The Impact of Polymer Grafting from a Graphene Oxide Surface on Its Compatibility with a PDMS Matrix and the Light-Induced Actuation of the Composites
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
30970942
PubMed Central
PMC6432306
DOI
10.3390/polym9070264
PII: polym9070264
Knihovny.cz E-zdroje
- Klíčová slova
- grafting method, reversible deactivation radical polymerization, smart polymers,
- Publikační typ
- časopisecké články MeSH
Poly(dimethyl siloxane) (PDMS)-based materials with improved photoactuation properties were prepared by the incorporation of polymer-grafted graphene oxide particles. The modification of the graphene oxide (GO) surface was achieved via a surface initiated atom transfer radical polymerization (SI ATRP) of methyl methacrylate and butyl methacrylate. The modification was confirmed by thermogravimetric analysis, infrared spectroscopy and electron microscopy. The GO surface reduction during the SI ATRP was investigated using Raman spectroscopy and conductivity measurements. Contact angle measurements, dielectric spectroscopy and dynamic mechanical analyses were used to investigate the compatibility of the GO filler with the PDMS matrix and the influence of the GO surface modification on its physical properties and the interactions with the matrix. Finally, the thermal conductivity and photoactuation properties of the PDMS matrix and composites were compared. The incorporation of GO with grafted polymer chains, especially poly(n-butyl methacrylate), into the PDMS matrix improved the compatibility of the GO filler with the matrix, increased the energy dissipation due to the improved flexibility of the PDMS chains, enhanced the damping behavior and increased the thermal conductivity. All the changes in the properties positively affected the photoactuation behavior of the PDMS composites containing polymer-grafted GO.
Zobrazit více v PubMed
Cohn R., Panchapakesan B. Spatially nonuniform heating and the nonlinear transient response of elastomeric photomechanical actuators. Actuators. 2016;5:16. doi: 10.3390/act5020016. DOI
Torras N., Zinoviev K.E., Camargo C.J., Campo E.M., Campanella H., Esteve J., Marshall J.E., Terentjev E.M., Omastova M., Krupa I., et al. Tactile device based on opto-mechanical actuation of liquid crystal elastomers. Sens. Actuators A. 2014;208:104–112. doi: 10.1016/j.sna.2014.01.012. DOI
Camargo C.J., Campanella H., Marshall J.E., Torras N., Zinoviev K., Terentjev E.M., Esteve J. Batch fabrication of optical actuators using nanotube–elastomer composites towards refreshable braille displays. J. Micromech. Microeng. 2012;22:9. doi: 10.1088/0960-1317/22/7/075009. DOI
Marshall J.E., Gallagher S., Terentjev E.M., Smoukov S.K. Anisotropic colloidal micromuscles from liquid crystal elastomers. J. Am. Chem. Soc. 2014;136:474–479. doi: 10.1021/ja410930g. PubMed DOI
Baer G.M., Small W., Wilson T.S., Benett W.J., Matthews D.L., Hartman J., Maitland D.J. Fabrication and in vitro deployment of a laser-activated shape memory polymer vascular stent. Biomed. Eng. Online. 2007;6:43. doi: 10.1186/1475-925X-6-43. PubMed DOI PMC
Maitland D.J., Metzger M.F., Schumann D., Lee A., Wilson T.S. Photothermal properties of shape memory polymer micro-actuators for treating stroke. Lasers Surg. Med. 2002;30:1–11. doi: 10.1002/lsm.10007. PubMed DOI
Lu S.X., Liu Y., Shao N., Panchapakesan B. Nanotube micro-opto-mechanical systems. Nanotechnology. 2007;18:065501. doi: 10.1088/0957-4484/18/6/065501. DOI
Zhang X., Yu Z.B., Wang C., Zarrouk D., Seo J.W.T., Cheng J.C., Buchan A.D., Takei K., Zhao Y., Ager J.W., et al. Photoactuators and motors based on carbon nanotubes with selective chirality distributions. Nat. Commun. 2014;5 doi: 10.1038/ncomms3983. PubMed DOI
Fan X.M., King B.C., Loomis J., Campo E.M., Hegseth J., Cohn R.W., Terentjev E., Panchapakesan B. Nanotube liquid crystal elastomers: Photomechanical response and flexible energy conversion of layered polymer composites. Nanotechnology. 2014;25:355501. doi: 10.1088/0957-4484/25/35/355501. PubMed DOI
Pei Z.Q., Yang Y., Chen Q.M., Terentjev E.M., Wei Y., Ji Y. Mouldable liquid-crystalline elastomer actuators with exchangeable covalent bonds. Nat. Mater. 2014;13:36–41. doi: 10.1038/nmat3812. PubMed DOI
Czanikova K., Torras N., Esteve J., Krupa I., Kasak P., Pavlova E., Racko D., Chodak I., Omastova M. Nanocomposite photoactuators based on an ethylene vinyl acetate copolymer filled with carbon nanotubes. Sens. Actuator B. 2013;186:701–710. doi: 10.1016/j.snb.2013.06.054. DOI
Czanikova K., Ilcikova M., Krupa I., Micusik M., Kasak P., Pavlova E., Mosnacek J., Chorvat D., Omastova M. Elastomeric photo-actuators and their investigation by confocal laser scanning microscopy. Smart Mater. Struct. 2013;22:104001. doi: 10.1088/0964-1726/22/10/104001. DOI
Czanikova K., Krupa I., Ilcikova M., Kasak P., Chorvat D., Valentin M., Slouf M., Mosnacek J., Micusik M., Omastova M. Photo-actuating materials based on elastomers and modified carbon nanotubes. J. Nanophotonics. 2012;6:063522. doi: 10.1117/1.JNP.6.063522. DOI
Ilcikova M., Mrlik M., Sedlacek T., Doroshenko M., Koynov K., Danko M., Mosnacek J. Tailoring of viscoelastic properties and light-induced actuation performance of triblock copolymer composites through surface modification of carbon nanotubes. Polymer. 2015;72:368–377. doi: 10.1016/j.polymer.2015.03.060. DOI
Liang J.J., Xu Y.F., Huang Y., Zhang L., Wang Y., Ma Y.F., Li F.F., Guo T.Y., Chen Y.S. Infrared-triggered actuators from graphene-based nanocomposites. J. Phys. Chem. C. 2009;113:9921–9927. doi: 10.1021/jp901284d. DOI
Ahir S.V., Squires A.M., Tajbakhsh A.R., Terentjev E.M. Infrared actuation in aligned polymer–nanotube composites. Phys. Rev. B. 2006;73:085420. doi: 10.1103/PhysRevB.73.085420. DOI
Park J.H., Dao T.D., Lee H.I., Jeong H.M., Kim B.K. Properties of graphene/shape memory thermoplastic polyurethane composites actuating by various methods. Materials. 2014;7:1520–1538. doi: 10.3390/ma7031520. PubMed DOI PMC
Loomis J., King B., Burkhead T., Xu P., Bessler N., Terentjev E., Panchapakesan B. Graphene-nanoplatelet-based photomechanical actuators. Nanotechnology. 2012;23:045501. doi: 10.1088/0957-4484/23/4/045501. PubMed DOI
Feng Y.Y., Qin M.M., Guo H.Q., Yoshino K., Feng W. Infrared-actuated recovery of polyurethane filled by reduced graphene oxide/carbon nanotube hybrids with high energy density. ACS Appl. Mater. Interf. 2013;5:10882–10888. doi: 10.1021/am403071k. PubMed DOI
Fan X.M., Khosravi F., Rahneshin V., Shanmugam M., Loeian M., Jasinski J., Cohn R.W., Terentjev E., Panchapakesan B. MoS2 actuators: Reversible mechanical responses of MoS2–polymer nanocomposites to photons. Nanotechnology. 2015;26:261001. doi: 10.1088/0957-4484/26/26/261001. PubMed DOI
Lei Z.Y., Zhu W.C., Sun S.T., Wu P.Y. MoS2-based dual-responsive flexible anisotropic actuators. Nanoscale. 2016;8:18800–18807. doi: 10.1039/C6NR07265H. PubMed DOI
Ilcikova M., Mrlik M., Sedlacek T., Chorvat D., Krupa I., Slouf M., Koynov K., Mosnacek J. Viscoelastic and photo-actuation studies of composites based on polystyrene-grafted carbon nanotubes and styrene-b-isoprene–b–styrene block copolymer. Polymer. 2014;55:211–218. doi: 10.1016/j.polymer.2013.11.031. DOI
Spitalsky Z., Danko M., Mosnacek J. Preparation of functionalized graphene sheets. Curr. Org. Chem. 2011;15:1133–1150. doi: 10.2174/138527211795202988. DOI
Hui C.M., Pietrasik J., Schmitt M., Mahoney C., Choi J., Bockstaller M.R., Matyjaszewski K. Surface-initiated polymerization as an enabling tool for multifunctional (nano-)engineered hybrid materials. Chem. Mater. 2014;26:745–762. doi: 10.1021/cm4023634. DOI
Ilcikova M., Mosnacek J., Mrlik M., Sedlacek T., Csomorova K., Czanikova K., Krupa I. Influence of surface modification of carbon nanotubes on interactions with polystyrene–b–polyisoprene-b-polystyrene matrix and its photo-actuation properties. Polym. Adv. Technol. 2014;25:1293–1300. doi: 10.1002/pat.3324. DOI
Ilcikova M., Mrlik M., Sedlacek T., Slouf M., Zhigunov A., Koynov K., Mosnacek J. Synthesis of photoactuating acrylic thermoplastic elastomers containing diblock copolymer-grafted carbon nanotubes. ACS Macro Lett. 2014;3:999–1003. doi: 10.1021/mz500444m. PubMed DOI
Hummers W.S., Offeman R.E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958;80:1339. doi: 10.1021/ja01539a017. DOI
Ilcikova M., Mrlik M., Spitalsky Z., Micusik M., Csomorova K., Sasinkova V., Kleinova A., Mosnacek J. A tertiary amine in two competitive processes: Reduction of graphene oxide vs. Catalysis of atom transfer radical polymerization. RSC Adv. 2015;5:3370–3376. doi: 10.1039/C4RA12915F. DOI
Mrlik M., Ilcikova M., Plachy T., Pavlinek V., Spitalsky Z., Mosnacek J. Graphene oxide reduction during surface-initiated atom transfer radical polymerization of glycidyl methacrylate: Controlling electro-responsive properties. Chem. Eng. J. 2016;283:717–720. doi: 10.1016/j.cej.2015.08.013. DOI
Yoon J.T., Lee S.C., Jeong Y.G. Effects of grafted chain length on mechanical and electrical properties of nanocomposites containing polylactide-grafted carbon nanotubes. Compos. Sci. Technol. 2010;70:776–782. doi: 10.1016/j.compscitech.2010.01.011. DOI
Cvek M., Mrlik M., Ilcikova M., Mosnacek M., Munster L., Pavlínek V. Synthesis of silicone elastomers containing silyl-based polymer-grafted carbonyl iron particles: An efficient way to improve magnetorheological, damping, and sensing performances. Macromolecules. 2017;50:2189–2200. doi: 10.1021/acs.macromol.6b02041. DOI
Rabindranath R., Bose H. On the mobility of iron particles embedded in elastomeric silicone matrix. J. Phys. Conf. Ser. 2013;412:012034. doi: 10.1088/1742-6596/412/1/012034. DOI
Smart Non-Woven Fiber Mats with Light-Induced Sensing Capability