Defensins from the tick Ixodes scapularis are effective against phytopathogenic fungi and the human bacterial pathogen Listeria grayi

. 2014 Dec 03 ; 7 () : 554. [epub] 20141203

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid25443032

BACKGROUND: Ixodes scapularis is the most common tick species in North America and a vector of important pathogens that cause diseases in humans and animals including Lyme disease, anaplasmosis and babesiosis. Tick defensins have been identified as a new source of antimicrobial agents with putative medical applications due to their wide-ranging antimicrobial activities. Two multigene families of defensins were previously reported in I. scapularis. The objective of the present study was to characterise the potential antimicrobial activity of two defensins from I. scapularis with emphasis on human pathogenic bacterial strains and important phytopathogenic fungi. METHODS: Scapularisin-3 and Scapularisin-6 mature peptides were chemically synthesised. In vitro antimicrobial assays were performed to test the activity of these two defensins against species of different bacterial genera including Gram-positive bacteria Staphylococcus aureus, Staphylococcus epidermidis, and Listeria spp. as well as Gram-negative bacteria Escherichia coli, Pseudomonas aeruginosa along with two plant-pathogenic fungi from the genus Fusarium. In addition, the tissue-specific expression patterns of Scapularisin-3 and Scapularisin-6 in I. scapularis midgut, salivary glands and embryo-derived cell lines were determined using PCR. Finally, tertiary structures of the two defensins were predicted and structural analyses were conducted. RESULTS: Scapularisin-6 efficiently killed L. grayi, and both Scapularisin-3 and Scapularisin-6 caused strong inhibition (IC50 value: ~1 μM) of the germination of plant-pathogenic fungi Fusarium culmorum and Fusarium graminearum. Scapularisin-6 gene expression was observed in I. scapularis salivary glands and midgut. However, Scapularisin-3 gene expression was only detected in the salivary glands. Transcripts from the two defensins were not found in the I. scapularis tick cell lines ISE6 and ISE18. CONCLUSION: Our results have two main implications. Firstly, the anti-Listeria and antifungal activities of Scapularisin-3 and Scapularisin-6 suggest that these peptides may be useful for (i) treatment of antibiotic-resistant L. grayi in humans and (ii) plant protection. Secondly, the antimicrobial properties of the two defensins described in this study may pave the way for further studies regarding pathogen invasion and innate immunity in I. scapularis.

Zobrazit více v PubMed

Hajdušek O, Šíma R, Ayllón N, Jalovecká M, Perner J, de la Fuente J, Kopacek P. Interaction of the tick immune system with transmitted pathogens. Front Cell Infec Microbio. 2013;3:26. PubMed PMC

Taylor D. Innate immunity in ticks: a review. J Acarol Soc Japan. 2006;15:109–127. doi: 10.2300/acari.15.109. DOI

Kopáček P, Hajdušek O, Burešová V, Daffre S. Tick innate immunity. Adv Exp Med Biol. 2010;708:137–162. doi: 10.1007/978-1-4419-8059-5_8. PubMed DOI

Nakajima Y, van Naters-Yasui AV, Taylor D, Yamakawa M. Antimicrobial peptide defensin is involved in midgut immunity of the soft tick, Ornithodoros moubata. Insect Mol Biol. 2002;11:611–618. doi: 10.1046/j.1365-2583.2002.00372.x. PubMed DOI

Wang Y, Zhu S. The defensin gene family expansion in the tick Ixodes scapularis. Dev Comp Immunol. 2011;35:1128–1134. doi: 10.1016/j.dci.2011.03.030. PubMed DOI

Ganz T, Lehrer RI. Defensins. Curr Opin Immunol. 1994;6:584–589. doi: 10.1016/0952-7915(94)90145-7. PubMed DOI

Lai R, Lomas LO, Jonczy J, Turner PC, Ress HH. Two novel non-cationic defensin-like antimicrobial peptides from haemolymph of the female tick, Amblyomma hebraeum. Biochem J. 2004;379:681–685. doi: 10.1042/BJ20031429. PubMed DOI PMC

Tonk M, Cabezas-Cruz A, Valdés JJ, Rego ROM, Rudenko N, Golovchenko M, Bell-Sakyi L, de la Fuente J, Grubhoffer L. Identification and partial characterisation of new members of the Ixodes ricinus defensin family. Gene. 2014;540:146–152. doi: 10.1016/j.gene.2014.03.002. PubMed DOI

Bulet P, Stöcklin R, Menin L. Anti-microbial peptides: from invertebrates to vertebrates. Immunol Rev. 2004;198:169–184. doi: 10.1111/j.0105-2896.2004.0124.x. PubMed DOI

Kocan KM, de la Fuente J, Manzano-Roman R, Naranjo V, Hynes WL, Sonenshine DE. Silencing expression of the defensin, varisin, in male Dermacentor variabilis by RNA interference results in reduced Anaplasma marginale infections. Exp Appl Acarol. 2008;46:17–28. doi: 10.1007/s10493-008-9159-5. PubMed DOI

Pasupuleti M, Schmidtchen A, Malmsten M. Antimicrobial peptides: key components of the innate immune system. Crit Rev Biotechnol. 2012;32:143–171. doi: 10.3109/07388551.2011.594423. PubMed DOI

Bajard S, Rosso L, Fardel G, Flandrois JP. The particular behaviour of Listeria monocytogenes under sub-optimal conditions. Int J Food Microbiol. 1996;29:201–211. doi: 10.1016/0168-1605(95)00031-3. PubMed DOI

Farber JM, Peterkin PI. Listeria monocytogenes, a food-borne pathogen. Microbiol Rev. 1991;55:476–511. PubMed PMC

Hage E, Mpamugo O, Ohai C, Sapkota S, Swift C, Wooldridge D, Amar CFL. Identification of six Listeria species by real-time PCR assay. Lett Appl Microbiol. 2014;58(6):535–540. doi: 10.1111/lam.12223. PubMed DOI

Garrity GM, Bell JA, Lilburn TG. Taxonomic Outline of the Prokaryotes. Bergey’s Manual of Systematic Bacteriology. 2. New York: Springer; 2004.

Liu D. Identification, subtyping and virulence determination of Listeria monocytogenes, an important foodborne pathogen. J Med Microbiol. 2006;55:645–659. doi: 10.1099/jmm.0.46495-0. PubMed DOI

Graves LM, Helsel LO, Steigerwalt AG, Morey RE, Daneshvar MI, Roof SE, Orsi RH, Fortes ED. Listeria marthii sp. nov., isolated from the natural environment, Finger Lakes National Forest. Int J Syst Evol Microbiol. 2010;60:1280–1288. doi: 10.1099/ijs.0.014118-0. PubMed DOI

Leclercq A, Clermont D, Bizet C, Grimont PAD, Le Fléche-Matéos A, Roche SM, Buchrieser C, Cadet-Daniel V. Listeria rocourtiae sp. nov. Int J Syst Evol Microbiol. 2010;60:2210–2214. doi: 10.1099/ijs.0.017376-0. PubMed DOI

Bertsch D, Rau J, Eugster MR, Haug MC, Lawson PA, Lacroix C, Meile L. Listeria fleischmannii sp. nov., isolated from cheese. Int J Syst Evol Microbiol. 2013;63:526–532. doi: 10.1099/ijs.0.036947-0. PubMed DOI

Lang HE, Neuhaus K, Scherer S. Listeria weihenstephanensis sp. nov., isolated from the water plant Lemna trisulca taken from a freshwater pond. Int J Syst Evol Microbiol. 2013;63:641–647. doi: 10.1099/ijs.0.036830-0. PubMed DOI

Cummins AJ, Fielding AK, McLauchlin J. Listeria ivanovii infection in a patient with AIDS. J Infect. 1994;28:89–91. doi: 10.1016/S0163-4453(94)94347-8. PubMed DOI

Lessing MPA, Curtis GDW, Bowler ICJ. Listeria ivanovii infection. J Infect. 1994;29:230–231. doi: 10.1016/S0163-4453(94)90914-8. PubMed DOI

Guillet C, Join-Lambert O, Le Monnier A, Leclercq A, Mechai F, Mamzer-Bruneel MF, Bielecka MK, Scortti M. Human listeriosis caused by Listeria ivanovii. Emerg Infect Dis. 2010;16:136–138. doi: 10.3201/eid1601.091155. PubMed DOI PMC

Rapose A, Lick SD, Ismail N. Listeria grayi bacteremia in a heart transplant recipient. Transpl Infect Dis. 2008;10:434–436. doi: 10.1111/j.1399-3062.2008.00333.x. PubMed DOI

Rocourt J, Hof H, Schrettenbrunner A, Malinverni R, Bille J. Acute purulent Listeria seeligeri meningitis in an immunocompetent adult. Schweiz Med Wochenschr. 1986;116:248–251. PubMed

Perrin M, Bemer M, Delamare C. Fatal case of Listeria innocua bacteremia. J Clin Microbiol. 2003;41:5308–5309. doi: 10.1128/JCM.41.11.5308-5309.2003. PubMed DOI PMC

Walker JK, Morgan JH, McLauchlin J, Grant KA, Shallcross JA. Listeria innocua isolated from a case of ovine meningoencephalitis. Vet Microbiol. 1994;42:245–253. doi: 10.1016/0378-1135(94)90023-X. PubMed DOI

Salimnia H, Patel D, Lephart PR, Fairfax MR, Chandrasekar PH. Listeria grayi: vancomycin-resistant, gram-positive rod causing bacteremia in a stem celll transplant recipient. Transp Infect Dis. 2010;12:526–528. doi: 10.1111/j.1399-3062.2010.00539.x. PubMed DOI

Lucas S, Baştaş K, Budak H. Exploring the interaction between small RNAs and R genes during Brachypodium response to Fusarium culmorum infection. Gene. 2014;536:254–264. doi: 10.1016/j.gene.2013.12.025. PubMed DOI

Scherm B, Virgilio BS, Francesca S, Giovanna P, Giovanna D, Matias P, Quirico M. Fusarium culmorum: causal agent of foot and root rot and head blight on wheat. Molec Plant Pathol. 2013;14:323–341. doi: 10.1111/mpp.12011. PubMed DOI PMC

Bormann J, Boenisch MJ, Brückner E, Firat D, Schäfer W. The adenylyl cyclase plays a regulatory role in the morphogenetic switch from vegetative to pathogenic lifestyle of Fusarium graminearum on wheat. PLoS ONE. 2014;9:e91135. doi: 10.1371/journal.pone.0091135. PubMed DOI PMC

Pagnussatt FA, Del Ponte EM, Garda-Buffon J, Badiale-Furlong E. Inhibition of Fusarium graminearum growth and mycotoxin production by phenolic extract from Spirulina sp. Pestic Biochem Physiol. 2014;108:21–26. doi: 10.1016/j.pestbp.2013.11.002. PubMed DOI

Ward TJ, Clear RM, Rooney AP, O’Donnell K, Gaba D, Patrick S, Starkey DE, Gilbert J, Geiser DM, Nowicki TW. An adaptive evolutionary shift in Fusarium head blight pathogen populations is driving the rapid spread of more toxigenic Fusarium graminearum in North America. Fungal Genet Biol. 2008;45:473–484. doi: 10.1016/j.fgb.2007.10.003. PubMed DOI

Rahnamaeian M, Langen G, Imani J, Khalifa W, Altincicek B, von Wettstein D. Insect peptide metchnikowin confers on barley a selective capacity for resistance to fungal ascomycetes pathogens. J Exp Bot. 2009;60:4105–4114. doi: 10.1093/jxb/erp240. PubMed DOI PMC

Miedaner T, Reinbrecht C, Schilling AG. Association among aggressiveness, fungal colonization, and mycotoxin production of 26 isolates of Fusarium graminearum in winter rye head blight. Zeitsch Pflanzenkrank Pflanzenschutz. 2000;107:124–134.

Rahnamaeian M, Vilcinskas A. Defense gene expression is potentiated in transgenic barley expressing antifungal peptide metchnikowin throughout powdery mildew challenge. J Plant Res. 2012;125:115–124. doi: 10.1007/s10265-011-0420-3. PubMed DOI

Fogaça AC, Lorenzini DM, Kaku LM, Esteves E, Bulet P, Daffre S. Cysteine-rich antimicrobial peptides of the cattle tick Boophilus microplus: isolation, structural characterization and tissue expression profile. Dev Comp Immunol. 2004;28:191–200. doi: 10.1016/j.dci.2003.08.001. PubMed DOI

Kurtti TJ, Munderloh UG, Andreadis TG, Magnarelli LA, Mather TN. Tick cell culture isolation of an intracellular prokaryote from the tick Ixodes scapularis. J Invert Pathol. 1996;67:318–321. doi: 10.1006/jipa.1996.0050. PubMed DOI

Munderloh UG, Liu Y, Wang M, Chen C, Kurtti TJ. Establishment, maintenance and description of cell lines from the tick Ixodes scapularis. J Parasitol. 1994;80:533–543. doi: 10.2307/3283188. PubMed DOI

Bell-Sakyi L, Zweygarth E, Blouin EF, Gould EA, Jongejan F. Tick cell lines: tools for tick and tick-borne disease research. Trends Parasitol. 2007;23:450–457. doi: 10.1016/j.pt.2007.07.009. PubMed DOI

Kelley LA, Sternberg MJE. Protein structure prediction on the Web: a case study using the Phyre server. Nat Protocols. 2009;4:363–371. doi: 10.1038/nprot.2009.2. PubMed DOI

Li X, Jacobson MP, Zhu K, Zhao S, Friesner RA. Assignment of polar states for protein amino acid residues using an interaction cluster decomposition algorithm and its application to high resolution protein structure modeling. Proteins Struct Funct Bioinformatics. 2007;66:824–837. doi: 10.1002/prot.21125. PubMed DOI

Landon C, Barbault F, Legrain M, Guenneugues M, Vovelle F. Rational design of peptides active against the gram positive bacteria Staphylococcus aureus. Proteins. 2008;72:229–239. doi: 10.1002/prot.21912. PubMed DOI

Chrudimská T, Chrudimsky’ T, Golovchenko M, Rudenko N, Grubhoffer L. New defensins from hard and soft ticks: similarities, differences, and phylogenetic analyses. Vet Parasitol. 2010;167:298–303. doi: 10.1016/j.vetpar.2009.09.032. PubMed DOI

Saito Y, Konnai S, Yamada S, Imamura S, Nishikado H, Ito T, Onuma M, Ohashi K. Identification and characterisation of antimicrobial peptide, defensin, in the taiga tick, Ixodes persulcatus. Insect Mol Biol. 2009;18:531–539. doi: 10.1111/j.1365-2583.2009.00897.x. PubMed DOI

Yu D, Sheng Z, Xu X, Li J, Yang H, Liu Z, Rees HH, Lai R. A novel antimicrobial peptide from salivary glands of the hard tick, Ixodes sinensis. Peptides. 2006;27:31–35. doi: 10.1016/j.peptides.2005.06.020. PubMed DOI

Lu X, Che Q, Lv Y, Wang M, Lu Z, Feng F, Liu J, Yu H. A novel defensin-like peptide from salivary glands of the hard tick, Haemaphysalis longicornis. Protein Sci. 2010;19:392–397. doi: 10.1002/pro.474. PubMed DOI PMC

Nakajima Y, van Naters-Yasui AV, Taylor D, Yamakawa M. Two isoforms of a member of the arthropod defensin family from the soft tick, Ornithodoros moubata (Acari: Argasidae) Insect Biochem Mol Biol. 2001;31:747–751. doi: 10.1016/S0965-1748(01)00066-2. PubMed DOI

Tsuji N, Battsetseg B, Boldbaatar D, Miyoshi T, Xuan X, Oliver JH, Jr, Fujisaki K. Babesial vector tick defensin against Babesia sp. parasites. Infect Immun. 2007;75:3633–3640. doi: 10.1128/IAI.00256-07. PubMed DOI PMC

Schwaiger K, Schmied EM, Bauer J. Comparative analysis on antibiotic resistance characteristics of Listeria spp. and Enterococcus spp. isolated from laying hens and eggs in conventional and organic keeping systems in Bavaria, Germany. Zoonoses Pub Hlth. 2009;57:171–180. doi: 10.1111/j.1863-2378.2008.01229.x. PubMed DOI

Mukherjee K, Abu Mraheil M, Silva S, Müller D, Cemic F, Hemberger J, Hain T, Vilcinskas A, Chakraborty T. Anti-Listeria activities of Galleria mellonella hemolymph proteins. Appl Env Microbiol. 2011;77:4237–4240. doi: 10.1128/AEM.02435-10. PubMed DOI PMC

Nielsen LK, Cook DJ, Edwards SG, Ray RV. The prevalence and impact of Fusarium head blight pathogens and mycotoxins on malting barley quality in UK. Int J Food Microbiol. 2014;28(179C):38–49. doi: 10.1016/j.ijfoodmicro.2014.03.023. PubMed DOI PMC

Dean R, Van Kan JA, Pretorius ZA, Hammond-Kosack KE, Di Pietro A, Spanu PD, Rudd JJ, Dickman M, Kahmann R, Ellis J, Foster GD. The Top 10 fungal pathogens in molecular plant pathology. Mol Plant Pathol. 2012;13:414–430. doi: 10.1111/j.1364-3703.2011.00783.x. PubMed DOI PMC

Li Z, Zhou M, Zhang Z, Ren L, Du L, Zhang B, Xu H, Xin Z. Expression of a radish defensin in transgenic wheat confers increased resistance to Fusarium graminearum and Rhizoctonia cerealis. Funct Integr Genomics. 2011;11:63–70. doi: 10.1007/s10142-011-0211-x. PubMed DOI

Gomes VM, Carvalho AO, Da Cunha M, Keller MN, Bloch C, Jr, Deolindo P, Alves EW. Purification and characterization of a novel peptide with antifungal activity from Bothrops jararaca venom. Toxicon. 2005;45:817–827. doi: 10.1016/j.toxicon.2004.12.011. PubMed DOI

Dracatos PM, van der Weerden NL, Carroll KT, Johnson ED, Plummer KM, Anderson MA. Inhibition of cereal rust fungi by both class I and II defensins derived from the flowers of Nicotiana alata. Mol Plant Pathol. 2014;15:67–79. doi: 10.1111/mpp.12066. PubMed DOI PMC

Kolar SS, Baidouri H, Hanlon S, McDermott AM. Protective role of murine β-defensins 3 and 4 and cathelin-related antimicrobial peptide in Fusarium solani keratitis. Infect Immun. 2013;81:2669–2677. doi: 10.1128/IAI.00179-13. PubMed DOI PMC

Sagaram US, Pandurangi R, Kaur J, Smith TJ, Shah DM. Structure-activity determinants in antifungal plant defensins MsDef1 and MtDef4 with different modes of action against Fusarium graminearum. PLoS ONE. 2011;6:e18550. doi: 10.1371/journal.pone.0018550. PubMed DOI PMC

Rahnamaeian M. Antimicrobial peptides: modes of mechanism, modulation of defense responses. Plant Signal Behav. 2011;6(9):1325–1332. doi: 10.4161/psb.6.9.16319. PubMed DOI PMC

Hynes WL, Ceraul SM, Todd SM, Seguin KC, Sonenshine DE. A defensin-like gene expressed in the black-legged tick. Ixodes scapularis. Med Vet Entomol. 2005;19(4):339–344. doi: 10.1111/j.1365-2915.2005.00579.x. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...