b01002. DOI
Osicka J., Ilcikova M., Mrlik M., Minarik A., Pavlinek V., Mosnacek J. The impact of polymer grafting from a graphene oxide surface on its compatibility with a pdms matrix and the light-induced actuation of the composites. Polymers. 2017;9:14. doi: 10.3390/polym9070264. PubMed DOI PMC
Ilcikova M., Mrlik M., Sedlacek T., Doroshenko M., Koynov K., Danko M., Mosnacek J. Tailoring of viscoelastic properties and light-induced actuation performance of triblock copolymer composites through surface modification of carbon nanotubes. Polymer. 2015;72:368–377. doi: 10.1016/j.polymer.2015.03.060. DOI
Loomis J., King B., Burkhead T., Xu P., Bessler N., Terentjev E., Panchapakesan B. Graphene-nanoplatelet-based photomechanical actuators. Nanotechnology. 2012;23:10. doi: 10.1088/0957-4484/23/4/045501. PubMed DOI
Koerner H., Price G., Pearce N.A., Alexander M., Vaia R.A. Remotely actuated polymer nanocomposites—Stress-recovery of carbon-nanotube-filled thermoplastic elastomers. Nat. Mater. 2004;3:115–120. doi: 10.1038/nmat1059. PubMed DOI
Afzal A., Kausar A., Siddiq M. Review highlighting physical prospects of styrenic polymer and styrenic block copolymer reinforced with carbon nanotube. Polym. Plast. Technol. Eng. 2017;56:573–593. doi: 10.1080/03602559.2016.1233276. DOI
Ilcikova M., Mrlik M., Sedlacek T., Chorvat D., Krupa I., Slouf M., Koynov K., Mosnacek J. Viscoelastic and photo-actuation studies of composites based on polystyrene-grafted carbon nanotubes and styrene-b-isoprene-b-styrene block copolymer. Polymer. 2014;55:211–218. doi: 10.1016/j.polymer.2013.11.031. DOI
Feng Y.Y., Qin M.M., Guo H.Q., Yoshino K., Feng W. Infrared-actuated recovery of polyurethane filled by reduced graphene oxide/carbon nanotube hybrids with high energy density. Acs Appl. Mater. Interfaces. 2013;5:10882–10888. doi: 10.1021/am403071k. PubMed DOI
Czanikova K., Torras N., Esteve J., Krupa I., Kasak P., Pavlova E., Racko D., Chodak I., Omastova M. Nanocomposite photoactuators based on an ethylene vinyl acetate copolymer filled with carbon nanotubes. Sens. Actuators B. 2013;186:701–710. doi: 10.1016/j.snb.2013.06.054. DOI
Mrlik M., Ilcikova M., Sedlacik M., Mosnacek J., Peer P., Filip P. Cholesteryl-coated carbonyl iron particles with improved anti-corrosion stability and their viscoelastic behaviour under magnetic field. Colloid Polym. Sci. 2014;292:2137–2143. doi: 10.1007/s00396-014-3245-5. DOI
Osicka J., Mrlik M., Ilcikova M., Hanulikova B., Urbanek P., Sedlacik M., Mosnacek J. Reversible actuation ability upon light stimulation of the smart systems with controllably grafted graphene oxide with poly (glycidyl methacrylate) and pdms elastomer: Effect of compatibility and graphene oxide reduction on the photo-actuation performance. Polymers. 2018;10:832. doi: 10.3390/polym10080832. PubMed DOI PMC
Mrlik M., Cvek M., Osicka J., Moucka R., Sedlacik M., Pavlinek V. Surface-initiated atom transfer radical polymerization from graphene oxide: A way towards fine tuning of electric conductivity and electro-responsive capabilities. Mater. Lett. 2018;211:138–141. doi: 10.1016/j.matlet.2017.09.107. DOI
Mrlik M., Ilcikova M., Plachy T., Moucka R., Pavlinek V., Mosnacek J. Tunable electrorheological performance of silicone oil suspensions based on controllably reduced graphene oxide by surface initiated atom transfer radical polymerization of poly(glycidyl methacrylate) J. Ind. Eng. Chem. 2018;57:104–112. doi: 10.1016/j.jiec.2017.08.013. DOI
Yoon J.T., Lee S.C., Jeong Y.G. Effects of grafted chain length on mechanical and electrical properties of nanocomposites containing polylactide-grafted carbon nanotubes. Compos. Sci. Technol. 2010;70:776–782. doi: 10.1016/j.compscitech.2010.01.011. DOI
Ilcikova M., Mrlik M., Spitalsky Z., Micusik M., Csomorova K., Sasinkova V., Kleinova A., Mosnacek J. A tertiary amine in two competitive processes: Reduction of graphene oxide vs. Catalysis of atom transfer radical polymerization. Rsc Adv. 2015;5:3370–3376. doi: 10.1039/C4RA12915F. DOI
Ma C.X., Le X.X., Tang X.L., He J., Xiao P., Zheng J., Xiao H., Lu W., Zhang J.W., Huang Y.J., et al. A multiresponsive anisotropic hydrogel with macroscopic 3d complex deformations. Adv. Funct. Mater. 2016;26:8670–8676. doi: 10.1002/adfm.201603448. DOI
Smart Non-Woven Fiber Mats with Light-Induced Sensing Capability