Tick-Pathogen Interactions and Vector Competence: Identification of Molecular Drivers for Tick-Borne Diseases

. 2017 ; 7 () : 114. [epub] 20170407

Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid28439499

Ticks and the pathogens they transmit constitute a growing burden for human and animal health worldwide. Vector competence is a component of vectorial capacity and depends on genetic determinants affecting the ability of a vector to transmit a pathogen. These determinants affect traits such as tick-host-pathogen and susceptibility to pathogen infection. Therefore, the elucidation of the mechanisms involved in tick-pathogen interactions that affect vector competence is essential for the identification of molecular drivers for tick-borne diseases. In this review, we provide a comprehensive overview of tick-pathogen molecular interactions for bacteria, viruses, and protozoa affecting human and animal health. Additionally, the impact of tick microbiome on these interactions was considered. Results show that different pathogens evolved similar strategies such as manipulation of the immune response to infect vectors and facilitate multiplication and transmission. Furthermore, some of these strategies may be used by pathogens to infect both tick and mammalian hosts. Identification of interactions that promote tick survival, spread, and pathogen transmission provides the opportunity to disrupt these interactions and lead to a reduction in tick burden and the prevalence of tick-borne diseases. Targeting some of the similar mechanisms used by the pathogens for infection and transmission by ticks may assist in development of preventative strategies against multiple tick-borne diseases.

Zobrazit více v PubMed

Abraham N. M., Liu L., Jutras B. L., Yadav A. K., Narasimhan S., Gopalakrishnan V., et al. (2017). Pathogen-mediated manipulation of arthropod microbiota to promote infection. Proc. Natl. Acad. Sci. U.S.A. 114, E781–E790. 10.1073/pnas.1613422114 PubMed DOI PMC

Ahantarig A., Trinachartvanit W., Baimai V., Grubhoffer L. (2013). Hard ticks and their bacterial endosymbionts (or would be pathogens). Folia. Microbiol. 58, 419–428. 10.1007/s12223-013-0222-1 PubMed DOI

Alberdi P., Mansfield K. L., Manzano-Román R., Cook C., Ayllón N., Villar M., et al. (2016). Tissue-specific signatures in the transcriptional response to PubMed DOI PMC

Almazán C., Kocan K. M., Blouin E. F., de la Fuente J. (2005). Vaccination with recombinant tick antigens for the control of PubMed DOI

Andreotti R., Perez de Leon A. A., Dowd S. E., Guerrero F. D., Bendele K. G., Scoles G. A. (2011). Assessment of bacterial diversity in the cattle tick PubMed DOI PMC

Antunes S., Galindo R. C., Almazán C., Rudenko N., Golovchenko M., Grubhoffer L., et al. (2012). Functional genomics studies of PubMed DOI

Ashida H., Mimuro H., Ogawa M., Kobayashi T., Sanada T., Kim M., et al. (2011). Host-pathogen interactions cell death and infection: a double-edged sword for host and pathogen survival. J. Cell. Biol. 195, 931–942. 10.1083/jcb.201108081 PubMed DOI PMC

Ayllón N., Naranjo V., Hajdušek O., Villar M., Galindo R. C., Kocan K. M., et al. (2015b). Nuclease Tudor-SN is involved in tick dsRNA-mediated RNA interference and feeding but not in defense against flaviviral or PubMed DOI PMC

Ayllón N., Villar M., Busby A. T., Kocan K. M., Blouin E., Bonzón-Kulichenko E. F., et al. (2013). PubMed DOI PMC

Ayllón N., Villar M., Galindo R. C., Kocan K. M., Šíma R., López J. A., et al. (2015a). Systems biology of tissue-specific response to PubMed DOI PMC

Baldridge G. D., Burkhardt N. Y., Simser J. A., Kurtti T. J., Munderloh U. G. (2004). Sequence and expression analysis of the ompA gene of PubMed DOI PMC

Baxter R. H., Contet A., Krueger K. (2017). Arthropod innate immune systems and vector-borne diseases. Biochemistry. 56, 907–918. 10.1021/acs.biochem.6b00870 PubMed DOI PMC

Beerntsen B. T., James A. A., Christensen B. M. (2000). Genetics of mosquito vector competence. Microbiol. Mol. Biol. Rev. 64, 115–137. 10.1128/MMBR.64.1.115-137.2000 PubMed DOI PMC

Bell-Sakyi L., Zweygarth E., Blouin E. F., Gould E. A., Jongejan F. (2007). Tick cell lines: tools for tick and tick-borne disease research. Trends. Parasitol. 23, 450–457. 10.1016/j.pt.2007.07.009 PubMed DOI

Bernasconi M. V., Casati S., Peter O., Piffaretti J. C. (2002). PubMed DOI

Bohacsova M., Mediannikov O., Kazimirova M., Raoult D., Sekeyova Z. (2016). PubMed DOI PMC

Bonnet S., de la Fuente J., Nicollet P., Liu X., Madani N., Blanchard B., et al. (2013). Prevalence of tick-borne pathogens in adult PubMed DOI

Burgdorfer W., Hayes S., Mavros A. (1981). Non-pathogenic rickettsiae in

Busby A. T., Ayllón N., Kocan K. M., Blouin E. F., de la Fuente G., Galindo R. C., et al. (2012). Expression of heat-shock proteins and subolesin affects stress responses, PubMed DOI

Cabezas-Cruz A., Alberdi P., Ayllón N., Valdés J. J., Pierce R., Villar M., et al. (2016). PubMed DOI PMC

Cabezas-Cruz A., Estrada-Peña A., Rego R. O. M., De la Fuente J. (2017). Tick-pathogen ensembles: do molecular interactions lead ecological innovation? Front. Cell. Infect. Microbiol. 7:74. 10.3389/fcimb.2017.00074 PubMed DOI PMC

Chauvin A., Moreau E., Bonnet S., Plantard O., Malandrin L. (2009). Babesia and its hosts: adaptation to long-lasting interactions as a way to achieve efficient transmission. Vet. Res. 40, 37. 10.1051/vetres/2009020 PubMed DOI PMC

Clay K., Klyachko O., Grindle N., Civitello D., Oleske D., Fuqua C. (2008). Microbial communities and interactions in the lone star tick, PubMed DOI

Cooper A., Stephens J., Ketheesan N., Govan B. (2013). Detection of PubMed DOI

Cotté V., Sabatier L., Schnell G., Carmi-Leroy A., Rousselle J. C., Arsène-Ploetze F., et al. (2014). Differential expression of PubMed DOI

Coumou J., Narasimhan S., Trentelman J. J., Wagemakers A., Koetsveld J., Ersoz J. I., et al. (2016). PubMed DOI PMC

Cramaro W. J., Revets D., Hunewald O. E., Sinner R., Reye A. L., Muller C. P. (2015). Integration of PubMed DOI PMC

Dai J., Narasimhan S., Zhang L., Liu L., Wang P., Fikrig E. (2010). Tick histamine release factor is critical for PubMed DOI PMC

de Castro M. H., de Klerk D., Pienaar R., Latif A. A., Rees D. J., Mans B. J. (2016). PubMed DOI

de la Fuente J., Blouin E. F., Kocan K. M. (2003). Infection exclusion of the rickettsial pathogen PubMed DOI PMC

de la Fuente J., Contreras M. (2015). Tick vaccines: current status and future directions. Expert Rev. Vaccines 14, 1367–1376. 10.1586/14760584.2015.1076339 PubMed DOI

de la Fuente J., Estrada-Peña A., Cabezas-Cruz A., Brey R. (2015). Flying ticks: anciently evolved associations that constitute a risk of infectious disease spread. Parasit Vectors 8, 538. 10.1186/s13071-015-1154-1 PubMed DOI PMC

de la Fuente J., Estrada-Peña A., Cabezas-Cruz A., Kocan K. M. (2016). PubMed DOI

de la Fuente J., Estrada-Peña A., Venzal J. M., Kocan K. M., Sonenshine D. E. (2008). Overview: ticks as vectors of pathogens that cause disease in humans and animals. Front. Biosci. 13, 6938–6946. 10.2741/3200 PubMed DOI

de la Fuente J., Garcia-Garcia J. C., Blouin E. F., McEwen B. R., Clawson D., Kocan K. M. (2001). Major surface protein 1a effects tick infection and transmission of PubMed DOI

de la Fuente J., Kocan K. M. (2014). Development of vaccines for control of tick infestations and interruption of pathogen transmission, in Biology of Ticks, 2nd Edn., ed Sonenshine D., Roe M. (New York, NY: Oxford University Press; ), 333–352.

de la Fuente J., Kocan K. M., Almazán C., Blouin E. F. (2007). RNA interference for the study and genetic manipulation of ticks. Trends Parasitol. 23, 427–433. 10.1016/j.pt.2007.07.002 PubMed DOI

Dergousoff S. J., Chilton N. B. (2010). Detection of a new Arsenophonus-type bacterium in Canadian populations of the Rocky Mountain wood tick, PubMed DOI

Dickson D. L., Turell M. J. (1992). Replication and tissue tropisms of Crimean-Congo hemorrhagic fever virus in experimentally infected adult PubMed DOI

Doherty P. C., Reid H. W. (1971). Experimental louping ill in the sheep. II, Neuropathology. J. Comp. Pathol. 81, 331–337. 10.1016/0021-9975(71)90020-X PubMed DOI

Eng M. W., van Zuylen M. N., Severson D. W. (2016). Apoptosis-related genes control autophagy and influence DENV-2 infection in the mosquito vector, PubMed DOI PMC

Engelstadter J., Hurst G. D. (2007). The impact of male-killing bacteria on host evolutionary processes. Genetics 175, 245–254. 10.1534/genetics.106.060921 PubMed DOI PMC

Estrada-Peña A., de la Fuente J., Ostfeld R. S., Cabezas-Cruz A. (2015). Interactions between tick and transmitted pathogens evolved to minimise competition through nested and coherent networks. Sci. Rep. 5:10361. 10.1038/srep10361 PubMed DOI PMC

Estrada-Peña A., Ortega C., Sánchez N., Desimone L., Sudre B., Suk J. E., et al. (2011). Correlation of PubMed DOI PMC

Florin-Christensen M., Schnittger L. (2009). Piroplasmids and ticks: a long-lasting intimate relationship. Front. Biosci. 14, 3064–3073. 10.2741/3435 PubMed DOI

Garcia-Garcia J. C., Barat N. C., Trembley S. J., Dumler J. S. (2009a). Epigenetic silencing of host cell defense genes enhances intracellular survival of the rickettsial pathogen PubMed DOI PMC

Garcia-Garcia J. C., Rennoll-Bankert K. E., Pelly S., Milstone A. M., Dumler J. S. (2009b). Silencing of host cell CYBB gene expression by the nuclear effector AnkA of the intracellular pathogen PubMed DOI PMC

Garg R., Juncadella I. J., Ramamoorthi N., Ananthanarayanan S. K., Thomas V., Rincón M., et al. (2006). Cutting edge: CD4 is the receptor for the tick saliva immunosuppressor, Salp15. J. Immunol. 177, 6579–6583. 10.4049/jimmunol.177.10.6579 PubMed DOI PMC

Garrison A. R., Radoshitzky S. R., Kota K. P., Pegoraro G., Ruthel G., et al. (2013). Crimean-Congo hemorrhagic fever virus utilizes a clathrin- and early endosome-dependent entry pathway. Virology 444, 45–54. 10.1016/j.virol.2013.05.030 PubMed DOI

Gerold G., Bruening J., Weigel B., Pietschmann T. (2017). Protein interactions during the flavivirus and hepacivirus life cycle. Mol. Cell. Proteomics 16(4 Suppl. 1), S75–S91. 10.1074/mcp.r116.065649 PubMed DOI PMC

Gomes-Solecki M. (2014). Blocking pathogen transmission at the source: reservoir targeted OspA-based vaccines against PubMed DOI PMC

Gómez-Díaz E., Jordà M., Peinado M. A., Rivero A. (2012). Epigenetics of host-pathogen interactions: the road ahead and the road behind. PLoS Pathog. 8:e1003007. 10.1371/journal.ppat.1003007 PubMed DOI PMC

Gulia-Nuss M., Nuss A. B., Meyer J. M., Sonenshine D. E., Roe R. M., Waterhouse R. M., et al. (2016). Genomic insights into the PubMed DOI PMC

Hajdušek O., Síma R., Ayllón N., Jalovecká M., Perner J., de la Fuente J., et al. (2013). Interaction of the tick immune system with transmitted pathogens. Front. Cell Infect Microbiol. 3:26. 10.3389/fcimb.2013.00026 PubMed DOI PMC

Harrus S., Perlman-Avrahami A., Mumcuoglu K. Y., Morick D., Eyal O., Baneth G. (2011). Molecular detection of PubMed DOI

Heekin A. M., Guerrero F. D., Bendele K. G., Saldivar L., Scoles G. A., Dowd S. E., et al. (2013). The ovarian transcriptome of the cattle tick, PubMed DOI PMC

Heekin A. M., Guerrero F. D., Bendele K. G., Saldivar L., Scoles G. A., Gondro C., et al. (2012). Analysis of PubMed DOI PMC

Hermann C., Gern L. (2010). Survival of PubMed DOI

Herrmann C., Gern L. (2012). Do the level of energy reserves, hydration status and Borrelia infection influence walking by Ixodes ricinus (Acari: Ixodidae) ticks? Parasitology 139, 330–337. 10.1017/S0031182011002095 PubMed DOI

Hourcade D. E., Akk A. M., Mitchell L. M., Zhou H. F., Hauhart R., et al. (2016). Anti-complement activity of the PubMed DOI PMC

Ireton K. (2013). Molecular mechanisms of cell-cell spread of intracellular bacterial pathogens. Open Biol. 3:130079. 10.1098/rsob.130079 PubMed DOI PMC

Ivanov I. N., Mitkova N., Reye A. L., Hübschen J. M., Vatcheva-Dobrevska R. S., Dobreva E. G., et al. (2011). Detection of new Francisella-like tick endosymbionts in PubMed DOI PMC

Johnson N., Voller K., Phipps L. P., Mansfield K. L., Fooks A. R. (2012). Rapid molecular detection methods for arboviruses of livestock of importance to Northern Europe. J. Biomed. Biotechnol. 2012:719402. 10.1155/2012/719402 PubMed DOI PMC

Jongejan F., Uilenberg G. (2004). The global importance of ticks. Parasitology 129(Suppl.), S3–S14. 10.1017/S0031182004005967 PubMed DOI

Kagemann J., Clay K. (2013). Effects of infection by Arsenophonus and Rickettsia bacteria on the locomotive ability of the ticks PubMed DOI

Kleiboeker S., Scoles G. A., Burrage T. G., Sur J. (1999). African swine fever virus replication in the midgut epithelium is required for infection of Ornithodoros ticks. J. Virol. 73, 8587–8598. PubMed PMC

Klyachko O., Stein B. D., Grindle N., Clay K., Fuqua C. (2007). Localization and visualization of a coxiella-type symbiont within the lone star tick, PubMed DOI PMC

Kotsyfakis M., Schwarz A., Erhart J., Ribeiro J. M. (2015). Tissue-and time-dependent transcription in PubMed DOI PMC

Kung F., Anguita J., Pal U. (2013). PubMed DOI PMC

Labuda M., Nuttall P. A. (2003). Tick-borne viruses. Parasitology 129, S221–S245. 10.1017/S0031182004005220 PubMed DOI

Lee J. H., Park H. S., Jang W. J., Koh S. E., Park T. K., Kang S. S., et al. (2004). Identification of the PubMed DOI

Liu L. M., Liu J. N., Liu Z., Yu Z. J., Xu S. Q., Yang X. H., et al. (2013). Microbial communities and symbionts in the hard tick PubMed DOI PMC

Lo N., Beninati T., Sassera D., Bouman E. A., Santagati S., Gern L., et al. (2006). Widespread distribution and high prevalence of an alpha-proteobacterial symbiont in the tick PubMed DOI

Lu P., Zhou Y., Yu Y., Cao J., Zhang H., Gong H., et al. (2016). RNA interference and the vaccine effect of a subolesin homolog from the tick PubMed DOI

Macaluso K. R., Sonenshine D. E., Ceraul S. M., Azad A. F. (2002). Rickettsial infection in PubMed DOI

Mansfield K. L., Cook C., Ellis R., Bell-Sakyi L., Johnson N., Alberdi P., et al. (2017). Tick-borne pathogens induce differential expression of genes promoting cell survival and host resistence in PubMed DOI PMC

Mansfield K. L., Johnson N., Banyard A. C., Núñez A., Baylis M., Solomon T., et al. (2016). Innate and adaptive immune responses to tick-borne flavivirus infection in sheep. Vet. Microbiol. 185, 20–28. 10.1016/j.vetmic.2016.01.015 PubMed DOI

Martinez J., Longdon B., Bauer S., Chan Y. S., Miller W. J., Bourtzis K., et al. (2014). Symbionts commonly provide broad spectrum resistance to viruses in insects: a comparative analysis of Wolbachia strains. PLoS Pathog. 10:e1004369. 10.1371/journal.ppat.1004369 PubMed DOI PMC

Mather T. N., Ribeiro J. M., Spielman A. (1987). Lyme disease and babesiosis: acaricide focused on potentially infected ticks. Am. J. Trop. Med. Hyg. 36, 609–614. PubMed

Merino O., Antunes S., Mosqueda J., Moreno-Cid J. A., Pérez de la Lastra J. M., et al. (2013). Vaccination with proteins involved in tick-pathogen interactions reduces vector infestations and pathogen infection. Vaccine 31, 5889–5896. 10.1016/j.vaccine.2013.09.037 PubMed DOI

Michelet L., Bonnet S., Madani N., Moutailler S. (2013). Discriminating PubMed DOI

Montagna M., Sassera D., Epis S., Bazzocchi C., Vannini C., Lo N., et al. (2013). PubMed DOI PMC

Naranjo V., Ayllón N., Pérez de la Lastra J. M., Galindo R. C., Kocan K. M., Blouin E. F., et al. (2013). Reciprocal regulation of NF-kB (Relish) and Subolesin in the tick vector, PubMed DOI PMC

Narasimhan S., Rajeevan N., Liu L., Zhao Y. O., Heisig J., Pan J., et al. (2014). Gut microbiota of the tick vector PubMed DOI PMC

Neelakanta G., Sultana H., Fish D., Anderson J. F., Fikrig E. (2010). PubMed DOI PMC

Nene V., Lee D., Kang'a S., Skilton R., Shah T., de Villiers E., et al. (2004). Genes transcribed in the salivary glands of female PubMed DOI

Nuttall P. A. (2014). Tick-borne viruses, in Biology of Ticks, ed Sonenshine D. E., Roe R. M. (Oxford: Oxford University Press; ), 180–210.

Pal U., Li X., Wang T., Montgomery R. R., Ramamoorthi N., Desilva A. M., et al. (2004). TROSPA, an Ixodes scapularis receptor for PubMed DOI

Papa A. (2010). Crimean-Congo hemorrhagic fever and hantavirus infections, in Tropical and Emerging Infectious Diseases, ed Maltezou H., Gikas A. (Kerala: Research Signpost; ), 49–73.

Plantard O., Bouju-Albert A., Malard M. A., Hermouet A., Capron G., Verheyden H. (2012). Detection of Wolbachia in the tick PubMed DOI PMC

Qiu Y., Nakao R., Ohnuma A., Kawamori F., Sugimoto C. (2014). Microbial population analysis of the salivary glands of ticks; a possible strategy for the surveillance of bacterial pathogens. PLoS ONE 9:e103961. 10.1371/journal.pone.0103961 PubMed DOI PMC

Rachinsky A., Guerrero F. D., Scoles G. A. (2007). Differential protein expression in ovaries of uninfected and Babesia-infected southern cattle ticks PubMed DOI

Radolf J. D., Caimano M. J., Stevenson B., Hu L. T. (2012). Of ticks, mice and men: understanding the dual-host lifestyle of Lyme disease spirochaetes. Nat. Rev. Microbiol. 10, 87–99. 10.1038/nrmicro2714 PubMed DOI PMC

Ramamoorthi N., Narasimhan S., Pal U., Bao F., Yang X. F., Fish D., et al. (2005). The Lyme disease agent exploits a tick protein to infect the mammalian host. Nature 436, 573–577. 10.1038/nature03812 PubMed DOI PMC

Ramphul U. N., Garver L. S., Molina-Cruz A., Canepa G. E., Barillas-Mury C. (2015). PubMed DOI PMC

Reis C., Cote M., Paul R. E., Bonnet S. (2011). Questing ticks in suburban forest are infected by at least six tick-borne pathogens. Vector Borne Zoonotic Dis. 11, 907–916. 10.1089/vbz.2010.0103 PubMed DOI

Rennoll-Bankert K. E., Garcia-Garcia J. C., Sinclair S. H., Dumler J. S. (2015). Chromatin-bound bacterial effector ankyrin A recruits histone deacetylase 1 and modifies host gene expression. Cell Microbiol. 17, 1640–1652. 10.1111/cmi.12461 PubMed DOI PMC

Rollend L., Fish D., Childs J. E. (2013). Transovarial transmission of Borrelia spirochetes by PubMed DOI

Rosa P. A., Tilly K., Stewart P. E. (2005). The burgeoning molecular genetics of the Lyme disease spirochaete. Nat. Rev. Microbiol. 3, 129–143. 10.1038/nrmicro1086 PubMed DOI

Rudenko N., Golovchenko M., Edwards M. J., Grubhoffer L. (2005). Differential expression of PubMed DOI

Rynkiewicz E. C., Hemmerich C., Rusch D. B., Fuqua C., Clay K. (2015). Concordance of bacterial communities of two tick species and blood of their shared rodent host. Mol. Ecol. 24, 2566–2579. 10.1111/mec.13187 PubMed DOI

Sabin L. R., Zheng Q., Thekkat P., Yang J., Hannon G. J., Gregory B. D., et al. (2013). Dicer-2 processes diverse viral RNA species. PLoS ONE 8:e55458. 10.1371/journal.pone.0055458 PubMed DOI PMC

Sassera D., Beninati T., Bandi C., Bouman E. A., Sacchi L., Fabbi M., et al. (2006). PubMed DOI

Schnittger L., Rodriguez A. E., Florin-Christensen M., Morrison D. A. (2012). Babesia: a world emerging. Infect Genet. Evol. 12, 1788–1809. 10.1016/j.meegid.2012.07.004 PubMed DOI

Schuijt T. J., Coumou J., Narasimhan S., Dai J., Deponte K., Wouters D., et al. (2011b). A tick mannose-binding lectin inhibitor interferes with the vertebrate complement cascade to enhance transmission of the Lyme disease agent. Cell Host Microbe. 10, 136–146. 10.1016/j.chom.2011.06.010 PubMed DOI PMC

Schuijt T. J., Narasimhan S., Daffre S., DePonte K., Hovius J. W., Van't Veer C., et al. (2011a). Identification and characterization of PubMed DOI PMC

Severo M. S., Choy A., Stephens K. D., Sakhon O. S., Chen G., Chung D. W., et al. (2013). The E3 ubiquitin ligase XIAP restricts PubMed DOI PMC

Severo M. S., Pedra J. H. F., Ayllón N., Kocan K. M., de la Fuente J. (2015). Anaplasma, in Molecular Medical Microbiology, 2nd Edn., ed Tang Y. W., Sussman M., Liu D., Poxton I., Schwartzman J. (New York, NY: Academic Press; Elsevier; ), 2033–2042.

Shaw D. K., Wang X., Brown L. J., Oliva C. A. S., Reif K. E., Smith A. A., et al. (2017). Infection-derived lipids elicit an immune deficiency circuit in arthropods. Nat. Commun. 8:14401. 10.1038/ncomms14401 PubMed DOI PMC

Shih C. M., Telford S. R., III., Spielman A. (1995). Effect of ambient temperature on competence of deer ticks as hosts for Lyme disease spirochetes. J. Clin. Microbiol. 33, 958–961. PubMed PMC

Shtanko O., Nikitina R. A., Altuntas C. Z., Chepurnov A. A., Davey R. A. (2014). Crimean-Congo hemorrhagic fever virus entry into host cells occurs through the multivesicular body and requires ESCRT regulators. PLoS Pathog. 10:e1004390. 10.1371/journal.ppat.1004390 PubMed DOI PMC

Simon M., Johansson C., Mirazimi A. (2009). Crimean-Congo hemorrhagic fever virus entry and replication is clathrin-, pH- and cholesterol-dependent. J. Gen. Virol. 90(Pt 1), 210–215. 10.1099/vir.0.006387-0 PubMed DOI

Smith A. A., Navasa N., Yang X., Wilder C. N., Buyuktanir O., Marques A., et al. (2016). Cross-Species Interferon signaling boosts microbicidal activity within the tick vector. Cell Host Microbe 20, 91–98. 10.1016/j.chom.2016.06.001 PubMed DOI PMC

Steiner F. E., Pinger R. R., Vann C. N., Grindle N., Civitello D., Clay K., et al. (2008). Infection and co-infection rates of PubMed DOI

Suda Y., Fukushi S., Tani H., Murakami S., Saijo M., Horimoto T., et al. (2016). Analysis of the entry mechanism of Crimean-Congo hemorrhagic fever virus, using a vesicular stomatitis virus pseudotyping system. Arch. Virol. 161, 1447–1454. 10.1007/s00705-016-2803-1 PubMed DOI PMC

Sultana H., Neelakanta G., Kantor F. S., Malawista S. E., Fish D., Montgomery R. R., et al. (2010). PubMed DOI PMC

Tabata J., Hattori Y., Sakamoto H., Yukuhiro F., Fujii T., Kugimiya S., et al. (2011). Male killing and incomplete inheritance of a novel spiroplasma in the moth PubMed DOI

Taylor M., Mediannikov O., Raoult D., Greub G. (2012). Endosymbiotic bacteria associated with nematodes, ticks and amoebae. FEMS Immunol. Med. Microbiol. 64, 21–31. 10.1111/j.1574-695X.2011.00916.x PubMed DOI

Tully J. G., Rose D. L., Yunker C. E., Carle P., Bové J. M., Williamson D. L., et al. (1995). PubMed DOI

Turell M. J. (2007). Role of ticks in the transmission of Crimean-Congo hemorrhagic fever virus, in Crimean-Congo Hemorrhagic Fever: A Global Perspective, ed Ergonul O., Whitehouse C. A. (Dordrecht: Springer Press; ), 143–154.

Uilenberg G. (2006). Babesia-a historical overview. Vet. Parasitol. 138, 3–10. 10.1016/j.vetpar.2006.01.035 PubMed DOI

Vayssier-Taussat M., Kazimirova M., Hubalek Z., Hornok S., Farkas R., Cosson J. F., et al. (2015). Emerging horizons for tick-borne pathogens: from the “one pathogen-one disease” vision to the pathobiome paradigm. Future Microbiol. 10, 2033–2043. 10.2217/fmb.15.114 PubMed DOI PMC

Venzal J. M., Estrada-Peña A., Castro O., de Souza C. G., Félix M. L., Nava S., et al. (2008). PubMed DOI

Villar M., Ayllón N., Alberdi P., Moreno A., Moreno M., Tobes R., et al. (2015a). Integrated metabolomics, transcriptomics and proteomics identifies metabolic pathways affected by PubMed DOI PMC

Villar M., Ayllón N., Kocan K. M., Bonzón-Kulichenko E., Alberdi P., et al. (2015b). Identification and characterization of PubMed DOI PMC

Vlachou D., Schlegelmilch T., Christophides G. K., Kafatos F. C. (2005). Functional genomic analysis of midgut epithelial responses in Anopheles during Plasmodium invasion. Curr. Biol. 15, 1185–1195. 10.1016/j.cub.2005.06.044 PubMed DOI

Wagemakers A., Coumou J., Schuijt T. J., Oei A., Nijhof A. M., van 't Veer C., et al. (2016). An PubMed DOI

Wang J. L., Zhang J. L., Chen W., Xu X. F., Gao N., Fan D. Y., et al. (2010). Roles of small GTPase Rac1 in the regulation of actin cytoskeleton during dengue virus infection. PLoS Negl. Trop. Dis. 4:e809. 10.1371/journal.pntd.0000809 PubMed DOI PMC

Weisheit S., Villar M., Tykalová H., Popara M., Loecherbach J., Watson M., et al. (2015). PubMed DOI PMC

Williams-Newkirk A. J., Rowe L. A., Mixson-Hayden T. R., Dasch G. A. (2012). Presence, genetic variability, and potential significance of “ PubMed DOI PMC

Yokoyama N., Okamura M., Igarashi I. (2006). Erythrocyte invasion by Babesia parasites: current advances in the elucidation of the molecular interactions between the protozoan ligands and host receptors in the invasion stage. Vet. Parasitol. 138, 22–32. 10.1016/j.vetpar.2006.01.037 PubMed DOI

Zchori-Fein E., Bourtzis K. (2011). Manipulative Tenants: Bacteria Associated with Arthropods. New York, NY: CRC Press.

Zhang L., Zhang Y., Adusumilli S., Liu L., Narasimhan S., Dai J., et al. (2011). Molecular interactions that enable movement of the Lyme disease agent from the tick gut into the hemolymph. PLoS Pathog. 7:e1002079. 10.1371/journal.ppat.1002079 PubMed DOI PMC

Zhang X., Norris D. E., Rasgon J. L. (2011). Distribution and molecular characterization of Wolbachia endosymbionts and filarial nematodes in Maryland populations of the lone star tick ( PubMed DOI PMC

Zhong J., Jasinskas A., Barbour A. G. (2007). Antibiotic treatment of the tick vector PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Experimental Infection of Mice and Ticks with the Human Isolate of Anaplasma phagocytophilum NY-18

. 2022 Jul 21 ; 11 (7) : . [epub] 20220721

Evaluation of two artificial infection methods of live ticks as tools for studying interactions between tick-borne viruses and their tick vectors

. 2022 Jan 11 ; 12 (1) : 491. [epub] 20220111

Tick defensin γ-core reduces Fusarium graminearum growth and abrogates mycotoxins production with high efficiency

. 2021 Apr 12 ; 11 (1) : 7962. [epub] 20210412

The bacterial community of the lone star tick (Amblyomma americanum)

. 2021 Jan 14 ; 14 (1) : 49. [epub] 20210114

Enlisting the Ixodes scapularis Embryonic ISE6 Cell Line to Investigate the Neuronal Basis of Tick-Pathogen Interactions

. 2021 Jan 14 ; 10 (1) : . [epub] 20210114

Editorial: Biological Drivers of Vector-Pathogen Interactions

. 2020 ; 10 () : 609495. [epub] 20201022

Comparative proteomics of the vector Dermacentor reticulatus revealed differentially regulated proteins associated with pathogen transmission in response to laboratory infection with Rickettsia slovaca

. 2019 Jun 24 ; 12 (1) : 318. [epub] 20190624

Environmental and Molecular Drivers of the α-Gal Syndrome

. 2019 ; 10 () : 1210. [epub] 20190531

Counterattacking the tick bite: towards a rational design of anti-tick vaccines targeting pathogen transmission

. 2019 May 14 ; 12 (1) : 229. [epub] 20190514

A bite so sweet: the glycobiology interface of tick-host-pathogen interactions

. 2018 Nov 14 ; 11 (1) : 594. [epub] 20181114

Functional Evolution of Subolesin/Akirin

. 2018 ; 9 () : 1612. [epub] 20181113

Use of Graph Theory to Characterize Human and Arthropod Vector Cell Protein Response to Infection With Anaplasma phagocytophilum

. 2018 ; 8 () : 265. [epub] 20180803

The Complexity of Piroplasms Life Cycles

. 2018 ; 8 () : 248. [epub] 20180723

Reptile-associated Borrelia species in the goanna tick (Bothriocroton undatum) from Sydney, Australia

. 2017 Dec 20 ; 10 (1) : 616. [epub] 20171220

Ticks and Tick-Borne Pathogens of the Caribbean: Current Understanding and Future Directions for More Comprehensive Surveillance

. 2017 ; 7 () : 490. [epub] 20171129

Anaplasma phagocytophilum MSP4 and HSP70 Proteins Are Involved in Interactions with Host Cells during Pathogen Infection

. 2017 ; 7 () : 307. [epub] 20170705

Combination of RT-PCR and proteomics for the identification of Crimean-Congo hemorrhagic fever virus in ticks

. 2017 Jul ; 3 (7) : e00353. [epub] 20170712

Functional Redundancy and Ecological Innovation Shape the Circulation of Tick-Transmitted Pathogens

. 2017 ; 7 () : 234. [epub] 20170531

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...