Antiplasmodial Activity Is an Ancient and Conserved Feature of Tick Defensins

. 2016 ; 7 () : 1682. [epub] 20161024

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid27822206

Ancestral sequence reconstruction has been widely used to test evolution-based hypotheses. The genome of the European tick vector, Ixodes ricinus, encodes for defensin peptides with diverse antimicrobial activities against distantly related pathogens. These pathogens include fungi, Gram-negative, and Gram-positive bacteria, i.e., a wide antimicrobial spectrum. Ticks do not transmit these pathogens, suggesting that these defensins may act against a wide range of microbes encountered by ticks during blood feeding or off-host periods. As demonstrated here, these I. ricinus defensins are also effective against the apicomplexan parasite Plasmodium falciparum. To study the general evolution of antimicrobial activity in tick defensins, the ancestral amino acid sequence of chelicerate defensins, which existed approximately 444 million years ago, was reconstructed using publicly available scorpion and tick defensin sequences (named Scorpions-Ticks Defensins Ancestor, STiDA). The activity of STiDA was tested against P. falciparum and the same Gram-negative and Gram-positive bacteria that were used for the I. ricinus defensins. While some extant tick defensins exhibit a wide antimicrobial spectrum, the ancestral defensin showed moderate activity against one of the tested microbes, P. falciparum. This study suggests that amino acid variability and defensin family expansion increased the antimicrobial spectrum of ancestral tick defensins.

Zobrazit více v PubMed

Akanuma S., Yokobori S. I., Nakajima Y., Bessho M., Yamagishi A. (2015). Robustness of predictions of extremely thermally stable proteins in ancient organisms. Evolution 69 2954–2962. 10.1111/evo.12779 PubMed DOI

Brogden K. A. (2005). Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat. Rev. Microbiol. 3 238–250. 10.1038/nrmicro1098 PubMed DOI

Cabezas-Cruz A., Valdés J. J. (2014). Are ticks venomous animals? Front. Zool. 11:47 10.1186/1742-9994-11-47 PubMed DOI PMC

Crooks G. E., Hon G., Chandonia J. M., Brenner S. E. (2004). WebLogo: a sequence logo generator. Genome Res. 14 1188–1190. 10.1101/gr.849004 PubMed DOI PMC

Delport W., Poon A., Frost S., Kosakovsky P. (2010). Datamonkey 2010: a suite of phylogenetic analysis tools for evolutionary biology. Bioinformatics 26 2455–2457. 10.1093/bioinformatics/btq429 PubMed DOI PMC

Ellman G. L. (1959). Tissue sulfhydryl groups. Arch. Biochem. Biophys. 82 70–77. 10.1016/0003-9861(59)90090-6 PubMed DOI

Fréville A., Cailliau-Maggio K., Pierrot C., Tellier G., Kalamou H., Lafitte S., et al. (2013). Plasmodium falciparum encodes a conserved active inhibitor-2 for protein phosphatase type 1: perspectives for novel anti-plasmodial therapy. BMC. Biol. 11:80 10.1186/1741-7007-11-80 PubMed DOI PMC

Galay R. L., Maeda H., Aung K. M., Umemiya-Shirafuji R., Xuan X., Igarashi I., et al. (2012). Anti-babesial activity of a potent peptide fragment derived from longicin of Haemaphysalis longicornis. Trop. Anim. Health. Prod. 44 343–348. 10.1007/s11250-011-0027-7 PubMed DOI

Gao B., Zhu S. (2010). Identification and characterization of the parasitic wasp Nasonia defensins: positive selection targeting the functional region? Dev. Comp. Immunol. 34 659–668. 10.1016/j.dci.2010.01.012 PubMed DOI

Goyal R. K., Mattoo A. K. (2014). Multitasking antimicrobial peptides in plant development and host defense against biotic/abiotic stress. Plant. Sci. 228 135–149. 10.1016/j.plantsci.2014.05.012 PubMed DOI

Harms M. J., Thornton J. W. (2010). Analyzing protein structure and function using ancestral gene reconstruction. Curr. Opin. Struct. Biol. 20 360–366. 10.1016/j.sbi.2010.03.005 PubMed DOI PMC

Hillis D. M., Huelsenbeck J. P., Cunningham C. W. (1994). Application and accuracy of molecular phylogenies. Science 264 671–677. 10.1126/science.8171318 PubMed DOI

Hughes A. L. (1999). Evolutionary diversification of the mammalian defensins. Cell. Mol. Life Sci. 56 94–103. 10.1007/s000180050010 PubMed DOI PMC

Hughes A. L., Yeager M. (1997). Coordinated amino acid changes in the evolution of mammalian defensins. J. Mol. Evol. 44 675–682. 10.1007/PL00006191 PubMed DOI

Ingles-Prieto A., Ibarra-Molero B., Delgado-Delgado A., Perez-Jimenez R., Fernandez J. M., Gaucher E. A., et al. (2013). Conservation of protein structure over four billion years. Structure 21 1690–1697. 10.1016/j.str.2013.06.020 PubMed DOI PMC

Innis C. A., Shi J., Blundell T. L. (2000). Evolutionary trace analysis of TGF-beta and related growth factors: implications for site-directed mutagenesis. Protein Eng. 13 839–847. 10.1093/protein/13.12.839 PubMed DOI

Isogai E., Isogai H., Okumura K., Hori H., Tsuruta H., Kurebayashi Y. (2011). Tertiary structure-related activity of tick defensin (persulcatusin) in the taiga tick, Ixodes persulcatus. Exp. Appl. Acarol. 53 71–77. 10.1007/s10493-010-9379-3 PubMed DOI

Isogai E. H., Isogai H., Takahashi K., Kobayashi-Sakamoto M., Okumura K. (2009). Antimicrobial activity of three tick defensins and four mammalian cathelicidin-derived synthetic peptides against Lyme disease spirochetes and bacteria isolated from the midgut. Exp. Appl. Acarol. 49 221–228. 10.1007/s10493-009-9251-5 PubMed DOI

Izumiyama S., Omura M., Takasaki T., Ohmae H., Asahi H. (2009). Plasmodium falciparum: development and validation of a measure of intraerythrocytic growth using SYBR Green I in a flow cytometer. Exp. Parasitol. 121 144–150. 10.1016/j.exppara.2008.10.008 PubMed DOI

Jermann T. M., Opitz J. G., Stackhouse J., Benner S. A. (1995). Reconstructing the evolutionary history of the artiodactyl ribonuclease superfamily. Nature 374 57–59. 10.1038/374057a0 PubMed DOI

Jeyaprakash A., Hoy M. A. (2009). First divergence time estimate of spiders, scorpions, mites and ticks (subphylum: Chelicerata) inferred from mitochondrial phylogeny. Exp. Appl. Acarol. 47 1–18. 10.1007/s10493-008-9203-5 PubMed DOI

Katoh K., Standley D. M. (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30 772–780. 10.1093/molbev/mst010 PubMed DOI PMC

Kelly J. X., Smilkstein M. J., Brun R., Wittlin S., Cooper R. A., Lane K. D., et al. (2009). Discovery of dual function acridones as a new antimalarial chemotype. Nature 459 270–273. 10.1038/nature07937 PubMed DOI PMC

Krysan D. J., Rockwell N. C., Fuller R. S. (1999). Quantitative characterization of furin specificity. Energetics of substrate discrimination using an internally consistent set of hexapeptidyl methylcoumarinamides. J. Biol. Chem. 274 23229–23234. 10.1074/jbc.274.33.23229 PubMed DOI

Le S., Gascuel O. (2008). An improved general amino acid replacement matrix. Mol. Biol. Evol. 25 1307–1320. 10.1093/molbev/msn067 PubMed DOI

Lomize M. A., Pogozheva I. D., Joo H., Mosberg H. I., Lomize A. L. (2012). OPM database and PPM web server: resources for positioning of proteins in membranes. Nucleic Acids Res. 40 D370–D376. 10.1093/nar/gkr703 PubMed DOI PMC

Malcolm B. A., Wilson K. P., Matthews B. W., Kirsch J. F., Wilson A. C. (1990). Ancestral lysozymes reconstructed, neutrality tested, and thermostability linked to hydrocarbon packing. Nature 345 86–89. 10.1038/345086a0 PubMed DOI

Marchler-Bauer A., Derbyshire M. K., Gonzales N. R., Lu S., Chitsaz F., Geer L. Y., et al. (2015). CDD: NCBI’s conserved domain database. Nuclei. Acids Res. 43 D222–D226. 10.1093/nar/gku1221 PubMed DOI PMC

Mulder K. C., Lima L. A., Miranda V., Dias S. C., Franco O. L. (2013). Current scenario of peptide-based drugs: the key roles of cationic antitumor and antiviral peptides. Front. Microbiol. 4:321 10.3389/fmicb.2013.00321 PubMed DOI PMC

Mygind P. H., Fischer R. L., Schnorr K. M., Hansen M. T., Sönksen C. P., Ludvigsen S., et al. (2005). Plectasin is a peptide antibiotic with therapeutic potential from a saprophytic fungus. Nature 437 975–980. 10.1038/nature04051 PubMed DOI

Nakajima Y., Ishibashi J., Yukuhiro F., Asaoka A., Taylor D., Yamakawa M. (2003). Antibacterial activity and mechanism of action of tick defensin against Gram-positive bacteria. Biochim. Biophys. Acta 1624 125–130. 10.1016/j.bbagen.2003.10.004 PubMed DOI

Nielsen R. (2002). Mapping mutations on phylogenies. Syst. Biol. 51 729–739. 10.1080/10635150290102393 PubMed DOI

Pauling L., Zuckerkandl E. (1963). Molecular “Restoration Studies” of extinct forms of life. Acta Chem. Scand. 17 S9–S16. 10.3891/acta.chem.scand.17s-0009 DOI

Petersen T. N., Brunak S., von Heijne G., Nielsen H. (2011). SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat. Methods 8 785–786. 10.1038/nmeth.1701 PubMed DOI

Poon I. K. H., Baxter A. A., Lay F. T., Mills G. D., Adda C. G., Payne J. A., et al. (2014). Phosphoinositide-mediated oligomerization of a defensin induces cell lysis. Elife 3:e01808 10.7554/eLife.01808 PubMed DOI PMC

Pupko T., Shamir I., Graur D. (2000). A fast algorithm for joint reconstruction of ancestral amino acid sequences. Mol. Biol. Evol. 17 890–896. 10.1093/oxfordjournals.molbev.a026369 PubMed DOI

Raman S., Vernon R., Thompson J., Tyka M., Sadreyev R., Pei J., et al. (2009). Structure prediction for CASP8 with all-atom refinement using Rosetta. Proteins 77 89–99. 10.1002/prot.22540 PubMed DOI PMC

Schall J. J., Smith T. C. (2006). Detection of a malaria parasite (Plasmodium mexicanum) in ectoparasites (mites and ticks), and possible significance for transmission. J. Parasitol. 92 413–415. 10.1645/GE-688R.1 PubMed DOI

Schneider T., Kruse T., Wimmer R., Wiedemann I., Sass V., Pag U., et al. (2010). Plectasin, a fungal defensin, targets the bacterial cell wall precursor lipid II. Science 328 1168–1172. 10.1126/science.1185723 PubMed DOI

Schrödinger L. (2010). Maestro, version 9.1. New York, NY: Schrödinger, LLC.

Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. (2013). MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30 2725–2729. 10.1093/molbev/mst197 PubMed DOI PMC

Thornton J. W. (2004). Resurrecting ancient genes: experimental analysis of extinct molecules. Nat. Rev. Genet. 5 366–375. 10.1038/nrg1324 PubMed DOI

Tian C., Gao B., Rodriguez M. C., Lanz-Mendoza H., Ma B., Zhu S. (2008). Gene expression, antiparasitic activity, and functional evolution of the drosomycin family. Mol. Immunol. 45 3909–3916. 10.1016/j.molimm.2008.06.025 PubMed DOI

Tonk M., Cabezas-Cruz A., Valdés J. J., Rego R. O., Chrudimská T., Strnad M., et al. (2014a). Defensins from the tick Ixodes scapularis are effective against phytopathogenic fungi and the human bacterial pathogen Listeria grayi. Parasit. Vectors 7:554 10.1186/s13071-014-0554-y PubMed DOI PMC

Tonk M., Cabezas-Cruz A., Valdes J. J., Rego R. O., Rudenko N., Golovchenko M., et al. (2014b). Identification and partial characterisation of new members of the Ixodes ricinus defensin family. Gene. 540 146–152. 10.1016/j.gene.2014.03.002 PubMed DOI

Tonk M., Cabezas-Cruz A. J. J., Valdés R. O., Rego L., Grubhoffer A., Estrada-Peña A., et al. (2015). Ixodes ricinus defensins attack distantly-related pathogens. Dev. Comp. Immunol 53 358–365. 10.1016/j.dci.2015.08.001 PubMed DOI

Tsuji N., Battsetseg B., Boldbaatar D., Miyoshi T., Xuan X., Jr., Oliver J. H., et al. (2007). Babesial vector tick defensin against Babesia sp. parasites. Infect. Immun. 75 3633–3640. 10.1128/IAI.00256-07 PubMed DOI PMC

Tufts D. M., Natarajan C., Revsbech I. G., Projecto-Garcia J., Hoffmann F. G., Weber R. E., et al. (2015). Epistasis constrains mutational pathways of hemoglobin adaptation in high-altitude pikas. Mol. Biol. Evol. 32 287–298. 10.1093/molbev/msu311 PubMed DOI PMC

Uawonggul N., Thammasirirak S., Chaveerach A., Arkaravichien T., Bunyatratchata W., Ruangjirachuporn W., et al. (2007). Purification and characterization of Heteroscorpine-1 (HS-1) toxin from Heterometrus laoticus scorpion venom. Toxicon 49 19–29. 10.1016/j.toxicon.2006.09.003 PubMed DOI

van Dijk A., Veldhuizen E. J., Kalkhove S. I., Tjeerdsma-van Bokhoven J. L., Romijn R. A., Haagsman H. P. (2007). The beta-defensin gallinacin-6 is expressed in the chicken digestive tract and has antimicrobial activity against food-borne pathogens. Antimicrob. Agents Chemother. 51 912–922. 10.1128/AAC.00568-06 PubMed DOI PMC

Veldhuizen E. J., Rijnders M., Claassen E. A., van Dijk A., Haagsman H. P. (2008). Porcine beta-defensin 2 displays broad antimicrobial activity against pathogenic intestinal bacteria. Mol. Immunol. 45 386–394. 10.1016/j.molimm.2007.06.001 PubMed DOI

Victor K. G., Cafiso D. S. (2001). Location and dynamics of basic peptides at the membrane interface: electron paramagnetic resonance spectroscopy of tetramethyl-piperidine-N-Oxyl-4-amino-4-carboxylic acid-labeled peptides. Biophys. J. 81 2241–2250. 10.1016/S0006-3495(01)75871-7 PubMed DOI PMC

Wang J., Bian G., Pan W., Feng T., Dai J. (2015). Molecular characterization of a defensin gene from a hard tick, Dermacentor silvarum. Parasit. Vectors 8:25 10.1186/s13071-014-0625-0 PubMed DOI PMC

Wang Y., Zhu S. (2011). The defensin gene family expansion in the tick Ixodes scapularis. Dev. Comp. Immunol. 35 1128–1134. 10.1016/j.dci.2011.03.030 PubMed DOI

Yang Z., Kumar S., Nei M. (1995). A new method of inference of ancestral nucleotide and amino acid sequences. Genetics 14 1641–1650. PubMed PMC

Yeaman M. R., Yount N. Y. (2007). Unifying themes in host defence effector polypeptides. Nat. Rev. Microbiol. 5 727–740. 10.1038/nrmicro1744 PubMed DOI

Yount N. Y., Yeaman M. R. (2004). Multidimensional signatures in antimicrobial peptides. Proc. Natl. Acad. Sci. U.S.A. 101 7363–7368. 10.1073/pnas.0401567101 PubMed DOI PMC

Zhang Z. T., Zhu S. Y. (2009). Drosomycin, an essential component of antifungal defence in Drosophila. Insect. Mol. Biol. 18 549–556. 10.1111/j.1365-2583.2009.00907.x PubMed DOI

Zhu S., Gao B., Tytgat J. (2005). Phylogenetic distribution, functional epitopes and evolution of the CSalphabeta superfamily. Cell. Mol. Life Sci. 62 2257–2269. 10.1007/s00018-005-5200-6 PubMed DOI PMC

Zhu S., Peigneur S., Gao B., Umetsu Y., Ohki S., Tytgat J. (2014). Experimental conversion of a defensin into a neurotoxin: implications for origin of toxic function. Mol. Biol. Evol. 31 546–559. 10.1093/molbev/msu038 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...