Reversible Actuation Ability upon Light Stimulation of the Smart Systems with Controllably Grafted Graphene Oxide with Poly (Glycidyl Methacrylate) and PDMS Elastomer: Effect of Compatibility and Graphene Oxide Reduction on the Photo-Actuation Performance
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
16-20361Y
Grantová Agentura České Republiky
LO1504
Ministerstvo Školství, Mládeže a Tělovýchovy
APVV-15-0545
Agency for Research and Development Support
CZ.1.05/2.1.00/19.0409
European Regional Development Fund
PubMed
30960757
PubMed Central
PMC6403919
DOI
10.3390/polym10080832
PII: polym10080832
Knihovny.cz E-resources
- Keywords
- SI-ATRP, dielectrics, dynamic mechanical analysis, graphene oxide, light-stimuli material, photo-responsive material, poly (glycidyl methacrylate), reduction,
- Publication type
- Journal Article MeSH
This study is focused on the controllable reduction of the graphene oxide (GO) during the surface-initiated atom transfer radical polymerization technique of glycidyl methacrylate (GMA). The successful modification was confirmed using TGA-FTIR analysis and TEM microscopy observation of the polymer shell. The simultaneous reduction of the GO particles was confirmed indirectly via TGA and directly via Raman spectroscopy and electrical conductivity investigations. Enhanced compatibility of the GO-PGMA particles with a polydimethylsiloxane (PDMS) elastomeric matrix was proven using contact angle measurements. Prepared composites were further investigated through the dielectric spectroscopy to provide information about the polymer chain mobility through the activation energy. Dynamic mechanical properties investigation showed an excellent mechanical response on the dynamic stimulation at a broad temperature range. Thermal conductivity evaluation also confirmed the further photo-actuation capability properties at light stimulation of various intensities and proved that composite material consisting of GO-PGMA particles provide systems with a significantly enhanced capability in comparison with neat GO as well as neat PDMS matrix.
See more in PubMed
Ilcikova M., Mrlik M., Babayan V., Kasak P. Graphene oxide modified by betaine moieties for improvement of electrorheological performance. RSC Adv. 2015;5:57820–57827. doi: 10.1039/C5RA08403B. DOI
Jun C.S., Kwon S.H., Choi H.J., Seo Y. Polymeric Nanoparticle-Coated Pickering Emulsion-Synthesized Conducting Polyaniline Hybrid Particles and Their Electrorheological Study. ACS Appl. Mater. Interfaces. 2017;9:44811–44819. doi: 10.1021/acsami.7b13808. PubMed DOI
Mosse A. Gossamer timescapes: A design-led investigation into electro-active and light responsive textiles for the home. Smart Mater. Struct. 2018;27:074009. doi: 10.1088/1361-665X/aac537. DOI
Peng L., Liu Y., Huang J.N., Li J.H., Gong J.H., Ma J.H. Microfluidic fabrication of highly stretchable and fast electro-responsive graphene oxide/polyacrylamide/alginate hydrogel fibers. Eur. Polym. J. 2018;103:335–341. doi: 10.1016/j.eurpolymj.2018.04.019. DOI
Mrlik M., Ilcikova M., Cvek M., Pavlinek V., Zahoranova A., Kronekova Z., Kasak P. Carbonyl iron coated with a sulfobetaine moiety as a biocompatible system and the magnetorheological performance of its silicone oil suspensions. RSC Adv. 2016;6:32823–32830. doi: 10.1039/C6RA03919G. DOI
Han S., Choi J., Seo Y.P., Park I.J., Choi H.J., Seo Y. High-Performance Magnetorheological Suspensions of Pickering-Emulsion-Polymerized Polystyrene/Fe3O4 Particles with Enhanced Stability. Langmuir. 2018;34:2807–2814. doi: 10.1021/acs.langmuir.7b04043. PubMed DOI
Deng L., Jia W.P., Zheng W., Liu H., Jiang D.G., Li Z.M., Tian Y., Zhang W.L., Liu J.Q. Hierarchically magnetic Ni-Al binary layered double hydroxides: Towards tunable dual electro/magneto-stimuli performances. J. Ind. Eng. Chem. 2018;58:163–171. doi: 10.1016/j.jiec.2017.09.021. DOI
Nakayama M., Kajiyama S., Kumamoto A., Nishimura T., Ikuhara Y., Yamato M., Kato T. Stimuli-responsive hydroxyapatite liquid crystal with macroscopically controllable ordering and magneto-optical functions. Nat. Commun. 2018;9:568. doi: 10.1038/s41467-018-02932-7. PubMed DOI PMC
Mrlík M., Špírek M., Al-Khori J., Ahmad A.A., Mosnaček J., AlMaadeed M.A., Kasák P. Mussel-mimicking sulfobetaine-based copolymer with metal tunable gelation, self-healing and antibacterial capability. Arabian J. Chem. 2017 doi: 10.1016/j.arabjc.2017.03.009. DOI
Chen W., Ma Y., Pan J.M., Meng Z.H., Pan G.Q., Sellergren B. Molecularly Imprinted Polymers with Stimuli-Responsive Affinity: Progress and Perspectives. Polymers. 2015;7:1689–1715. doi: 10.3390/polym7091478. DOI
Curcio M., Mauro L., Naimo G.D., Amantea D., Cirillo G., Tavano L., Casaburi I., Nicoletta F.P., Alvarez-Lorenzo C., Iemma F. Facile synthesis of pH-responsive polymersomes based on lipidized PEG for intracellular co-delivery of curcumin and methotrexate. Colloid Surf. B Biointerfaces. 2018;167:568–576. doi: 10.1016/j.colsurfb.2018.04.057. PubMed DOI
Kang W.L., Zhao Y.L., Wang P.X., Li Z., Hou X.Y., Huang Z.T., Yang H.B. Rheological behavior and mechanism of pH-responsive wormlike micelle variations induced by isomers of phthalic acid. Soft Matter. 2018;14:4445–4452. doi: 10.1039/C8SM00467F. PubMed DOI
Zahoranova A., Mrlik M., Tomanova K., Kronek J., Luxenhofer R. ABA and BAB Triblock Copolymers Based on 2-Methyl-2-oxazoline and 2-n-Propyl-2-oxazoline: Synthesis and Thermoresponsive Behavior in Water. Macromol. Chem. Phys. 2017;218:1700031. doi: 10.1002/macp.201700031. DOI
Zhang N., Luxenhofer R., Jordan R. Thermoresponsive Poly(2-Oxazoline) Molecular Brushes by Living Ionic Polymerization: Modulation of the Cloud Point by Random and Block Copolymer Pendant Chains. Macromol. Chem. Phys. 2012;213:1963–1969. doi: 10.1002/macp.201200261. DOI
Xiu M.M., Kang Q., Tao M.L., Chen Y., Wang Y. Thermoresponsive AIE supramolecular complexes in dilute solution: Sensitively probing the phase transition from two different temperature-dependent emission responses. J. Mater. Chem. C. 2018;6:5926–5936. doi: 10.1039/C8TC01323C. DOI
Jerca F.A., Jerca V.V., Anghelache A.M., Vuluga D.M., Hoogenboo R. Poly(2-isopropenyl-2-oxazoline) as a versatile platform towards thermoresponsive copolymers. Polym. Chem. 2018;9:3473–3478. doi: 10.1039/C8PY00612A. DOI
Ilcikova M., Mosnacek J., Mrlik M., Sedlacek T., Csomorova K., Czanikova K., Krupa I. Influence of surface modification of carbon nanotubes on interactions with polystyrene-b-polyisoprene-b-polystyrene matrix and its photo-actuation properties. Polym. Adv. Technol. 2014;25:1293–1300. doi: 10.1002/pat.3324. DOI
Kobatake S., Takami S., Muto H., Ishikawa T., Irie M. Rapid and reversible shape changes of molecular crystals on photoirradiation. Nature. 2007;446:778–781. doi: 10.1038/nature05669. PubMed DOI
Zhang T., Sheng L., Liu J.N., Ju L., Li J.H., Du Z., Zhang W.R., Li M.J., Zhang S.X.A. Photoinduced Proton Transfer between Photoacid and pH-Sensitive Dyes: Influence Factors and Application for Visible-Light-Responsive Rewritable Paper. Adv. Funct. Mater. 2018;28:1705532. doi: 10.1002/adfm.201705532. DOI
Du L., Xu Z.Y., Fan C.J., Xiang G., Yang K.K., Wang Y.Z. A Fascinating Metallo-Supramolecular Polymer Network with Thermal/Magnetic/Light-Responsive Shape-Memory Effects Anchored by Fe3O4 Nanoparticles. Macromolecules. 2018;51:705–715. doi: 10.1021/acs.macromol.7b02641. DOI
Li Y.C., Li J.C., Li W.H., Samali B. Development and characterization of a magnetorheological elastomer based adaptive seismic isolator. Smart Mater. Struct. 2013;22:035005. doi: 10.1088/0964-1726/22/3/035005. DOI
Mannsfeld S.C.B., Tee B.C.K., Stoltenberg R.M., Chen C., Barman S., Muir B.V.O., Sokolov A.N., Reese C., Bao Z.N. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nat. Mater. 2010;9:859–864. doi: 10.1038/nmat2834. PubMed DOI
Godman N.P., Kowalski B.A., Auguste A.D., Koerner H., White T.J. Synthesis of Elastomeric Liquid Crystalline Polymer Networks via Chain Transfer. ACS Macro Lett. 2017;6:1290–1295. doi: 10.1021/acsmacrolett.7b00822. PubMed DOI
Anderson I.A., Gisby T.A., McKay T.G., O’Brien B.M., Calius E.P. Multi-functional dielectric elastomer artificial muscles for soft and smart machines. J. Appl. Phys. 2012;112:041101. doi: 10.1063/1.4740023. DOI
Li Y.C., Li J.C., Tian T.F., Li W.H. A highly adjustable magnetorheological elastomer base isolator for applications of real-time adaptive control. Smart Mater. Struct. 2013;22:095020. doi: 10.1088/0964-1726/22/9/095020. DOI
Robinson S.S., O’Brien K.W., Zhaob H., Peele B.N., Larson C.M., Murray B.C.M., van Meerbeek I.M., Dunham S.N., Shepherd R.F. Integrated soft sensors and elastomeric actuators for tactile machines with kinesthetic sense. Extreme Mech. Lett. 2015;5:47–53. doi: 10.1016/j.eml.2015.09.005. DOI
Mrlik M., Ilcikova M., Plachy T., Pavlinek V., Spitalsky Z., Mosnacek J. Graphene oxide reduction during surface-initiated atom transfer radical polymerization of glycidyl methacrylate: Controlling electro-responsive properties. Chem. Eng. J. 2016;283:717–720. doi: 10.1016/j.cej.2015.08.013. DOI
Steurer P., Wissert R., Thomann R., Mulhaupt R. Functionalized Graphenes and Thermoplastic Nanocomposites Based upon Expanded Graphite Oxide. Macromol. Rapid Commun. 2009;30:316–327. doi: 10.1002/marc.200800754. PubMed DOI
Marcano D.C., Kosynkin D.V., Berlin J.M., Sinitskii A., Sun Z.Z., Slesarev A., Alemany L.B., Lu W., Tour J.M. Improved Synthesis of Graphene Oxide. ACS Nano. 2010;4:4806–4814. doi: 10.1021/nn1006368. PubMed DOI
Park S., An J., Potts J.R., Velamakanni A., Murali S., Ruoff R.S. Hydrazine-reduction of graphite- and graphene oxide. Carbon. 2011;49:3019–3023. doi: 10.1016/j.carbon.2011.02.071. DOI
Pei S.F., Zhao J.P., Du J.H., Ren W.C., Cheng H.M. Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids. Carbon. 2010;48:4466–4474. doi: 10.1016/j.carbon.2010.08.006. DOI
Ilcikova M., Mrlik M., Spitalsky Z., Micusik M., Csomorova K., Sasinkova V., Kleinova A., Mosnacek J. A tertiary amine in two competitive processes: Reduction of graphene oxide vs. catalysis of atom transfer radical polymerization. RSC Adv. 2015;5:3370–3376. doi: 10.1039/C4RA12915F. DOI
Peraza-Hernandez E.A., Hartl D.J., Malak R.J., Lagoudas D.C. Origami-inspired active structures: A synthesis and review. Smart Mater. Struct. 2014;23:094001. doi: 10.1088/0964-1726/23/9/094001. DOI
Czanikova K., Krupa I., Ilcikova M., Kasak P., Chorvat D., Valentin M., Slouf M., Mosnacek J., Micusik M., Omastova M. Photo-actuating materials based on elastomers and modified carbon nanotubes. J. Nanophotonics. 2012;6:063522. doi: 10.1117/1.JNP.6.063522. DOI
Kuila T., Bose S., Mishra A.K., Khanra P., Kim N.H., Lee J.H. Chemical functionalization of graphene and its applications. Prog. Mater. Sci. 2012;57:1061–1105. doi: 10.1016/j.pmatsci.2012.03.002. DOI
Osicka J., Ilcikova M., Mrlik M., Minarik A., Pavlinek V., Mosnacek J. The Impact of Polymer Grafting from a Graphene Oxide Surface on Its Compatibility with a PDMS Matrix and the Light-Induced Actuation of the Composites. Polymers. 2017;9:264. doi: 10.3390/polym9070264. PubMed DOI PMC
Ilcikova M., Mrlik M., Sedlacek T., Chorvat D., Krupa I., Slouf M., Koynov K., Mosnacek J. Viscoelastic and photo-actuation studies of composites based on polystyrene-grafted carbon nanotubes and styrene-b-isoprene-b-styrene block copolymer. Polymer. 2014;55:211–218. doi: 10.1016/j.polymer.2013.11.031. DOI
Ilcikova M., Mrlik M., Sedlacek T., Slouf M., Zhigunov A., Koynov K., Mosnacek J. Synthesis of Photoactuating Acrylic Thermoplastic Elastomers Containing Diblock Copolymer-Grafted Carbon Nanotubes. ACS Macro Lett. 2014;3:999–1003. doi: 10.1021/mz500444m. PubMed DOI
Zhang W.L., Liu Y.D., Choi H.J., Kim S.G. Electrorheology of Graphene Oxide. ACS Appl. Mater. Interfaces. 2012;4:2267–2272. doi: 10.1021/am300267f. PubMed DOI
Mrlik M., Moucka R., Ilcikova M., Bober P., Kazantseva N., Spitalsky Z., Trchova M., Stejskal J. Charge transport and dielectric relaxation processes in aniline-based oligomers. Synth. Met. 2014;192:37–42. doi: 10.1016/j.synthmet.2014.02.022. DOI
Mrlik M., Cvek M., Osicka J., Moucka R., Sedlacik M., Pavlinek V. Surface-initiated atom transfer radical polymerization from graphene oxide: A way towards fine tuning of electric conductivity and electro-responsive capabilities. Mater. Lett. 2018;211:138–141. doi: 10.1016/j.matlet.2017.09.107. DOI
Cvek M., Mrlik M., Ilcikova M., Plachy T., Sedlacik M., Mosnacek J., Pavlinek V. A facile controllable coating of carbonyl iron particles with poly(glycidyl methacrylate): A tool for adjusting MR response and stability properties. J. Mater. Chem. C. 2015;3:4646–4656. doi: 10.1039/C5TC00319A. DOI
Georgousis G., Pandis C., Kalamiotis A., Georgiopoulos P., Kyritsis A., Kontou E., Pissis P., Micusik M., Czanikova K., Kulicek J., et al. Strain sensing in polymer/carbon nanotube composites by electrical resistance measurement. Compos. Part B Eng. 2015;68:162–169. doi: 10.1016/j.compositesb.2014.08.027. DOI
Rabindranath R., Bose H. On the mobility of iron particles embedded in elastomeric silicone matrix. In: Unal H.I., editor. Proceedings of the 13th International Conference on Electrorheological Fluids and Magnetorheological Suspensions; Ankara, Turkey. 2–6 July 2012; Bristol, UK: Iop Publishing Ltd.; 2013.
Feng Y.Y., Qin M.M., Guo H.Q., Yoshino K., Feng W. Infrared-Actuated Recovery of Polyurethane Filled by Reduced Graphene Oxide/Carbon Nanotube Hybrids with High Energy Density. ACS Appl. Mater. Interfaces. 2013;5:10882–10888. doi: 10.1021/am403071k. PubMed DOI
Smart Non-Woven Fiber Mats with Light-Induced Sensing Capability