The Impact of Polymer Grafting from a Graphene Oxide Surface on Its Compatibility with a PDMS Matrix and the Light-Induced Actuation of the Composites

. 2017 Jul 03 ; 9 (7) : . [epub] 20170703

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30970942

Poly(dimethyl siloxane) (PDMS)-based materials with improved photoactuation properties were prepared by the incorporation of polymer-grafted graphene oxide particles. The modification of the graphene oxide (GO) surface was achieved via a surface initiated atom transfer radical polymerization (SI ATRP) of methyl methacrylate and butyl methacrylate. The modification was confirmed by thermogravimetric analysis, infrared spectroscopy and electron microscopy. The GO surface reduction during the SI ATRP was investigated using Raman spectroscopy and conductivity measurements. Contact angle measurements, dielectric spectroscopy and dynamic mechanical analyses were used to investigate the compatibility of the GO filler with the PDMS matrix and the influence of the GO surface modification on its physical properties and the interactions with the matrix. Finally, the thermal conductivity and photoactuation properties of the PDMS matrix and composites were compared. The incorporation of GO with grafted polymer chains, especially poly(n-butyl methacrylate), into the PDMS matrix improved the compatibility of the GO filler with the matrix, increased the energy dissipation due to the improved flexibility of the PDMS chains, enhanced the damping behavior and increased the thermal conductivity. All the changes in the properties positively affected the photoactuation behavior of the PDMS composites containing polymer-grafted GO.

Zobrazit více v PubMed

Cohn R., Panchapakesan B. Spatially nonuniform heating and the nonlinear transient response of elastomeric photomechanical actuators. Actuators. 2016;5:16. doi: 10.3390/act5020016. DOI

Torras N., Zinoviev K.E., Camargo C.J., Campo E.M., Campanella H., Esteve J., Marshall J.E., Terentjev E.M., Omastova M., Krupa I., et al. Tactile device based on opto-mechanical actuation of liquid crystal elastomers. Sens. Actuators A. 2014;208:104–112. doi: 10.1016/j.sna.2014.01.012. DOI

Camargo C.J., Campanella H., Marshall J.E., Torras N., Zinoviev K., Terentjev E.M., Esteve J. Batch fabrication of optical actuators using nanotube–elastomer composites towards refreshable braille displays. J. Micromech. Microeng. 2012;22:9. doi: 10.1088/0960-1317/22/7/075009. DOI

Marshall J.E., Gallagher S., Terentjev E.M., Smoukov S.K. Anisotropic colloidal micromuscles from liquid crystal elastomers. J. Am. Chem. Soc. 2014;136:474–479. doi: 10.1021/ja410930g. PubMed DOI

Baer G.M., Small W., Wilson T.S., Benett W.J., Matthews D.L., Hartman J., Maitland D.J. Fabrication and in vitro deployment of a laser-activated shape memory polymer vascular stent. Biomed. Eng. Online. 2007;6:43. doi: 10.1186/1475-925X-6-43. PubMed DOI PMC

Maitland D.J., Metzger M.F., Schumann D., Lee A., Wilson T.S. Photothermal properties of shape memory polymer micro-actuators for treating stroke. Lasers Surg. Med. 2002;30:1–11. doi: 10.1002/lsm.10007. PubMed DOI

Lu S.X., Liu Y., Shao N., Panchapakesan B. Nanotube micro-opto-mechanical systems. Nanotechnology. 2007;18:065501. doi: 10.1088/0957-4484/18/6/065501. DOI

Zhang X., Yu Z.B., Wang C., Zarrouk D., Seo J.W.T., Cheng J.C., Buchan A.D., Takei K., Zhao Y., Ager J.W., et al. Photoactuators and motors based on carbon nanotubes with selective chirality distributions. Nat. Commun. 2014;5 doi: 10.1038/ncomms3983. PubMed DOI

Fan X.M., King B.C., Loomis J., Campo E.M., Hegseth J., Cohn R.W., Terentjev E., Panchapakesan B. Nanotube liquid crystal elastomers: Photomechanical response and flexible energy conversion of layered polymer composites. Nanotechnology. 2014;25:355501. doi: 10.1088/0957-4484/25/35/355501. PubMed DOI

Pei Z.Q., Yang Y., Chen Q.M., Terentjev E.M., Wei Y., Ji Y. Mouldable liquid-crystalline elastomer actuators with exchangeable covalent bonds. Nat. Mater. 2014;13:36–41. doi: 10.1038/nmat3812. PubMed DOI

Czanikova K., Torras N., Esteve J., Krupa I., Kasak P., Pavlova E., Racko D., Chodak I., Omastova M. Nanocomposite photoactuators based on an ethylene vinyl acetate copolymer filled with carbon nanotubes. Sens. Actuator B. 2013;186:701–710. doi: 10.1016/j.snb.2013.06.054. DOI

Czanikova K., Ilcikova M., Krupa I., Micusik M., Kasak P., Pavlova E., Mosnacek J., Chorvat D., Omastova M. Elastomeric photo-actuators and their investigation by confocal laser scanning microscopy. Smart Mater. Struct. 2013;22:104001. doi: 10.1088/0964-1726/22/10/104001. DOI

Czanikova K., Krupa I., Ilcikova M., Kasak P., Chorvat D., Valentin M., Slouf M., Mosnacek J., Micusik M., Omastova M. Photo-actuating materials based on elastomers and modified carbon nanotubes. J. Nanophotonics. 2012;6:063522. doi: 10.1117/1.JNP.6.063522. DOI

Ilcikova M., Mrlik M., Sedlacek T., Doroshenko M., Koynov K., Danko M., Mosnacek J. Tailoring of viscoelastic properties and light-induced actuation performance of triblock copolymer composites through surface modification of carbon nanotubes. Polymer. 2015;72:368–377. doi: 10.1016/j.polymer.2015.03.060. DOI

Liang J.J., Xu Y.F., Huang Y., Zhang L., Wang Y., Ma Y.F., Li F.F., Guo T.Y., Chen Y.S. Infrared-triggered actuators from graphene-based nanocomposites. J. Phys. Chem. C. 2009;113:9921–9927. doi: 10.1021/jp901284d. DOI

Ahir S.V., Squires A.M., Tajbakhsh A.R., Terentjev E.M. Infrared actuation in aligned polymer–nanotube composites. Phys. Rev. B. 2006;73:085420. doi: 10.1103/PhysRevB.73.085420. DOI

Park J.H., Dao T.D., Lee H.I., Jeong H.M., Kim B.K. Properties of graphene/shape memory thermoplastic polyurethane composites actuating by various methods. Materials. 2014;7:1520–1538. doi: 10.3390/ma7031520. PubMed DOI PMC

Loomis J., King B., Burkhead T., Xu P., Bessler N., Terentjev E., Panchapakesan B. Graphene-nanoplatelet-based photomechanical actuators. Nanotechnology. 2012;23:045501. doi: 10.1088/0957-4484/23/4/045501. PubMed DOI

Feng Y.Y., Qin M.M., Guo H.Q., Yoshino K., Feng W. Infrared-actuated recovery of polyurethane filled by reduced graphene oxide/carbon nanotube hybrids with high energy density. ACS Appl. Mater. Interf. 2013;5:10882–10888. doi: 10.1021/am403071k. PubMed DOI

Fan X.M., Khosravi F., Rahneshin V., Shanmugam M., Loeian M., Jasinski J., Cohn R.W., Terentjev E., Panchapakesan B. MoS2 actuators: Reversible mechanical responses of MoS2–polymer nanocomposites to photons. Nanotechnology. 2015;26:261001. doi: 10.1088/0957-4484/26/26/261001. PubMed DOI

Lei Z.Y., Zhu W.C., Sun S.T., Wu P.Y. MoS2-based dual-responsive flexible anisotropic actuators. Nanoscale. 2016;8:18800–18807. doi: 10.1039/C6NR07265H. PubMed DOI

Ilcikova M., Mrlik M., Sedlacek T., Chorvat D., Krupa I., Slouf M., Koynov K., Mosnacek J. Viscoelastic and photo-actuation studies of composites based on polystyrene-grafted carbon nanotubes and styrene-b-isoprene–b–styrene block copolymer. Polymer. 2014;55:211–218. doi: 10.1016/j.polymer.2013.11.031. DOI

Spitalsky Z., Danko M., Mosnacek J. Preparation of functionalized graphene sheets. Curr. Org. Chem. 2011;15:1133–1150. doi: 10.2174/138527211795202988. DOI

Hui C.M., Pietrasik J., Schmitt M., Mahoney C., Choi J., Bockstaller M.R., Matyjaszewski K. Surface-initiated polymerization as an enabling tool for multifunctional (nano-)engineered hybrid materials. Chem. Mater. 2014;26:745–762. doi: 10.1021/cm4023634. DOI

Ilcikova M., Mosnacek J., Mrlik M., Sedlacek T., Csomorova K., Czanikova K., Krupa I. Influence of surface modification of carbon nanotubes on interactions with polystyrene–b–polyisoprene-b-polystyrene matrix and its photo-actuation properties. Polym. Adv. Technol. 2014;25:1293–1300. doi: 10.1002/pat.3324. DOI

Ilcikova M., Mrlik M., Sedlacek T., Slouf M., Zhigunov A., Koynov K., Mosnacek J. Synthesis of photoactuating acrylic thermoplastic elastomers containing diblock copolymer-grafted carbon nanotubes. ACS Macro Lett. 2014;3:999–1003. doi: 10.1021/mz500444m. PubMed DOI

Hummers W.S., Offeman R.E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958;80:1339. doi: 10.1021/ja01539a017. DOI

Ilcikova M., Mrlik M., Spitalsky Z., Micusik M., Csomorova K., Sasinkova V., Kleinova A., Mosnacek J. A tertiary amine in two competitive processes: Reduction of graphene oxide vs. Catalysis of atom transfer radical polymerization. RSC Adv. 2015;5:3370–3376. doi: 10.1039/C4RA12915F. DOI

Mrlik M., Ilcikova M., Plachy T., Pavlinek V., Spitalsky Z., Mosnacek J. Graphene oxide reduction during surface-initiated atom transfer radical polymerization of glycidyl methacrylate: Controlling electro-responsive properties. Chem. Eng. J. 2016;283:717–720. doi: 10.1016/j.cej.2015.08.013. DOI

Yoon J.T., Lee S.C., Jeong Y.G. Effects of grafted chain length on mechanical and electrical properties of nanocomposites containing polylactide-grafted carbon nanotubes. Compos. Sci. Technol. 2010;70:776–782. doi: 10.1016/j.compscitech.2010.01.011. DOI

Cvek M., Mrlik M., Ilcikova M., Mosnacek M., Munster L., Pavlínek V. Synthesis of silicone elastomers containing silyl-based polymer-grafted carbonyl iron particles: An efficient way to improve magnetorheological, damping, and sensing performances. Macromolecules. 2017;50:2189–2200. doi: 10.1021/acs.macromol.6b02041. DOI

Rabindranath R., Bose H. On the mobility of iron particles embedded in elastomeric silicone matrix. J. Phys. Conf. Ser. 2013;412:012034. doi: 10.1088/1742-6596/412/1/012034. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Atom Transfer Radical Polymerization of Pyrrole-Bearing Methacrylate for Production of Carbonyl Iron Particles with Conducting Shell for Enhanced Electromagnetic Shielding

. 2022 Aug 01 ; 23 (15) : . [epub] 20220801

Effect of Nano-Sized Poly(Butyl Acrylate) Layer Grafted from Graphene Oxide Sheets on the Compatibility and Beta-Phase Development of Poly(Vinylidene Fluoride) and Their Vibration Sensing Performance

. 2022 May 21 ; 23 (10) : . [epub] 20220521

Effect of Structure of Polymers Grafted from Graphene Oxide on the Compatibility of Particles with a Silicone-Based Environment and the Stimuli-Responsive Capabilities of Their Composites

. 2020 Mar 24 ; 10 (3) : . [epub] 20200324

Smart Non-Woven Fiber Mats with Light-Induced Sensing Capability

. 2019 Dec 31 ; 10 (1) : . [epub] 20191231

Enhanced and Tunable Electrorheological Capability using Surface Initiated Atom Transfer Radical Polymerization Modification with Simultaneous Reduction of the Graphene Oxide by Silyl-Based Polymer Grafting

. 2019 Feb 24 ; 9 (2) : . [epub] 20190224

Electrorheology of SI-ATRP-modified graphene oxide particles with poly(butyl methacrylate): effect of reduction and compatibility with silicone oil

. 2019 Jan 09 ; 9 (3) : 1187-1198. [epub] 20190109

Light-Induced Actuation of Poly(dimethylsiloxane) Filled with Graphene Oxide Grafted with Poly(2-(trimethylsilyloxy)ethyl Methacrylate)

. 2018 Sep 24 ; 10 (10) : . [epub] 20180924

Reversible Actuation Ability upon Light Stimulation of the Smart Systems with Controllably Grafted Graphene Oxide with Poly (Glycidyl Methacrylate) and PDMS Elastomer: Effect of Compatibility and Graphene Oxide Reduction on the Photo-Actuation Performance

. 2018 Jul 28 ; 10 (8) : . [epub] 20180728

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...