Electrorheology of SI-ATRP-modified graphene oxide particles with poly(butyl methacrylate): effect of reduction and compatibility with silicone oil
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
35517996
PubMed Central
PMC9059573
DOI
10.1039/c8ra08518h
PII: c8ra08518h
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Surface-initiated atom transfer radical polymerization (SI-ATRP) was used to modify graphene oxide (GO) particles with poly(butyl methacrylate) (PBMA) chains. This procedure facilitated the single-step fabrication of a hybrid material with tailored conductivity for the preparation of a suspension in silicone oil with enhanced sedimentation stability and improved electrorheological (ER) activity. PBMA was characterized using various techniques, such as gel permeation chromatography (GPC) and 1H NMR spectroscopy. Thermogravimetric analysis through on-line investigation of the Fourier transform infrared spectra, together with transmission electron microscopy, X-ray photoelectron microscopy, and atomic force microscopy, were successfully used to confirm GO surface modification. The ER performance was investigated using optical microscopy images and steady shear rheometry, and the mechanism of the internal chain-like structure formation was elucidated. The dielectric properties confirmed enhanced ER performance owing to an increase in relaxation strength to 1.36 and decrease in relaxation time to 5 × 10-3 s. The compatibility between GO and silicone oil was significantly influenced by covalently bonded PBMA polymer brushes on the GO surface, showing enhanced compatibility with silicone oil, which resulted in the considerably improved sedimentation stability. Furthermore, a controlled degree of reduction of the GO surface ensured that the suspension had improved ER properties.
Jozef Stefan Institute Jamova 39 1000 Ljubljana Slovenia
Polymer Institute Slovak Academy of Sciences Dúbravska cesta 9 845 41 Bratislava 45 Slovakia
Zobrazit více v PubMed
Piao S. H. Kwon S. H. Zhang W. L. Choi H. J. Celebrating Soft Matter's 10th Anniversary: Stimuliresponsive Pickering emulsion polymerized smart fluids. Soft Matter. 2015;11:646–654. doi: 10.1039/C4SM02393E. PubMed DOI
Davis L. C. Time-dependent and nonlinear effects in electrorheological fluids. J. Appl. Phys. 1997;81:1985–1991. doi: 10.1063/1.364231. DOI
Li Y. Z. Guan Y. Q. Liu Y. Yin J. B. Zhao X. P. Highly stable nanofluid based on polyhedral oligomeric silsesquioxane-decorated graphene oxide nanosheets and its enhanced electro-responsive behavior. Nanotechnology. 2016;27:11. PubMed
Rankin P. J. Ginder J. M. Klingenberg D. J. Electro- and magneto-rheology. Curr. Opin. Colloid Interface Sci. 1998;3:373–381. doi: 10.1016/S1359-0294(98)80052-6. DOI
Tudon-Martinez J. C. Fergani S. Sename O. Martinez J. J. Morales-Menendez R. Dugard L. Adaptive Road Profile Estimation in Semiactive Car Suspensions. IEEE Trans. Control Syst. Technol. 2015;23:2293–2305.
Han Y. M. Kang P. S. Sung K. G. Choi S. B. Force feedback control of a medical haptic master using an electrorheological fluid. J. Intell. Mater. Syst. Struct. 2007;18:1149–1154. doi: 10.1177/1045389X07083132. DOI
Han Y. M. Choi S. B. Control of an ER haptic master in a virtual slave environment for minimally invasive surgery applications. Smart Mater. Struct. 2008;17:10. doi: 10.1088/0964-1726/17/6/065012. DOI
Zhao X. P. Yin J. B. Preparation and electrorheological characteristics of rare-earth-doped TiO2 suspensions. Chem. Mater. 2002;14:2258–2263. doi: 10.1021/cm011522w. DOI
Lengalova A. Pavlinek V. Saha P. Stejskal J. Kitano T. Quadrat O. The effect of dielectric properties on the electrorheology of suspensions of silica particles coated with polyaniline. Phys. A. 2003;321:411–424. doi: 10.1016/S0378-4371(02)01734-X. DOI
Yoon C. M. Lee S. Hong S. H. Jang J. Fabrication of density-controlled graphene oxide-coated mesoporous silica spheres and their electrorheological activity. J. Colloid Interface Sci. 2015;438:14–21. doi: 10.1016/j.jcis.2014.09.074. PubMed DOI
Kim S. G. Lim J. Y. Sung J. H. Choi H. J. Seo Y. Emulsion polymerized polyaniline synthesized with dodecylbenzenesulfonic acid and its electrorheological characteristics: Temperature effect. Polymer. 2007;48:6622–6631. doi: 10.1016/j.polymer.2007.09.013. DOI
Kim Y. D. Song I. C. Electrorheological and dielectric properties of polypyrrole dispersions. J. Mater. Sci. 2002;37:5051–5055. doi: 10.1023/A:1021091700296. DOI
Kim M. H. Sae D. H. Choi H. J. Seo Y. Synthesis of semiconducting poly(diphenylamine) particles and analysis of their electrorheological properties. Polymer. 2017;119:40–49. doi: 10.1016/j.polymer.2017.05.017. DOI
Cabuk S. Unal H. I. Enhanced electrokinetic, dielectric and electrorheological properties of covalently bonded nanosphere-TiO2/polypyrrole nanocomposite. React. Funct. Polym. 2015;95:1–11. doi: 10.1016/j.reactfunctpolym.2015.08.003. DOI
Cho M. S. Choi H. J. Ahn W. S. Enhanced electrorheology of conducting polyaniline confined in MCM-41 channels. Langmuir. 2004;20:202–207. doi: 10.1021/la035051z. PubMed DOI
Wu J. H. Song Z. Y. Liu F. H. Guo J. J. Cheng Y. C. Ma S. Q. Xu G. J. Giant electrorheological fluids with ultrahigh electrorheological efficiency based on a micro/nano hybrid calcium titanyl oxalate composite. NPG Asia Mater. 2016;8:8.
Zhang W. L. Liu Y. D. Choi H. J. Kim S. G. Electrorheology of Graphene Oxide. ACS Appl. Mater. Interfaces. 2012;4:2267–2272. doi: 10.1021/am300267f. PubMed DOI
Shin K. Y. Lee S. Hong S. Jang J. Graphene Size Control via a Mechanochemical Method and Electroresponsive Properties. ACS Appl. Mater. Interfaces. 2014;6:5531–5537. doi: 10.1021/am405930k. PubMed DOI
Zhang W. L. Liu Y. D. Choi H. J. Seo Y. Core-shell structured graphene oxide-adsorbed anisotropic poly(methyl methacrylate) microparticles and their electrorheology. RSC Adv. 2013;3:11723–11731. doi: 10.1039/C3RA22411B. DOI
Li L. D. Yin J. B. Liu Y. Zhao X. P. Graphene oxide vs. reduced graphene oxide as core substrate for core/shell-structured dielectric nanoplates with different electro-responsive characteristics. J. Mater. Chem. C. 2015;3:5098–5108. doi: 10.1039/C5TC00474H. DOI
Kim S. D. Zhang W. L. Choi H. J. Seo Y. P. Seo Y. Electrorheological activity generation by graphene oxide coating on low-dielectric silica particles. RSC Adv. 2014;4:62644–62650. doi: 10.1039/C4RA13357A. DOI
Mrlik M. Ilcikova M. Plachy T. Pavlinek V. Spitalsky Z. Mosnacek J. Graphene oxide reduction during surface-initiated atom transfer radical polymerization of glycidyl methacrylate: Controlling electro-responsive properties. Chem. Eng. J. 2016;283:717–720. doi: 10.1016/j.cej.2015.08.013. DOI
Zhang W. L. Liu Y. D. Choi H. J. Fabrication of semiconducting graphene oxide/polyaniline composite particles and their electrorheological response under an applied electric field. Carbon. 2012;50:290–296. doi: 10.1016/j.carbon.2011.08.049. DOI
Ilcikova M. Mrlik M. Babayan V. Kasak P. Graphene oxide modified by betaine moieties for improvement of electrorheological performance. RSC Adv. 2015;5:57820–57827. doi: 10.1039/C5RA08403B. DOI
Gao H. F. Matyjaszewski K. Synthesis of molecular brushes by “grafting onto” method: Combination of ATRP and click reactions. J. Am. Chem. Soc. 2007;129:6633–6639. doi: 10.1021/ja0711617. PubMed DOI
Wang Z. Y. Lu Z. Mahoney C. Yan J. J. Ferebee R. Luo D. L. Matyjaszewski K. Bockstaller M. R. Transparent and High Refractive Index Thermoplastic Polymer Glasses Using Evaporative Ligand Exchange of Hybrid Particle Fillers. ACS Appl. Mater. Interfaces. 2017;9:7515–7522. doi: 10.1021/acsami.6b12666. PubMed DOI
Henze M. Madge D. Prucker O. Ruhe J. “Grafting Through”: Mechanistic Aspects of Radical Polymerization Reactions with Surface-Attached Monomers. Macromolecules. 2014;47:2929–2937. doi: 10.1021/ma402607d. DOI
Hui C. M. Pietrasik J. Schmitt M. Mahoney C. Choi J. Bockstaller M. R. Matyjaszewski K. Surface-Initiated Polymerization as an Enabling Tool for Multifunctional (Nano-)Engineered Hybrid Materials. Chem. Mater. 2014;26:745–762. doi: 10.1021/cm4023634. DOI
Matyjaszewski K. Tsarevsky N. V. Macromolecular Engineering by Atom Transfer Radical Polymerization. J. Am. Chem. Soc. 2014;136:6513–6533. doi: 10.1021/ja408069v. PubMed DOI
Ilcikova M. Mrlik M. Spitalsky Z. Micusik M. Csomorova K. Sasinkova V. Kleinova A. Mosnacek J. A tertiary amine in two competitive processes: reduction of graphene oxide vs. catalysis of atom transfer radical polymerization. RSC Adv. 2015;5:3370–3376. doi: 10.1039/C4RA12915F. DOI
Zhang W. L. Liu Y. D. Choi H. J. Graphene oxide coated core-shell structured polystyrene microspheres and their electrorheological characteristics under applied electric field. J. Mater. Chem. 2011;21:6916–6921. doi: 10.1039/C1JM10323G. DOI
Slobodian P. Pavlinek V. Lengalova A. Saha P. Polystyrene/multi-wall carbon nanotube composites prepared by suspension polymerization and their electrorheological behavior. Curr. Appl. Phys. 2009;9:184–188. doi: 10.1016/j.cap.2008.01.008. DOI
Kim J. W. Noh M. H. Choi H. J. Lee D. C. Jhon M. S. Synthesis and electrorheological characteristics of SAN-clay composite suspensions. Polymer. 2000;41:1229–1231. doi: 10.1016/S0032-3861(99)00466-8. DOI
Kim Y. J. Liu Y. D. Choi H. J. Park S. J. Facile fabrication of Pickering emulsion polymerized polystyrene/laponite composite nanoparticles and their electrorheology. J. Colloid Interface Sci. 2013;394:108–114. doi: 10.1016/j.jcis.2012.12.040. PubMed DOI
Hummers W. S. Offeman R. E. Preparation of Graphitic Oxide. J. Am. Chem. Soc. 1958;80:1339. doi: 10.1021/ja01539a017. DOI
Osicka J. Ilcikova M. Mrlik M. Minarik A. Pavlinek V. Mosnacek J. The Impact of Polymer Grafting from a Graphene Oxide Surface on Its Compatibility with a PDMS Matrix and the Light-Induced Actuation of the Composites. Polymers. 2017;9:14. doi: 10.3390/polym9070264. PubMed DOI PMC
Havrilia S. Negami S. A Complex Plane Representation of Dielectric And Mechanical Relaxation Processes in Some Polymers. Polymer. 1967;8:161–168. doi: 10.1016/0032-3861(67)90021-3. DOI
Zhang B. W. Zhang Y. J. Peng C. Yu M. Li L. F. Deng B. Hu P. F. Fan C. H. Li J. Y. Huang Q. Preparation of polymer decorated graphene oxide by gamma-ray induced graft polymerization. Nanoscale. 2012;4:1742–1748. doi: 10.1039/C2NR11724J. PubMed DOI
Zhao X. Z. Feng Y. Y. Qin C. Q. Yang W. X. Si Q. Y. Feng W. Controlling Heat Release from a Close-Packed Bisazobenzene-Reduced-Graphene-Oxide Assembly Film for High-Energy Solid-State Photothermal Fuels. ChemSusChem. 2017;10:1395–1404. doi: 10.1002/cssc.201601551. PubMed DOI
Pietrasik J. Hui C. M. Chaladaj W. Dong H. C. Choi J. Jurczak J. Bockstaller M. R. Matyjaszewski K. Silica-Polymethacrylate Hybrid Particles Synthesized Using High-Pressure Atom Transfer Radical Polymerization. Macromol. Rapid Commun. 2011;32:295–301. doi: 10.1002/marc.201000531. PubMed DOI
Yamamoto S. Ejaz M. Tsujii Y. Fukuda T. Surface interaction forces of well-defined, high-density polymer brushes studied by atomic force microscopy. 2. Effect of graft density. Macromolecules. 2000;33:5608–5612. doi: 10.1021/ma991988o. DOI
Yin J. B. Wang X. X. Zhao X. P. Silicone-grafted carbonaceous nanotubes with enhanced dispersion stability and electrorheological efficiency. Nanotechnology. 2015;26:9. PubMed
Li Y. Chen H. Y. Voo L. Y. Ji J. Y. Zhang G. H. Zhang G. L. Zhang F. B. Fan X. B. Synthesis of partially hydrogenated graphene and brominated graphene. J. Mater. Chem. 2012;22:15021–15024. doi: 10.1039/C2JM32307A. DOI
Mrlik M. Cvek M. Osicka J. Moucka R. Sedlacik M. Pavlinek V. Surface-initiated atom transfer radical polymerization from graphene oxide: A way towards fine tuning of electric conductivity and electro-responsive capabilities. Mater. Lett. 2018;211:138. doi: 10.1016/j.matlet.2017.09.107. DOI
Ferrari A. C. Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Commun. 2007;143:47–57. doi: 10.1016/j.ssc.2007.03.052. DOI
Mrlik M. Ilcikova M. Plachy T. Moucka R. Pavlinek V. Mosnacek J. Tunable electrorheological performance of silicone oil suspensions based on controllably reduced graphene oxide by surface initiated atom transfer radical polymerization of poly(glycidyl methacrylate) J. Ind. Eng. Chem. 2018;57:104–112. doi: 10.1016/j.jiec.2017.08.013. DOI
Yin J. B. Wang X. X. Chang R. T. Zhao X. P. Polyaniline decorated graphene sheet suspension with enhanced electrorheology. Soft Matter. 2012;8:294–297. doi: 10.1039/C1SM06728A. DOI
Yin J. B. Chang R. T. Shui Y. J. Zhao X. P. Preparation and enhanced electro-responsive characteristic of reduced graphene oxide/polypyrrole composite sheet suspensions. Soft Matter. 2013;9:7468–7478. doi: 10.1039/C3SM51128F. DOI
Yin J. B. Chang R. T. Kai Y. Zhao X. P. Highly stable and AC electric field-activated electrorheological fluid based on mesoporous silica-coated graphene nanosheets. Soft Matter. 2013;9:3910–3914. doi: 10.1039/C3SM27835B. DOI
He K. Wen Q. K. Wang C. W. Wang B. X. Yu S. S. Hao C. C. Chen K. Z. A facile synthesis of hierarchical flower-like TiO2 wrapped with MoS2 sheets nanostructure for enhanced electrorheological activity. Chem. Eng. J. 2018;349:416–427. doi: 10.1016/j.cej.2018.05.102. DOI
Wen W. J. Huang X. X. Yang S. H. Lu K. Q. Sheng P. The giant electrorheological effect in suspensions of nanoparticles. Nat. Mater. 2003;2:727–730. doi: 10.1038/nmat993. PubMed DOI
Lee S. Kim Y. K. Hong J. Y. Jang J. Electro-response of MoS2 Nanosheets-Based Smart Fluid with Tailorable Electrical Conductivity. ACS Appl. Mater. Interfaces. 2016;8:24221–24229. doi: 10.1021/acsami.6b07887. PubMed DOI
Sedlacik M. Mrlik M. Pavlinek V. Saha P. Quadrat O. Electrorheological properties of suspensions of hollow globular titanium oxide/polypyrrole particles. Colloid Polym. Sci. 2012;290:41–48. doi: 10.1007/s00396-011-2521-x. DOI
Sedlacik M. Mrlik M. Kozakova Z. Pavlinek V. Kuritka I. Synthesis and electrorheology of rod-like titanium oxide particles prepared via microwave-assisted molten-salt method. Colloid Polym. Sci. 2013;291:1105–1111. doi: 10.1007/s00396-012-2834-4. DOI
Mrlik M. Pavlinek V. Cheng Q. L. Saha P. Synthesis of Titanate/Polypyrrole Composite Rod-Like Particles and The Role of Conducting Polymer on Electrorheological Efficiency. Int. J. Mod. Phys. B. 2012;26:8. doi: 10.1142/S0217979212500075. DOI