Tick defensin γ-core reduces Fusarium graminearum growth and abrogates mycotoxins production with high efficiency

. 2021 Apr 12 ; 11 (1) : 7962. [epub] 20210412

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33846413
Odkazy

PubMed 33846413
PubMed Central PMC8042122
DOI 10.1038/s41598-021-86904-w
PII: 10.1038/s41598-021-86904-w
Knihovny.cz E-zdroje

Fusarium graminearum is a major fungal pathogen affecting crops of worldwide importance. F. graminearum produces type B trichothecene mycotoxins (TCTB), which are not fully eliminated during food and feed processing. Therefore, the best way to minimize TCTB contamination is to develop prevention strategies. Herein we show that treatment with the reduced form of the γ-core of the tick defensin DefMT3, referred to as TickCore3 (TC3), decreases F. graminearum growth and abrogates TCTB production. The oxidized form of TC3 loses antifungal activity, but retains anti-mycotoxin activity. Molecular dynamics show that TC3 is recruited by specific membrane phospholipids in F. graminearum and that membrane binding of the oxidized form of TC3 is unstable. Capping each of the three cysteine residues of TC3 with methyl groups reduces its inhibitory efficacy. Substitutions of the positively-charged residues lysine (Lys) 6 or arginine 7 by threonine had the highest and the lesser impact, respectively, on the anti-mycotoxin activity of TC3. We conclude that the binding of linear TC3 to F. graminearum membrane phospholipids is required for the antifungal activity of the reduced peptide. Besides, Lys6 appears essential for the anti-mycotoxin activity of the reduced peptide. Our results provide foundation for developing novel and environment-friendly strategies for controlling F. graminearum.

Zobrazit více v PubMed

Ferrigo D, Raiola A, Causin R. Fusarium toxins in cereals: occurrence, legislation, factors promoting the appearance and their management. Molecules. 2016;21:627. doi: 10.3390/molecules21050627. PubMed DOI PMC

Wilson W, Dahl B, Nganje W. Economic costs of Fusarium head blight, scab and deoxynivalenol. World Mycotoxin J. 2018;11:291–302. doi: 10.3920/WMJ2017.2204. DOI

Sobrova P, et al. Deoxynivalenol and its toxicity. Interdiscip. Toxicol. 2010;3:94–99. doi: 10.2478/v10102-010-0019-x. PubMed DOI PMC

de la Fuente J, et al. Tick-pathogen interactions and vector competence: identification of molecular drivers for tick-borne diseases. Front. Cell. Infect. Microbiol. 2017;7:144. doi: 10.3389/fcimb.2017.00144. PubMed DOI PMC

Angelo IC, et al. Physiological changes in Rhipicephalus microplus (Acari: Ixodidae) experimentally infected with entomopathogenic fungi. Parasitol. Res. 2015;114:219–225. doi: 10.1007/s00436-014-4181-5. PubMed DOI

Cabezas-Cruz A, et al. Antibacterial and antifungal activity of defensins from the Australian paralysis tick, Ixodes holocyclus. Ticks Tick Borne Dis. 2019;10:101269. doi: 10.1016/j.ttbdis.2019.101269. PubMed DOI

Hajdušek O, et al. Interaction of the tick immune system with transmitted pathogens. Front. Cell. Infect. Microbiol. 2013;3:26. doi: 10.3389/fcimb.2013.00026. PubMed DOI PMC

Tonk M, et al. Defensins from the tick Ixodes scapularis are effective against phytopathogenic fungi and the human bacterial pathogen Listeria grayi. Parasites Vectors. 2014;7:554. doi: 10.1186/s13071-014-0554-y. PubMed DOI PMC

Tonk M, et al. Ixodes ricinus defensins attack distantly-related pathogens. Dev. Comp. Immunol. 2015;53:358–365. doi: 10.1016/j.dci.2015.08.001. PubMed DOI

Cabezas-Cruz A, et al. Antiplasmodial activity is an ancient and conserved feature of tick defensins. Front. Microbiol. 2016;7:1682. doi: 10.3389/fmicb.2016.01682. PubMed DOI PMC

Couto J, et al. Antiplasmodial activity of tick defensins in a mouse model of malaria. Ticks Tick Borne Dis. 2018;9:844–849. doi: 10.1016/j.ttbdis.2018.03.011. PubMed DOI

Spelbrink RG, et al. Differential antifungal and calcium channel-blocking activity among structurally related plant defensins. Plant Physiol. 2004;135:2055–2067. doi: 10.1104/pp.104.040873. PubMed DOI PMC

Ramamoorthy V, Zhao X, Snyder AK, Xu J-R, Shah DM. Two mitogen-activated protein kinase signalling cascades mediate basal resistance to antifungal plant defensins in Fusarium graminearum. Cell. Microbiol. 2007;9:1491–1506. doi: 10.1111/j.1462-5822.2006.00887.x. PubMed DOI

Schrödinger Release 2020–3: Maestro, Schrödinger, LLC, New York, NY (2020).

Jo S, Kim T, Iyer VG, Im W. CHARMM-GUI: a web-based graphical user interface for CHARMM. J. Comput. Chem. 2008;29:1859–1865. doi: 10.1002/jcc.20945. PubMed DOI

Madhavi Sastry G, Adzhigirey M, Day T, Annabhimoju R, Sherman W. Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. J. Comput. Aided Mol. Des. 2013;27:221–234. doi: 10.1007/s10822-013-9644-8. PubMed DOI

Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983;79:926–935. doi: 10.1063/1.445869. DOI

Wang J, Cieplak P, Kollman PA. How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules? J. Comput. Chem. 2000;21:1049–1074. doi: 10.1002/1096-987X(200009)21:12<1049::AID-JCC3>3.0.CO;2-F. DOI

Hornak V, et al. Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins. 2006;65:712–725. doi: 10.1002/prot.21123. PubMed DOI PMC

Lindorff-Larsen K, et al. Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins. 2010;78:1950–1958. doi: 10.1002/prot.22711. PubMed DOI PMC

Klauda JB, et al. Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. J. Phys. Chem. B. 2010;114:7830–7843. doi: 10.1021/jp101759q. PubMed DOI PMC

Vanommeslaeghe K, MacKerell AD. Automation of the CHARMM General Force Field (CGenFF) I: bond perception and atom typing. J. Chem. Inf. Model. 2012;52:3144–3154. doi: 10.1021/ci300363c. PubMed DOI PMC

Vanommeslaeghe K, Raman EP, MacKerell AD. Automation of the CHARMM General Force Field (CGenFF) II: assignment of bonded parameters and partial atomic charges. J. Chem. Inf. Model. 2012;52:3155–3168. doi: 10.1021/ci3003649. PubMed DOI PMC

Bowers, K. J. et al. Scalable algorithms for molecular dynamics simulations on commodity clusters. In SC ’06: Proceedings of the 2006 ACM/IEEE Conference on Supercomputing 43–43 (2006). 10.1109/SC.2006.54.

Hoover WG. Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A. 1985;31:1695–1697. doi: 10.1103/PhysRevA.31.1695. PubMed DOI

Martyna GJ, Tobias DJ, Klein ML. Constant pressure molecular dynamics algorithms. J. Chem. Phys. 1994;101:4177–4189. doi: 10.1063/1.467468. DOI

Tuckerman M, Berne BJ, Martyna GJ. Reversible multiple time scale molecular dynamics. J. Chem. Phys. 1992;97:1990–2001. doi: 10.1063/1.463137. DOI

Vogel HJ. A convenient growth medium for Neurospora crassa. Microb. Genet. Bull. 1956;13:42–47.

Boutigny A-L, et al. Ferulic acid, an efficient inhibitor of type B trichothecene biosynthesis and Tri gene expression in Fusarium liquid cultures. Mycol. Res. 2009;113:746–753. doi: 10.1016/j.mycres.2009.02.010. PubMed DOI

R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.r-project.org/index.html.

Wickham, H. ggplot2: Elegant Graphics for Data Analysis. (Springer International Publishing : Imprint: Springer, 2016). doi:10.1007/978-3-319-24277-4.

Wiebe MG, Robson GD, Trinci APJ. Effect of choline on the morphology, growth and phospholipid composition of Fusarium graminearum. Microbiology. 1989;135:2155–2162. doi: 10.1099/00221287-135-8-2155. PubMed DOI

Sagaram US, Pandurangi R, Kaur J, Smith TJ, Shah DM. Structural and functional studies of a phosphatidic acid-binding antifungal plant defensin MtDef4: identification of an RGFRRR motif governing fungal cell entry. PLoS ONE. 2013;8(12):e82485. doi: 10.1371/journal.pone.0082485. PubMed DOI PMC

Lee J, et al. Structure-activity relationships of the intramolecular disulfide bonds in coprisin, a defensin from the dung beetle. BMB Rep. 2014;47:625–630. doi: 10.5483/BMBRep.2014.47.11.262. PubMed DOI PMC

Miyoshi N, et al. Functional structure and antimicrobial activity of persulcatusin, an antimicrobial peptide from the hard tick Ixodes persulcatus. Parasites Vectors. 2016;9:85. doi: 10.1186/s13071-016-1360-5. PubMed DOI PMC

Isogai E, et al. Tertiary structure-related activity of tick defensin (persulcatusin) in the taiga tick, Ixodes persulcatus. Exp. Appl. Acarol. 2011;53:71–77. doi: 10.1007/s10493-010-9379-3. PubMed DOI

Lay FT, et al. Dimerization of plant defensin NaD1 enhances its antifungal activity. J. Biol. Chem. 2012;287:19961–19972. doi: 10.1074/jbc.M111.331009. PubMed DOI PMC

Scudiero O, et al. Design and activity of a cyclic mini-β-defensin analog: a novel antimicrobial tool. Int. J. Nanomed. 2015;10:6523–6539. PubMed PMC

Nigro E, et al. An ancestral host defence peptide within human β-defensin 3 recapitulates the antibacterial and antiviral activity of the full-length molecule. Sci. Rep. 2015;5:18450. doi: 10.1038/srep18450. PubMed DOI PMC

Thevissen K, Ferket KKA, François IEJA, Cammue BPA. Interactions of antifungal plant defensins with fungal membrane components. Peptides. 2003;24:1705–1712. doi: 10.1016/j.peptides.2003.09.014. PubMed DOI

Amaral VSG, et al. Psd2 pea defensin shows a preference for mimetic membrane rafts enriched with glucosylceramide and ergosterol. Biochim. Biophys. Acta Biomembr. 2019;1861:713–728. doi: 10.1016/j.bbamem.2018.12.020. PubMed DOI

Victor KG, Cafiso DS. Location and dynamics of basic peptides at the membrane interface: electron paramagnetic resonance spectroscopy of tetramethyl-piperidine-N-oxyl-4-amino-4-carboxylic acid-labeled peptides. Biophys. J. 2001;81:2241–2250. doi: 10.1016/S0006-3495(01)75871-7. PubMed DOI PMC

López Cascales JJ, et al. Small cationic peptides: influence of charge on their antimicrobial activity. ACS Omega. 2018;3:5390–5398. doi: 10.1021/acsomega.8b00293. PubMed DOI PMC

De Coninck B, Cammue BPA, Thevissen K. Modes of antifungal action and in planta functions of plant defensins and defensin-like peptides. Fungal Biol. Rev. 2013;26:109–120. doi: 10.1016/j.fbr.2012.10.002. DOI

van der Weerden NL, Lay FT, Anderson MA. The plant defensin, NaD1, enters the cytoplasm of Fusarium Oxysporum hyphae. J. Biol. Chem. 2008;283:14445–14452. doi: 10.1074/jbc.M709867200. PubMed DOI

van der Weerden NL, Hancock REW, Anderson MA. Permeabilization of fungal hyphae by the plant defensin NaD1 occurs through a cell wall-dependent process. J. Biol. Chem. 2010;285:37513–37520. doi: 10.1074/jbc.M110.134882. PubMed DOI PMC

Mello EO, et al. Antifungal activity of PvD1 defensin involves plasma membrane permeabilization, inhibition of medium acidification, and induction of ROS in fungi cells. Curr. Microbiol. 2011;62:1209–1217. doi: 10.1007/s00284-010-9847-3. PubMed DOI

Merhej J, Richard-Forget F, Barreau C. Regulation of trichothecene biosynthesis in Fusarium: recent advances and new insights. Appl. Microbiol. Biotechnol. 2011;91:519–528. doi: 10.1007/s00253-011-3397-x. PubMed DOI

Moghaddam M-RB, Gross T, Becker A, Vilcinskas A, Rahnamaeian M. The selective antifungal activity of Drosophila melanogaster metchnikowin reflects the species-dependent inhibition of succinate–coenzyme Q reductase. Sci. Rep. 2017;7:8192. doi: 10.1038/s41598-017-08407-x. PubMed DOI PMC

Atanasova-Penichon V, et al. Mycotoxin biosynthesis and central metabolism are two interlinked pathways in Fusarium graminearum, as demonstrated by the extensive metabolic changes induced by caffeic acid exposure. Appl. Environ. Microbiol. 2018;84:e01705–e01717. doi: 10.1128/AEM.01705-17. PubMed DOI PMC

Pani G, et al. Natural phenolic inhibitors of trichothecene biosynthesis by the wheat fungal pathogen Fusarium culmorum: a computational insight into the structure-activity relationship. PLoS ONE. 2016;11:e0157316. doi: 10.1371/journal.pone.0157316. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...