Environmental and Molecular Drivers of the α-Gal Syndrome
Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
PubMed
31214181
PubMed Central
PMC6554561
DOI
10.3389/fimmu.2019.01210
Knihovny.cz E-zdroje
- Klíčová slova
- IgE, food allergy, red meat allergy, ticks, α-Gal syndrome (AGS),
- MeSH
- alergeny imunologie MeSH
- anafylaxe etiologie MeSH
- červené maso MeSH
- genetická predispozice k nemoci MeSH
- hmyzí proteiny imunologie MeSH
- imunoglobulin E metabolismus MeSH
- interakce genů a prostředí MeSH
- klíšťata MeSH
- kousnutí klíštětem komplikace imunologie MeSH
- lidé MeSH
- potravinová alergie komplikace etiologie imunologie MeSH
- tvorba protilátek MeSH
- zkřížené reakce MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- alergeny MeSH
- hmyzí proteiny MeSH
- imunoglobulin E MeSH
The α-Gal syndrome (AGS) is a type of allergy characterized by an IgE antibody (Ab) response against the carbohydrate Galα1-3Galβ1-4GlcNAc-R (α-Gal), which is present in glycoproteins from tick saliva and tissues of non-catarrhine mammals. Recurrent tick bites induce high levels of anti-α-Gal IgE Abs that mediate delayed hypersensitivity to consumed red meat products in humans. This was the first evidence that tick glycoproteins play a major role in allergy development with the potential to cause fatal delayed anaphylaxis to α-Gal-containing foods and drugs and immediate anaphylaxis to tick bites. Initially, it was thought that the origin of tick-derived α-Gal was either residual blood meal mammalian glycoproteins containing α-Gal or tick gut bacteria producing this glycan. However, recently tick galactosyltransferases were shown to be involved in α-Gal synthesis with a role in tick and tick-borne pathogen life cycles. The tick-borne pathogen Anaplasma phagocytophilum increases the level of tick α-Gal, which potentially increases the risk of developing AGS after a bite by a pathogen-infected tick. Two mechanisms might explain the production of anti-α-Gal IgE Abs after tick bites. The first mechanism proposes that the α-Gal antigen on tick salivary proteins is presented to antigen-presenting cells and B-lymphocytes in the context of Th2 cell-mediated immunity induced by tick saliva. The second mechanism is based on the possibility that tick salivary prostaglandin E2 triggers Immunoglobulin class switching to anti-α-Gal IgE-producing B cells from preexisting mature B cells clones producing anti-α-Gal IgM and/or IgG. Importantly, blood group antigens influence the capacity of the immune system to produce anti-α-Gal Abs which in turn impacts individual susceptibility to AGS. The presence of blood type B reduces the capacity of the immune system to produce anti-α-Gal Abs, presumably due to tolerance to α-Gal, which is very similar in structure to blood group B antigen. Therefore, individuals with blood group B and reduced levels of anti-α-Gal Abs have lower risk to develop AGS. Specific immunity to tick α-Gal is linked to host immunity to tick bites. Basophil activation and release of histamine have been implicated in IgE-mediated acquired protective immunity to tick infestations and chronic itch. Basophil reactivity was also found to be higher in patients with AGS when compared to asymptomatic α-Gal sensitized individuals. In addition, host resistance to tick infestation is associated with resistance to tick-borne pathogen infection. Anti-α-Gal IgM and IgG Abs protect humans against vector-borne pathogens and blood group B individuals seem to be more susceptible to vector-borne diseases. The link between blood groups and anti-α-Gal immunity which in turn affects resistance to vector-borne pathogens and susceptibility to AGS, suggests a trade-off between susceptibility to AGS and protection to some infectious diseases. The understanding of the environmental and molecular drivers of the immune mechanisms involved in AGS is essential to developing tools for the diagnosis, control, and prevention of this growing health problem.
Biology Center Institute of Parasitology Czech Academy of Sciences Ceské Budějovice Czechia
Faculty of Veterinary Medicine University of Zaragoza Zaragoza Spain
FAZ Floridsdorf Allergy Center Vienna Austria
Molecular Biotechnology Section University of Applied Sciences Vienna Austria
SaBio Instituto de Investigación de Recursos Cinegéticos IREC CSIC UCLM JCCM Ciudad Real Spain
UMR BIPAR INRA ANSES Ecole Nationale Vétérinaire d'Alfort Université Paris Est Maisons Alfort France
Zobrazit více v PubMed
Galili U. Significance of the evolutionary α1,3-galactosyltransferase (GGTA1) gene inactivation in preventing extinction of apes and old world monkeys. J Mol Evol. (2015) 80:1–9. 10.1007/s00239-014-9652-x PubMed DOI
Lanteri M, Giordanengo V, Vidal F, Gaudray P, Lefebvre J-C. A complete 1,3-galactosyltransferase gene is present in the human genome and partially transcribed. Glycobiology. (2002) 12:785–92. 10.1093/glycob/cwf087 PubMed DOI
Macher BA, Galili U. The Galα1,3Galβ1,4GlcNAc-R (α-Gal) epitope: a carbohydrate of unique evolution and clinical relevance. Biochim Biophys Acta. (2008) 1780:75–88. 10.1016/j.bbagen.2007.11.003 PubMed DOI PMC
Galili U. A unique natural human IgG antibody with anti-alpha-galactosyl specificity. J Exp Med. (1984) 160:1519–31. 10.1084/jem.160.5.1519 PubMed DOI PMC
Galili U, Mandrell RE, Hamadeh RM, Shohet SB, Griffiss JM. Interaction between human natural anti-alpha-galactosyl immunoglobulin G and bacteria of the human flora. Infect Immun. (1988) 56:1730–37. PubMed PMC
Yilmaz B, Portugal S, Tran TM, Gozzelino R, Ramos S, Gomes J, et al. . Gut microbiota elicits a protective immune response against malaria transmission. Cell. (2014) 159:1277–89. 10.1016/j.cell.2014.10.053 PubMed DOI PMC
Galili U. The α-gal epitope and the anti-Gal antibody in xenotransplantation and in cancer immunotherapy. Immunol Cell Biol. (2005) 83:674–86. 10.1111/j.1440-1711.2005.01366.x PubMed DOI
Bernth-Jensen JM, Møller BK, Jensenius JC, Thiel S. Biological variation of anti-αGal-antibodies studied by a novel time-resolved immunofluorometric assay. J Immunol Methods. (2011) 373:26–35. 10.1016/j.jim.2011.07.017 PubMed DOI
Yu PB, Holzknecht ZE, Bruno D, Parker W, Platt JL. Modulation of natural IgM binding and complement activation by natural IgG antibodies: a role for IgG anti-Gal alpha1-3Gal antibodies. J Immunol. (1996) 157:5163–68. PubMed
Rispens T, Derksen NIL, Commins SP, Platts-Mills TA, Aalberse RC. IgE production to α-Gal is accompanied by elevated levels of specific IgG1 antibodies and low amounts of IgE to blood group B. PLoS ONE. (2013) 8:e55566. 10.1371/journal.pone.0055566 PubMed DOI PMC
Cabezas-Cruz A, Mateos-Hernández L, Pérez-Cruz M, Valdés JJ, Mera IGFD, Villar M, et al. . Regulation of the immune response to α-Gal and vector-borne diseases. Trends Parasitol. (2015) 31:470–6. 10.1016/j.pt.2015.06.016 PubMed DOI
Galili U. Evolution in primates by “Catastrophic-selection” interplay between enveloped virus epidemics, mutated genes of enzymes synthesizing carbohydrate antigens, and natural anti-carbohydrate antibodies. Am J Phys Anthropol. (2018) 168:352–63. 10.1002/ajpa.23745 PubMed DOI
Hamadeh RM, Jarvis GA, Galili U, Mandrell RE, Zhou P, Griffiss JM. Human natural anti-Gal IgG regulates alternative complement pathway activation on bacterial surfaces. J Clin Invest. (1992) 89:1223–35. 10.1172/JCI115706 PubMed DOI PMC
Jonker DJ, Ocallaghan CJ, Karapetis CS, Zalcberg JR, Tu D, Au H-J, et al. . Cetuximab for the treatment of colorectal cancer. N Engl J Med. (2007) 357:2040–8. 10.1056/NEJMoa071834 PubMed DOI
Chung CH, Mirakhur B, Chan E, Le QT, Berlin J, Morse M, et al. . Cetuximab-induced anaphylaxis and IgE specific for galactose-alpha-1,3-galactose. N Engl J Med. (2008) 358:1109–17. 10.1056/NEJMoa074943 PubMed DOI PMC
Cabezas-Cruz A, Valdés J, de la Fuente J. Cancer research meets tick vectors for infectious diseases. Lancet Infect Dis. (2014) 14:916–7. 10.1016/S1473-3099(14)70902-8 PubMed DOI
Mateos-Hernández L, Villar M, Moral A, Rodríguez CG, Arias TA, Osa VDL, et al. . Tick-host conflict: immunoglobulin E antibodies to tick proteins in patients with anaphylaxis to tick bite. Oncotarget. (2017) 8:20630–44. 10.18632/oncotarget.15243 PubMed DOI PMC
Fischer J, Yazdi AS, Biedermann T. Clinical spectrum of α-Gal syndrome: from immediate-type to delayed immediate-type reactions to mammalian innards and meat. Allergo J Int. (2016) 25:55–62. 10.1007/s40629-016-0099-z PubMed DOI PMC
Wilson JM, Schuyler AJ, Schroeder N, Platts-Mills TAE. Galactose-α-1,3-galactose: a typical food allergen or model IgE hypersensitivity? Curr Allergy Asthma Rep. (2017) 17:8 10.1007/s11882-017-0672-7 PubMed DOI PMC
Platts-Mills TAE, Schuyler AJ, Hoyt AEW, Commins SP. Delayed anaphylaxis involving IgE to galactose-alpha-1,3-galactose. Curr Allergy Asthma Rep. (2015) 15:12. 10.1007/s11882-015-0512-6 PubMed DOI PMC
Steinke JW, Pochan SL, James HR, Platts-Mills TA, Commins SP. Altered metabolic profile in patients with IgE to galactose-alpha-1,3-galactose following in vivo food challenge. J Allergy Clin Immunol. (2016) 138:1465–7.e8. 10.1016/j.jaci.2016.05.021 PubMed DOI PMC
Commins SP, Kelly LA, Rönmark E, James HR, Pochan SL, Peters EJ, et al. Galactose-α-1,3-galactose–specific IgE is associated with anaphylaxis but not asthma. Am J Respir Critical Care Med. (2012) 185:723–30. 10.1164/rccm.201111-2017OC PubMed DOI PMC
Gonzalez-Quintela A, Laursen ASD, Vidal C, Skaaby T, Gude F, Linneberg A. IgE antibodies to alpha-gal in the general adult population: relationship with tick bites, atopy, and cat ownership. Clin Exp Allergy. (2014) 44:1061–8. 10.1111/cea.12326 PubMed DOI
Villalta D, Pantarotto L, Re MD, Conte M, Sjolander S, Borres MP, et al. . High prevalence of sIgE to Galactose-α-1,3-galactose in rural pre-Alps area: a cross-sectional study. Clin Exp Allergy. (2016) 46:377–80. 10.1111/cea.12655 PubMed DOI
Fischer J, Lupberger E, Hebsaker J, Blumenstock G, Aichinger E, Yazdi AS, et al. Prevalence of type I sensitization to alpha-gal in forest service employees and hunters. Allergy. (2017) 72:1540–7. 10.1111/all.13156 PubMed DOI
Morisset M, Richard C, Astier C, Jacquenet S, Croizier A, Beaudouin E, et al. . Anaphylaxis to pork kidney is related to IgE antibodies specific for galactose-alpha-1,3-galactose. Allergy. (2012) 67:699–704. 10.1111/j.1398-9995.2012.02799.x PubMed DOI
Wilson JM, Platts-Mills TAE. The oligosaccharide galactose-α-1,3-galactose and the α-Gal syndrome: insights from an epitope that is causal in immunoglobulin E-mediated immediate and delayed anaphylaxis. Eur Med J. (2018) 3:89–98. Available online at: https://emj.europeanmedical-group.com/wp-content/uploads/sites/2/2018/07/The-Oligosaccharide-Galactose-%CE%B1-13-Galactose....pdf
Fischer J, Hebsaker J, Caponetto P, Platts-Mills TA, Biedermann T. Galactose-alpha-1,3-galactose sensitization is a prerequisite for pork-kidney allergy and cofactor-related mammalian meat anaphylaxis. J Allergy Clin Immunol. (2014) 134:755–759.e1. 10.1016/j.jaci.2014.05.051 PubMed DOI
Hendricks SP, He P, Stults CLM, Macher BA. Regulation of the expression of Galα1-3Galβ1-4GlcNAc glycosphingolipids in kidney. J Biol Chem. (1990) 266:17621–26. PubMed
Wölbing F, Fischer J, Köberle M, Kaesler S, Biedermann T. About the role and underlying mechanisms of cofactors in anaphylaxis. Allergy. (2013) 68:1085–92. 10.1111/all.12193 PubMed DOI
van Nunen S. Tick-induced allergies: mammalian meat allergy and tick anaphylaxis. Med J Austr. (2018) 208:316–21. 10.5694/mja17.00591 PubMed DOI
Mateo-Borrega M, Garcia B, Larramendi CH, Azofra J, González-Mancebo E, Alvarado M, et al. . IgE-mediated sensitization to galactose-alpha-1,3-galactose (α-gal) in urticaria and anaphylaxis in Spain: geographical variations and risk factors. J Invest Allergol Clin Immunol. (2019) 29. 10.18176/jiaci.0373 PubMed DOI
Versluis A, Os-Medendorp HV, Kruizinga AG, Blom WM, Houben GF, Knulst AC. Cofactors in allergic reactions to food: physical exercise and alcohol are the most important. Immun Inflamm Dis. (2016) 4:392–400. 10.1002/iid3.120 PubMed DOI PMC
Commins SP. Invited commentary: alpha-gal allergy: tip of the iceberg to a pivotal immune response. Curr Allergy Asthma Rep. (2016) 16:61. 10.1007/s11882-016-0641-6 PubMed DOI
Pointreau Y, Commins SP, Calais G, Watier H, Platts-Mills TA. Fatal infusion reactions to cetuximab: role of immunoglobulin E–mediated anaphylaxis. J Clin Oncol. (2012) 30:334–5. 10.1200/JCO.2011.38.4701 PubMed DOI PMC
Hawkins RB, Frischtak HL, Kron IL, Ghanta RK. Premature bioprosthetic aortic valve degeneration associated with allergy to galactose-alpha-1,3-galactose. J Card Surg. (2016) 31:446–8. 10.1111/jocs.12764 PubMed DOI PMC
Wilson JM, Nguyen AT, Schuyler AJ, Commins SP, Taylor AM, Platts-Mills TA, et al. . IgE to the mammalian oligosaccharide galactose-α-1,3-galactose is associated with increased atheroma volume and plaques with unstable characteristics—Brief Report. Arterioscler Thromb Vasc Biol. (2018) 38:1665–9. 10.1161/ATVBAHA.118.311222 PubMed DOI PMC
Mehlich J, Fischer J, Hilger C, Swiontek K, Morisset M, Codreanu-Morel F, et al. . The basophil activation test differentiates between patients with alpha-gal syndrome and asymptomatic alpha-gal sensitization. J Allergy Clin Immunol. (2019) 143:182–9. 10.1016/j.jaci.2018.06.049 PubMed DOI
Commins SP, Satinover SM, Hosen J, Mozena J, Borish L, Lewis BD, et al. . Delayed anaphylaxis, angioedema, or urticaria after consumption of red meat in patients with IgE antibodies specific for galactose-α-1,3-galactose. J Allergy Clin Immunol. (2009) 123:426–33. 10.1016/j.jaci.2008.10.052 PubMed DOI PMC
Mullins RJ, James H, Platts-Mills TA, Commins S. Relationship between red meat allergy and sensitization to gelatin and galactose-α-1,3-galactose. J Allergy Clin Immunol. (2012) 129:1334–42.e1. 10.1016/j.jaci.2012.02.038 PubMed DOI PMC
Brestoff JR, Tesfazghi MT, Zaydman MA, Jackups R, Jr, Kim BS, Scott MG, et al. . The B antigen protects against the development of red meat allergy. J Allergy Clin Immunol. (2018) 6:1790–91.e3. 10.1016/j.jaip.2018.02.010 PubMed DOI PMC
Kennedy JL, Stallings AP, Platts-Mills TAE, Oliveira WM, Workman L, James HR, et al. Galactose−1,3-galactose and delayed anaphylaxis, angioedema, and Urticaria in children. Pediatrics. (2013) 131:e1545–52. 10.1542/peds.2012-2585 PubMed DOI PMC
van Nunen S, O'Connor KS, Clarke LR, Boyle RX, Fernando SL. An association between tick bite reactions and red meat allergy in humans. Med J Aust. (2009) 190:510–11. PubMed
van Nunen S. Tick-induced allergies: mammalian meat allergy, tick anaphylaxis and their significance. Asia Pac Allergy. (2015) 5:3–16. 10.5415/apallergy.2015.5.1.3 PubMed DOI PMC
Platts-Mills TA, Commins SP. Emerging antigens involved in allergic responses. Curr Opin Immunol. (2013) 25:769–74. 10.1016/j.coi.2013.09.002 PubMed DOI PMC
Stewart PH, Mcmullan KL, Leblanc SB. Delayed red meat allergy: clinical ramifications of galactose-α-1,3-galactose sensitization. Ann Allergy Asthma Immunol. (2015) 115:260–4. 10.1016/j.anai.2015.08.003 PubMed DOI
Ghahramani GK, Temprano J. Tick bite-related meat allergy as a cause of chronic urticaria, angioedema, and anaphylaxis in endemic areas. Int J Dermatol. (2014) 54:e64–5. 10.1111/ijd.12672 PubMed DOI
Kleiman AM, Littlewood KE, Groves DS. Delayed anaphylaxis to mammalian meat following tick exposure and its impact on anesthetic management for cardiac surgery. A Case Rep. (2017) 8:175–7. 10.1213/XAA.0000000000000457 PubMed DOI
Khoury JK, Khoury NC, Schaefer D, Chitnis A, Hassen GW. A tick-acquired red meat allergy. Am J Emerg Med. (2018) 36:341.e1–341.e3. 10.1016/j.ajem.2017.10.044 PubMed DOI
Kaplan AC, Carson MP. Diagnosing meat allergy after tick bite without delay. J Am Board Fam Med. (2018) 31:650–2. 10.3122/jabfm.2018.04.170425 PubMed DOI
Jackson WL. Mammalian meat allergy following a tick bite: a case report. Oxford Med Case Rep. (2018) 2018:58–60. 10.1093/omcr/omx098 PubMed DOI PMC
Kwak M, Somerville C, Nunen SV. A novel Australian tick Ixodes (Endopalpiger) australiensis inducing mammalian meat allergy after tick bite. Asia Pacific Allergy. (2018) 8:e31. 10.5415/apallergy.2018.8.e31 PubMed DOI PMC
Hamsten C, Starkhammar M, Tran TAT, Johansson M, Bengtsson U, Ahlén G, et al. . Identification of galactose-α-1,3-galactose in the gastrointestinal tract of the tickIxodes ricinus; possible relationship with red meat allergy. Allergy. (2013) 68:549–52. 10.1111/all.12128 PubMed DOI
Hamsten C, Tran TAT, Starkhammar M, Brauner A, Commins SP, Platts-Mills TA, et al. . Red meat allergy in Sweden: association with tick sensitization and B-negative blood groups. J Allergy Clin Immunol. (2013) 132:1431–4. 10.1016/j.jaci.2013.07.050 PubMed DOI PMC
Apostolovic D, Rodrigues R, Thomas P, Starkhammar M, Hamsten C, Hage MV. Immunoprofile of α-Gal- and B-antigen-specific responses differentiates red meat-allergic patients from healthy individuals. Allergy. (2018) 73:1525–31. 10.1111/all.13400 PubMed DOI
Sekiya K, Fukutomi Y, Nakazawa T, Taniguchi M, Akiyama K. Delayed anaphylactic reaction to mammalian meat. J Investig Allergol Clin Immunol. (2012) 22:446–7. PubMed
Chinuki Y, Ishiwata K, Yamaji K, Takahashi H, Morita E. Haemaphysalis longicornistick bites are a possible cause of red meat allergy in Japan. Allergy. (2015) 71:421–5. 10.1111/all.12804 PubMed DOI
Hashizume H, Fujiyama T, Umayahara T, Kageyama R, Walls AF, Satoh T. Repeated Amblyomma testudinarium tick bites are associated with increased galactose-α-1,3-galactose carbohydrate IgE antibody levels: a retrospective cohort study in a single institution. J Am Acad Dermatol. (2018) 78:1135–41.e3. 10.1016/j.jaad.2017.12.028 PubMed DOI
Fujiwara M, Araki T. Immediate anaphylaxis due to beef intestine following tick bites. Allergol Int. (2019) 68:127–9. 10.1016/j.alit.2018.08.002 PubMed DOI
Caponetto P, Fischer J, Biedermann T. Gelatin-containing sweets can elicit anaphylaxis in a patient with sensitization to galactose-α-1,3-galactose. J Allergy Clin Immunol. (2013) 1:302–3. 10.1016/j.jaip.2013.01.007 PubMed DOI
Jappe U. Anaphylaxie durch versteckte Nahrungsmittelallergene: das α-Gal-Syndrom. Allergologie. (2014) 37:265–74. 10.5414/ALX01667 DOI
Schmidle P, Reidenbach K, Kugler C, Eberlein B, Biedermann T, Darsow U. Recall urticaria—a new clinical sign in the diagnosis of alpha-gal syndrome. J Allergy Clin Immunol. (2019) 7:685–6. 10.1016/j.jaip.2018.08.026 PubMed DOI
Nuñez R, Carballada F, Gonzalez-Quintela A, Gomez-Rial J, Boquete M, Vidal C. Delayed mammalian meat–induced anaphylaxis due to galactose-α-1,3-galactose in 5 European patients. J Allergy Clin Immunol. (2011) 128:1122–4.e1. 10.1016/j.jaci.2011.07.020 PubMed DOI
Calamari AM, Poppa M, Villalta D, Pravettoni V. Alpha-gal anaphylaxis: the first case report in Italy. Eur Ann Allergy Clin Immunol. (2015) 47:161–62. PubMed
Villalta D, Cecchi L, Farsi A, Chiarini F, Minale P, Voltolini S, et al. . Galactose-α-1,3-galactose syndrome: an Italian survey. Eur Ann Allergy Clin Immunol. (2017) 49:263–9. 10.23822/EurAnnACI.1764-1489.35 PubMed DOI
Uasuf C, Torina A, Ferrantelli V, Brusca I. An unusual case of positive sIgE to Galactose-alpha-1,3-galactose from South Italy. Eur Ann Allergy Clin Immunol. (2018) 50:45–7. 10.23822/EurAnnACI.1764-1489.25 PubMed DOI
Jacquenet S, Moneret-Vautrin D-A, Bihain BE. Mammalian meat–induced anaphylaxis: clinical relevance of anti–galactose-α-1,3-galactose IgE confirmed by means of skin tests to cetuximab. J Allergy Clin Immunol. (2009) 124:603–5. 10.1016/j.jaci.2009.06.014 PubMed DOI
Renaudin J, Jacquenet S, Metz-Favre C, Baudouin E, Engel F, Blay FD, et al. Interest of specific Ige measurement for galactose-alpha-1,3-galactose in unexplained recurrent Urticaria with angioedema, predominantly nocturnal: about 6 cases. J Allergy Clin Immunol. (2012) 129:AB177 10.1016/j.jaci.2011.12.226 DOI
Guillier A, Fauconneau A, Barruel FD, Guez S, Doutre M-S. Allergic hypersensitivity to red meat induced by tick bites: a French case report. Eur J Dermatol. (2015) 25:277. 10.1684/ejd.2015.2531 PubMed DOI
Wagner KD, Bell MC, Pesek RD, Kennedy JL. Fifty-six-year-old man with anaphylaxis: a novel delayed food hypersensitivity reaction. J Arkansas Med Soc. (2015) 112:110–2. PubMed
Lee JH, Kim JH, Kim TH, Kim S-C. Delayed mammalian meat-induced anaphylaxis confirmed by skin test to cetuximab. J Dermatol. (2013) 40:577–8. 10.1111/1346-8138.12140 PubMed DOI
Sim DW, Lee JS, Park KH, Jeong KY, Ye Y-M, Lee J-H, et al. . Accurate assessment of alpha-gal syndrome using cetuximab and bovine thyroglobulin-specific IgE. Mol Nutr Food Res. (2017) 61:1601046. 10.1002/mnfr.201601046 PubMed DOI
Michel S, Scherer K, Heijnen IAFM, Bircher AJ. Skin prick test and basophil reactivity to cetuximab in patients with IgE to alpha-gal and allergy to red meat. Allergy. (2013) 69:403–5. 10.1111/all.12344 PubMed DOI
Bircher AJ, Hofmeier KS, Link S, Heijnen I. Food allergy to the carbohydrate galactose-alpha-1,3-galactose (alpha-gal): four case reports and a review. Eur J Dermatol. (2017) 27:3–9. 10.1684/ejd.2016.2908 PubMed DOI
Gray CL, Zyl A, van Strauss L. Midnight anaphylaxis' to red meat in patients with alpha-gal sensitisation: a recent discovery in the food allergy world and a case report from South Africa: guest review. Curr Allergy Clin Immunol. (2016) 29:102–4. Available online at: https://hdl.handle.net/10520/EJC190544
Wickner PG, Commins SP. The first 4 Central American cases of delayed meat allergy with galactose-alpha-1,3-galactose positivity clustered among field biologists in Panama. J Allergy Clin Immunol. (2014) 133:AB212 10.1016/j.jaci.2013.12.760 DOI
Cocco RR, Ensina LF, Aranda CS, Solé D. Galactose-α-1,3-Galactose (alpha-gal) allergy without anaphylaxis: a case report in Brazil. Poster presented at 4th Food Allergy and Anaphylaxis Meeting. Rome: (2016).
Kaloga M, Kourouma S, Kouassi YI, Ecra EJ, Gbery IP, Allou AS, et al. . Allergy to red meat: a diagnosis made by the patient and confirmed by an assay for IgE antibodies specific for alpha-1,3-galactose. Case Rep Dermatol. (2016) 8:10–3. 10.1159/000443631 PubMed DOI PMC
Lied GA. Red meat allergy induced by tick bites: a Norwegian case report. Eur Ann Allergy Clin Immunol. (2017) 49:186–8. 10.23822/EurAnnACI.1764-1489.04 PubMed DOI
Shepherd M. Anaphylaxis shock warning over highland tick bites. The Scotsman. (2015). Available online at: https://www.rehis.com/sites/default/files/rehisseptember2015e-newsletter1209151.pdf (accessed January 1, 2019).
Berends MA, Oude Elberink JN. The alpha-gal syndrome: an allergic reaction to mammalian meat secondary to a tick bite. Ned Tijdschr Geneeskund 161:D1062. PubMed
Commins SP, Platts-Mills TA. Tick bites and red meat allergy. Curr Opin Allergy Clin Immunol. (2013) 13:354–9. 10.1097/ACI.0b013e3283624560 PubMed DOI PMC
Apostolovic D, Tran TAT, Starkhammar M, Sánchez-Vidaurre S, Hamsten C, Hage MV. The red meat allergy syndrome in Sweden. Allergy J. (2016) 25:29–34. 10.1007/s15007-016-1044-7 PubMed DOI PMC
Commins SP, James HR, Kelly LA, Pochan SL, Workman LJ, Perzanowski MS, et al. . The relevance of tick bites to the production of IgE antibodies to the mammalian oligosaccharide galactose-α-1,3-galactose. J Allergy Clin Immunol. (2011) 127:1286–93.e6. 10.1016/j.jaci.2011.02.019 PubMed DOI PMC
Steinke JW, Platts-Mills TA, Commins SP. The alpha-gal story: lessons learned from connecting the dots. J Allergy Clin Immunol. (2015) 135:589–96. 10.1016/j.jaci.2014.12.1947 PubMed DOI PMC
Estrada-Peña A, de la Fuente J, Cabezas-Cruz A. A comparison of the performance of regression models of Amblyomma americanum. (L.) (Ixodidae) using life cycle or landscape data from administrative divisions. Ticks Tick Borne Dis. (2016) 7:624–30. 10.1016/j.ttbdis.2016.01.010 PubMed DOI
Berger KA, Ginsberg HS, Gonzalez L, Mather TN. Relative humidity and activity patterns of Ixodes scapularis (Acari: Ixodidae). J Med Entomol. (2014) 51:769–76. 10.1603/ME13186 PubMed DOI
Gabriele-Rivet V, Arsenault J, Badcock J, Cheng A, Edsall J, Goltz J, et al. . Different ecological niches for ticks of public health significance in Canada. PLoS ONE. (2015) 10:131282. 10.1371/journal.pone.0131282 PubMed DOI PMC
Jaenson TG, Lindgren E. The range of Ixodes ricinus and the risk of contracting Lyme borreliosis will increase northwards when the vegetation period becomes longer. Ticks Tick Borne Dis. (2011) 2:44–9. 10.1016/j.ttbdis.2010.10.006 PubMed DOI
Jaenson TG, Jaenson DG, Eisen L, Petersson E, Lindgren E. Changes in the geographical distribution and abundance of the tick Ixodes ricinus during the past 30 years in Sweden. Parasit Vect. (2012) 5:8. 10.1186/1756-3305-5-8 PubMed DOI PMC
Jore S, Vanwambeke SO, Viljugrein H, Isaksen K, Kristoffersen AB, Woldehiwet Z, et al. . Climate and environmental change drives Ixodes ricinus geographical expansion at the northern range margin. Parasites Vect. (2014) 7:11. 10.1186/1756-3305-7-11 PubMed DOI PMC
Ogden N, Maarouf A, Barker I, Bigras-Poulin M, Lindsay L, Morshed M, et al. . Climate change and the potential for range expansion of the Lyme disease vector Ixodes scapularis in Canada. Int J Parasitol. (2006) 36:63–70. 10.1016/j.ijpara.2005.08.016 PubMed DOI
Ogden NH, St-Onge L, Barker IK, Brazeau S, Bigras-Poulin M, Charron DF, et al. . Risk maps for range expansion of the Lyme disease vector, Ixodes scapularis, in Canada now and with climate change. Int J Health Geogr. (2008) 7:24. 10.1186/1476-072X-7-24 PubMed DOI PMC
Estrada-Peña A. Increasing habitat suitability in the United States for the tick that transmits Lyme Disease: a remote sensing approach. Environ Health Perspect. (2002) 110:635–40. 10.1289/ehp.110-1240908 PubMed DOI PMC
Estrada-Peña A, Estrada-Sánchez A, de la Fuente J. A global set of Fourier-transformed remotely sensed covariates for the description of abiotic niche in epidemiological studies of tick vector species. Parasit Vectors. (2014) 7:302. 10.1186/1756-3305-7-302 PubMed DOI PMC
Estrada-Peña A, Estrada-Sánchez D. Deconstructing Ixodes ricinus: a partial matrix model allowing mapping of tick development, mortality and activity rates. Med Vet Entomol. (2013) 28:35–49. 10.1111/mve.12009 PubMed DOI
Estrada-Peña A, Gray JS, Kahl O, Lane RS, Nijhof AM. Research on the ecology of ticks and tick-borne pathogens—methodological principles and caveats. Front Cell Infect Microbiol. (2013) 3:29. 10.3389/fcimb.2013.00029 PubMed DOI PMC
Springer YP, Jarnevich CS, Monaghan AJ, Eisen RJ, Barnett DT. Modelling the present and future geographic distribution of the Lone Star Tick, Amblyomma americanum (Ixodida: Ixodidae), in the Continental United States. Am J Trop Med Hyg. (2015) 93:875–90. 10.4269/ajtmh.15-0330 PubMed DOI PMC
Cabezas-Cruz A, de la Fuente J, Fischer J, Hebsaker J, Lupberger E, Blumenstock G, et al. . Prevalence of type I sensitization to alpha-gal in forest service employees and hunters: Is the blood type an overlooked risk factor in epidemiological studies of the α-Gal syndrome? Allergy. (2017) 72:2044–7. 10.1111/all.13206 PubMed DOI
Cabezas-Cruz A, Mateos-Hernández L, Alberdi P, Villar M, Riveau G, Hermann E, et al. . Effect of blood type on anti-α-Gal immunity and the incidence of infectious diseases. Exp Mol Med. (2017) 49:e301. 10.1038/emm.2016.164 PubMed DOI PMC
Adédoyin J, Grönlund H, Öman H, Johansson S, Hage MV. Cat IgA, representative of new carbohydrate cross-reactive allergens. J Allergy Clin Immunol. (2007) 119:640–5. 10.1016/j.jaci.2006.11.637 PubMed DOI
Grönlund H, Adédoyin J, Commins SP, Platts-Mills TA, Hage MV. The carbohydrate galactose-α-1,3-galactose is a major IgE-binding epitope on cat IgA. J Allergy Clin Immunol. (2009) 123:1189–91. 10.1016/j.jaci.2009.03.011 PubMed DOI PMC
Arkestål K, Sibanda E, Thors C, Troye-Blomberg M, Mduluza T, Valenta R, et al. Impaired allergy diagnostics among parasite-infected patients caused by IgE antibodies to the carbohydrate epitope galactose-α1,3-galactose. J Allergy Clin Immunol. (2011) 127:1024–8. 10.1016/j.jaci.2011.01.033 PubMed DOI
Araujo RN, Franco PF, Rodrigues H, Santos LC, Mckay CS, Sanhueza CA, et al. . Amblyomma sculptum tick saliva: α-Gal identification, antibody response and possible association with red meat allergy in Brazil. Int J Parasitol. (2016) 46:213–20. 10.1016/j.ijpara.2015.12.005 PubMed DOI PMC
Cabezas-Cruz A, Espinosa PJ, Alberdi P, Šimo L, Valdés JJ, Mateos-Hernández L, et al. . Tick galactosyltransferases are involved in α-Gal synthesis and play a role during Anaplasma phagocytophilum infection and Ixodes scapularis tick vector development. Sci Rep. (2018) 8:14224. 10.1038/s41598-018-32664-z PubMed DOI PMC
Crispell G, Commins SP, Archer-Hartman SA, Choudhary S, Dharmarajan G, Azadi P, et al. Discovery of alpha-gal-containing antigens in North American tick species believed to induce red meat allergy. Front. Immunol. (2019) 10:1056 10.3389/fimmu.2019.01056 PubMed DOI PMC
Kotál J, Langhansová H, Lieskovská J, Andersen JF, Francischetti IM, Chavakis T, et al. . Modulation of host immunity by tick saliva. J Proteomics. (2015) 128:58–68. 10.1016/j.jprot.2015.07.005 PubMed DOI PMC
Wikel SK. Tick-host-pathogen systems immunobiology an interactive trio. Front Biosci. (2018) 23:265–83. 10.2741/4590 PubMed DOI
Krzyszczyk P, Schloss R, Palmer A, Berthiaume F. The role of macrophages in acute and chronic wound healing and interventions to promote pro-wound healing phenotypes. Front Physiol. (2018) 9:419. 10.3389/fphys.2018.00419 PubMed DOI PMC
Ferreira BR, Silva JS. Successive tick infestations selectively promote a T-helper 2 cytokine profile in mice. Immunology. (1999) 96:434–9. PubMed PMC
Ribeiro JM, Alarcon-Chaidez F, Francischetti IMB, Mans BJ, Mather TN, Valenzuela JG, et al. . An annotated catalog of salivary gland transcripts from Ixodes scapularis ticks. Insect Biochem Mol Biol. (2006) 36:111–29. 10.1016/j.ibmb.2005.11.005 PubMed DOI
Williams T. Prostaglandin E2, Prostaglandin I2 and the vascular changes of inflammation. Br J Pharmacol. (1979) 65:517–24. 10.1111/j.1476-5381.1979.tb07860.x PubMed DOI PMC
Poole NM, Mamidanna G, Smith RA, Coons LB, Cole JA. Prostaglandin E2 in tick saliva regulates macrophage cell migration and cytokine profile. Parasites Vect. (2013) 6:261 10.1186/1756-3305-6-261 PubMed DOI PMC
Gao Y, Zhao C, Wang W, Jin R, Li Q, Ge Q, et al. . Prostaglandins E2 signal mediated by receptor subtype EP2 promotes IgE production in vivo and contributes to asthma development. Sci Rep. (2016) 6:20505. 10.1038/srep20505 PubMed DOI PMC
Palm NW, Rosenstein RK, Medzhitov R. Allergic host defences. Nature. (2012) 484:465–72. 10.1038/nature11047 PubMed DOI PMC
Profet M. The function of allergy: immunological defense against toxins. Q Rev Biol. (1991) 66:23–62. 10.1086/417049 PubMed DOI
Mans BJ, Gothe R, Neitz AWH. Biochemical perspectives on paralysis and other forms of toxicoses caused by ticks. Parasitology. (2004) 129:S95–111. 10.1017/S0031182003004670 PubMed DOI
Cabezas-Cruz A, Valdés JJ. Are ticks venomous animals? Front. Zool. (2014) 11:47. 10.1186/1742-9994-11-47 PubMed DOI PMC
Brown SJ, Graziano FM, Askenase PW. Immune serum transfer of cutaneous basophil-associated resistance to ticks: mediation by 7SIgG1 antibodies”. J Immunol. (1982) 129:2407–12. PubMed
Kollmann D, Nagl B, Ebner C, Emminger W, Wöhrl S, Kitzmüller C, et al. . The quantity and quality of α-gal-specific antibodies differ in individuals with and without delayed red meat allergy. Allergy. (2016) 72:266–73. 10.1111/all.12948 PubMed DOI PMC
Rappo TB, Cottee AM, Ratchford AM, Burns BJ. Tick bite anaphylaxis: incidence and management in an Australian emergency department. Emerg Med Aust. (2013) 25:297–301. 10.1111/1742-6723.12093 PubMed DOI
Rolla G, Heffler E, Boita M, Doyen V, Mairesse M, Cvackova M, et al. . Pigeon tick bite: a neglected cause of idiopathic nocturnal anaphylaxis. Allergy. (2018) 73:958–61. 10.1111/all.13344 PubMed DOI
Mathers AR, Larregina AT. Professional antigen-presenting cells of the skin. Immunol. Res. (2006) 36:127–36. 10.1385/IR:36:1:127 PubMed DOI
Ristivojević MK, Grundström J, Tran TAT, Apostolovic D, Radoi V, Starkhammar M, et al. . α-Gal on the protein surface affects uptake and degradation in immature monocyte derived dendritic cells. Sci Rep. (2018) 8:12684. 10.1038/s41598-018-30887-8 PubMed DOI PMC
Carvalho-Costa T, Mendes M, Silva MD, Costa TD, Tiburcio M, Anhê A, et al. . Immunosuppressive effects of Amblyomma cajennense tick saliva on murine bone marrow-derived dendritic cells. Parasites Vectors. (2015) 8:22. 10.1186/s13071-015-0634-7 PubMed DOI PMC
Sokol CL, Chu N-Q, Yu S, Nish SA, Laufer TM, Medzhitov R. Basophils function as antigen-presenting cells for an allergen-induced T helper type 2 response. Nat Immunol. (2009) 10:713–20. 10.1038/ni.1738 PubMed DOI PMC
Mcleod JJ, Baker B, Ryan JJ. Mast cell production and response to IL-4 and IL-13. Cytokine. (2015) 75:57–61. 10.1016/j.cyto.2015.05.019 PubMed DOI PMC
Brossard M, Fivaz V. Ixodes ricinus L.: mast cells, basophils and eosinophils in the sequence of cellular events in the skin of infested or re-infested rabbits. Parasitology. (1982) 85:583–92. 10.1017/S0031182000056365 PubMed DOI
Dai J, Narasimhan S, Zhang L, Liu L, Wang P, Fikrig E. Tick histamine release factor is critical for Ixodes scapularis engorgement and transmission of the lyme disease agent. PLoS Pathog. (2010) 6:1001205. 10.1371/journal.ppat.1001205 PubMed DOI PMC
Paesen GC, Adams PL, Nuttall PA, Stuart DL. Tick histamine-binding proteins: lipocalins with a second binding cavity. Biochim Biophys Acta. (2000) 1482:92–101. 10.1016/S0167-4838(00)00168-0 PubMed DOI
Mans BJ. Tick histamine-binding proteins and related lipocalins: potential as therapeutic agents. Curr Opin Invest Drugs. (2005) 6:1131–5. PubMed
Karasuyama H, Tabakawa Y, Ohta T, Wada T, Yoshikawa S. Crucial role for basophils in acquired protective immunity to tick infestation. Front Physiol. (2018) 9:1769. 10.3389/fphys.2018.01769 PubMed DOI PMC
Oltean BM, Ernst M, Renneker S, Bakheit MA, Seitzer U, Ahmed J. Whole antigenic lysates of Ixodes ricinus, but not Der-p2 Allergen-like protein, are potent inducers of basophil activation in previously tick-exposed human hosts. Transbound Emerg Dis. (2013) 60:162–71. 10.1111/tbed.12151 PubMed DOI
Yoshimoto T, Yasuda K, Tanaka H, Nakahira M, Imai Y, Fujimori Y, et al. . Basophils contribute to TH2-IgE responses in vivo via IL-4 production and presentation of peptide–MHC class II complexes to CD4 T cells. Nat Immunol. (2009) 10:706–12. 10.1038/ni.1737 PubMed DOI
de la Fuente J, Antunes S, Bonnet S, Cabezas-Cruz A, Domingos AG, Estrada-Peña A, et al. . Tick-pathogen interactions and vector competence: identification of molecular drivers for tick-borne diseases. Front. Cell. Infect. Microbiol. (2017) 7:114. 10.3389/fcimb.2017.00114 PubMed DOI PMC
Kilpatrick AM, Dobson ADM, Levi T, Salkeld DJ, Swei A, Ginsberg HS, et al. . Lyme disease ecology in a changing world: consensus, uncertainty and critical gaps for improving control. Philos Trans R Soc B. (2017) 372:20160117. 10.1098/rstb.2016.0117 PubMed DOI PMC
Hansmann Y, Chirouze C, Tattevin P, Alfandari S, Caumes E, Christmann D, et al. Position de la Société de pathologie infectieuse de langue française à propos de la maladie de Lyme. Méd Maladies Infect. (2016) 46:343–5. 10.1016/j.medmal.2016.08.001 PubMed DOI
Almeida IC, Milani SR, Gorin PA, Travassos LR. Complement-mediated lysis of trypanosoma cruzi trypomastigotes by human anti-alpha-galactosyl antibodies. J Immunol. (1991) 146:2394–400. PubMed
Moura APV, Santos LCB, Brito CRN, Valencia E, Junqueira C, Filho AAP, et al. . Virus-like particle display of the α-Gal carbohydrate for vaccination against Leishmania Infection. ACS Cent Sci. (2017) 3:1026–31. 10.1021/acscentsci.7b00311 PubMed DOI PMC
Cabezas-Cruz A, Mateos-Hernández L, Chmelar J, Villar M, de la Fuente J. Salivary prostaglandin E2: role in tick-induced allergy to red meat. Trends Parasitol. (2017) 33:495–8. 10.1016/j.pt.2017.03.004 PubMed DOI
Tjernberg I, Hamsten C, Apostolovic D, Hage MV. IgE reactivity to α-Gal in relation to Lyme borreliosis. PLoS ONE. (2017) 12:e0185723. 10.1371/journal.pone.0185723 PubMed DOI PMC
Allergic reactions to tick saliva components in zebrafish model