Are ticks venomous animals?

. 2014 ; 11 () : 47. [epub] 20140701

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid25006341

INTRODUCTION: As an ecological adaptation venoms have evolved independently in several species of Metazoa. As haematophagous arthropods ticks are mainly considered as ectoparasites due to directly feeding on the skin of animal hosts. Ticks are of major importance since they serve as vectors for several diseases affecting humans and livestock animals. Ticks are rarely considered as venomous animals despite that tick saliva contains several protein families present in venomous taxa and that many Ixodida genera can induce paralysis and other types of toxicoses. Tick saliva was previously proposed as a special kind of venom since tick venom is used for blood feeding that counteracts host defense mechanisms. As a result, the present study provides evidence to reconsider the venomous properties of tick saliva. RESULTS: Based on our extensive literature mining and in silico research, we demonstrate that ticks share several similarities with other venomous taxa. Many tick salivary protein families and their previously described functions are homologous to proteins found in scorpion, spider, snake, platypus and bee venoms. This infers that there is a structural and functional convergence between several molecular components in tick saliva and the venoms from other recognized venomous taxa. We also highlight the fact that the immune response against tick saliva and venoms (from recognized venomous taxa) are both dominated by an allergic immunity background. Furthermore, by comparing the major molecular components of human saliva, as an example of a non-venomous animal, with that of ticks we find evidence that ticks resemble more venomous than non-venomous animals. Finally, we introduce our considerations regarding the evolution of venoms in Arachnida. CONCLUSIONS: Taking into account the composition of tick saliva, the venomous functions that ticks have while interacting with their hosts, and the distinguishable differences between human (non-venomous) and tick salivary proteins, we consider that ticks should be referred to as venomous ectoparasites.

Zobrazit více v PubMed

Wikel S. Ticks and tick-borne pathogens at the cutaneous interface: host defenses, tick countermeasures, and a suitable environment for pathogen establishment. Front Microbiol. 2013;4:337. PubMed PMC

Fry BG, Roelants K, Champagne DE, Scheib H, Tyndall JDA, King GF, Nevalainen TJ, Norman JA, Lewis RJ, Norton RS, Renjifo C, de la Vega RC R. The toxicogenomic multiverse: convergent recruitment of proteins into animal venoms. Annu Rev Genomics Hum Genet. 2009;10:483–511. PubMed

Mans BJ, Gothe R, Neitz AW. Biochemical perspectives on paralysis and other forms of toxicoses caused by ticks. Parasitology. 2004;129:S95–S111. PubMed

Estrada-Peña A, Mans BJ. In: Biology of ticks. 2. Sonenshine DE, Roe RM, editor. Volume 2. USA: Oxford University Press; 2013. Tick-induced paralysis and toxicoses; pp. 313–332.

Edlow JA, McGillicuddy DC. Tick paralysis. Infect Dis Clin North Am. 2008;22:397–413. PubMed

Maritz C, Louw AI, Gothe R, Neitz AW. Neuropathogenic properties of Argas (Persicargas) walkerae larval homogenates. Comp Biochem Physiol A Mol Integr Physiol. 2001;128:233–239. PubMed

Motoyashiki T, Tu AT, Azimov DA, Ibragim K. Isolation of anticoagulant from the venom of tick, Boophilus calcaratus, from Uzbekistan. Thromb Res. 2003;110:235–241. PubMed

Fry BG, Roelants J, Norman JA. Tentacles of venom: toxic protein convergence in the kingdom Animalia. J Mol Evol. 2009;68:311–321. PubMed

Regier JC, Shultz JW, Zwick A, Hussey A, Ball B, Wetzer R, Martin JW, Cunningham CW. Arthropod relationships revealed by phylogenomic analysis of nuclear protein-coding sequences. Nature. 2010;463:1079–1083. PubMed

Bagnall BG, Doube BM. The Australian paralysis tick Ixodes holocyclus. Aust Vet J. 1975;51:159–160. PubMed

Ilkiw JE, Turner DM, Howlett CR. Infestation in the dog by the paralysis tick Ixodes holocyclus. I. Clinical and histological findings. Aust Vet J. 1987;64:137–139. PubMed

Pearn J. The clinical features of tick bite. Med J Aust. 1977;2:313–318. PubMed

Barbour AG, Fish D. The biological and social phenomenon of Lyme disease. Science. 1993;260:1610–1616. PubMed

Rydzewski J, Mateus-Pinilla N, Warner RE, Nelson JA, Velat TC. Ixodes scapularis (Acari: Ixodidae) distribution surveys in the Chicago metropolitan region. J Med Entomol. 2012;49:955–959. PubMed

Beati L, Nava S, Burkman EJ, Barros-Battesti DM, Labruna MB, Guglielmone AA, Cáceres AG, Guzmán-Cornejo CM, León R, Durden LA, Faccini JL. Amblyomma cajennense (Fabricius, 1787) (Acari: Ixodidae), the Cayenne tick: phylogeography and evidence for allopatric speciation. BMC Evol Biol. 2013;13:267. PubMed PMC

Stanek G. Pandora's Box: pathogens in Ixodes ricinus ticks in Central Europe. Wien Klin Wochenschr. 2009;121:673–683. PubMed

Gray J, Dantas-Torres F, Estrada-Peña A, Levin M. Systematics and ecology of the brown dog tick, Rhipicephalus sanguineus. Ticks Tick Borne Dis. 2013;4:171–180. PubMed

Klompen JSH, Black WC, Keirans JE, Norris DE. Systematic and biogeography of hard ticks, a total evidence approach. Cladistics. 2000;16:79–102. PubMed

Murrel A, Campbell NJH, Barker SC. A total-evidence phylogeny of ticks provides insights into the evolution of life cycles and biogeography. Mol Phylogenet Evol. 2001;21:244–258. PubMed

Neitz AWH, Howell CJ, Potgieter DJJ. Purification of the toxic component in the oral secretion of the sand tampan Ornithodoros savignyi Audouin (1827) J South Afr Chem Ind. 1969;22:142–149.

Mans BJ, Steinmann CM, Venter JD, Louw AI, Neitz AWH. Pathogenic mechanisms of sand tampan toxicoses induced by the tick, Ornithodoros savignyi. Toxicon. 2002;40:1007–1016. PubMed

Viljoen GJ, Bezuidenhout JD, Oberem PT, Vermeulen NM, Visser L, Gothe R, Neitz AW. Isolation of a neurotoxin from the salivary glands of female Rhipicephalus evertsi evertsi. J Parasitol. 1986;72:865–874. PubMed

Crause JC, van Wyngaardt S, Gothe R, Neitz AW. A shared epitope found in the major paralysis inducing tick species of Africa. Exp Appl Acarol. 1994;18:51–59. PubMed

Negri L, Lattanzi R. Bv8/PK2 and prokineticin receptors: a druggable pronociceptive system. Curr Opin Pharmacol. 2012;12:62–66. PubMed

Hoogstraal H. Argasid and Nuttalliellid ticks as parasites and vectors. Adv Parasitol. 1985;24:135–238. PubMed

Reck J, Marks FS, Guimarães JA, Termignoni C, Martins JR. Epidemiology of Ornithodoros brasiliensis (mouro tick) in the southern Brazilian highlands and the description of human and animal retrospective cases of tick parasitism. Ticks Tick Borne Dis. 2013;4:101–109. PubMed

Wikel SK. In: Handbook of Natural Toxins. Tu AT, editor. Vol. 2. New York: Marcel Dekker; 1984. Tick and mite toxicoses and allergy; pp. 371–396.

Marufu MC, Chimonyo M, Mans BJ, Dzama K. Cutaneous hypersensitivity responses to Rhipicephalus tick larval antigens in pre-sensitized cattle. Ticks Tick Borne Dis. 2013;4:311–316. PubMed

Marufu MC, Dzama K, Chimonyo M. Cellular responses to Rhipicephalus microplus infestations in pre-sensitised cattle with differing phenotypes of infestation. Exp Appl Acarol. 2014;62:241–522. PubMed

Mukai LS, Netto AC, Szabo MP, Bechara GH. Hypersensitivity induced in dogs by nymphal extract of Amblyomma cajennense ticks (Acari:Ixodidae) Ann N Y Acad Sci. 2002;969:184–186. PubMed

Fourie LJ, Kok DJ. Seasonal dynamics of the Karoo paralysis tick (Ixodes rubicundus): a comparative study on Merino and Dorper sheep. Onderstepoort J Vet Res. 1996;63:273–276. PubMed

Patil MM, Walikar BN, Kalyanshettar SS, Patil SV. Tick induced facial palsy. Indian Pediatr. 2012;49:57–58. PubMed

Gürbüz MK, Erdoğan M, Doğan N, Birdane L, Cingi C, Cingi E. Case report: isolated facial paralysis with a tick. Turkiye Parazitol Derg. 2010;34:61–64. PubMed

Venzal JM, Estrada-Peña A, Fernández de Luco D. Effects produced by the feeding of larvae of Ornithodoros aff. puertoricensis (Acari: Argasidae) on laboratory mice. Exp Appl Acarol. 2007;42:217–223. PubMed

Berg EA, Platts-Mills TA, Commins SP. Drug allergens and food-the cetuximab and galactose-α-1,3-galactose story. Ann Allergy Asthma Immunol. 2014;112:97–101. PubMed PMC

Hamsten C, Starkhammar M, Tran TA, Johansson M, Bengtsson U, Ahlén G, Sällberg M, Grönlund H, van Hage M. Identification of galactose-α-1,3-galactose in the gastrointestinal tract of the tick Ixodes ricinus; possible relationship with red meat allergy. Allergy. 2013;68:549–552. PubMed

Palm N, Rosenstein R, Yu S, Schenten D, Florsheim E, Medzhitov R. Bee venom phospholipase A2 induces a primary type 2 response that is dependent on the receptor ST2 and confers protective immunity. Immunity. 2013;39:976–985. PubMed PMC

Marichal T, Starkl P, Reber LL, Kalesnikoff J, Oettgen HC, Tsai M, Metz M, Galli SJ. A beneficial role for immunoglobulin E in host defense against honeybee venom. Immunity. 2013;39:963–975. PubMed PMC

Heatwole H, Poran NS. Resistances of sympatric and allopatric eels to sea snake venoms. Copeia. 1995;1:136–147.

Biardi JE, Coss RG. Rock squirrel (Spermophilus variegatus) blood sera affects proteolytic and hemolytic activities of rattlesnake venoms. Toxicon. 2011;57:323–331. PubMed

Jansa SA, Voss RS. Adaptive evolution of the venom targeted vWF protein in opossums that eat pitvipers. PLoS One. 2011;6:e20997. PubMed PMC

Qian C, Liu Y, Fang Q, Min-Li Y, Liu SS, Ye GY, Li YM. Venom of the ectoparasitoid, Nasonia vitripennis, influences gene expression in Musca domestica hemocytes. Arch Insect Biochem Physiol. 2013;83:211–231. PubMed

Danneels EL, Rivers DB, de Graaf DC. Venom proteins of the parasitoid wasp Nasonia vitripennis: recent discovery of an untapped pharmacopee. Toxins (Basel) 2010;4:494–516. PubMed PMC

Low DH, Sunagar K, Undheim EA, Ali SA, Alagon AC, Ruder T, Jackson TN, Pineda Gonzalez S, King GF, Jones A, Antunes A, Fry BG. Dracula's children: molecular evolution of vampire bat venom. J Proteomics. 2013;89:95–111. PubMed

Francischetti IM, Assumpção TC, Ma D, Li Y, Vicente EC, Uieda W, Ribeiro JM. The "Vampirome": transcriptome and proteome analysis of the principal and accessory submaxillary glands of the vampire bat Desmodus rotundus, a vector of human rabies. J Proteomics. 2013;82:288–319. PubMed PMC

Paesen GC, Adams PL, Nuttall PA, Stuart DL. Tick histamine-binding proteins: lipocalins with a second binding cavity. Biochim Biophys Acta. 2000;1482:92–101. PubMed

Casewell NR, Wüster W, Vonk FJ, Harrison RA, Fry BG. Complex cocktails: the evolutionary novelty of venoms. Trends Ecol Evol. 2013;28:219–229. PubMed

Fontaine A, Diouf I, Bakkali N, Missé D, Pagès F, Fusai T, Rogier C, Almeras L. Implication of haematophagous arthropod salivary proteins in host-vector interactions. Parasit Vectors. 2011;4:187. PubMed PMC

Preston SG, Majtán J, Kouremenou C, Rysnik O, Burger LF, Cabezas Cruz A, Chiong Guzman M, Nunn MA, Paesen GC, Nuttall PA, Austyn JM. Novel immunomodulators from hard ticks selectively reprogramme human dendritic cell responses. PLoS Pathog. 2013;9:e1003450. PubMed PMC

Palm NW, Rosenstein RK, Medzhitov R. Allergic host defences. Nature. 2012;484:465–472. PubMed PMC

Komegae EN, Grund LZ, Lopes-Ferreira M, Lima C. The longevity of Th2 humoral response induced by proteases natterins requires the participation of long-lasting innate-like B cells and plasma cells in spleen. PLoS One. 2013;8:e67135. PubMed PMC

Kashino SS, Resende J, Sacco AM, Rocha C, Proença L, Carvalho WA, Firmino AA, Queiroz R, Benavides M, Gershwin LJ, De Miranda Santos IK. Boophilus microplus: the pattern of bovine immunoglobulin isotype responses to high and low tick infestations. Exp Parasitol. 2005;110:12–21. PubMed

Christe M, Rutti B, Brossard M. Susceptibility of BALB/c mice to nymphs and larvae of Ixodes ricinus after modulation of IgE production with anti-interleukin-4 or anti-interferon-gamma monoclonal antibodies. Parasitol Res. 1998;84:388–393. PubMed

Akahoshi M, Song CH, Piliponsky AM, Metz M, Guzzetta A, Abrink M, Schlenner SM, Feyerabend TB, Rodewald HR, Pejler G, Tsai M, Galli SJ. Mast cell chymase reduces the toxicity of Gila monster venom, scorpion venom, and vasoactive intestinal polypeptide in mice. J Clin Invest. 2011;121:4180–4191. PubMed PMC

Wada T, Ishiwata K, Koseki H, Ishikura T, Ugajin T, Ohnuma N, Obata K, Ishikawa R, Yoshikawa S, Mukai K, Kawano Y, Minegishi Y, Yokozeki H, Watanabe N, Karasuyama H. Selective ablation of basophils in mice reveals their nonredundant role in acquired immunity against ticks. J Clin Invest. 2010;120:2867–2875. PubMed PMC

Dai SX, Zhang AD, Huang JF. Evolution, expansion and expression of the Kunitz/BPTI gene family associated with long-term blood feeding in Ixodes scapularis. BMC Evol Biol. 2012;12:4. PubMed PMC

Anatriello E, Ribeiro J, de Miranda-Santos I, Brandao L, Anderson J, Valenzuela J, Maruyama S, Silva J, Ferreira B. An insight into the sialotranscriptome of the brown dog tick, Rhipicephalus sanguineus. BMC Genomics. 2010;11:450. PubMed PMC

Karim S, Troiano E, Mather TN. Functional genomics tool: gene silencing in Ixodes scapularis eggs and nymphs by electroporated dsRNA. BMC Biotechnol. 2010;10:1. PubMed PMC

Ribeiro JM, Anderson JM, Manoukis NC, Meng Z, Francischetti IM. A further insight into the sialome of the tropical bont tick, Amblyomma variegatum. BMC Genomics. 2011;12:136. PubMed PMC

Francischetti IM, Anderson JM, Manoukis N, Pham VM, Ribeiro JM. An insight into the sialotranscriptome and proteome of the coarse bontlegged tick, Hyalomma marginatum rufipes. J Proteomics. 2011;74:2892–2908. PubMed PMC

Schwarz A, von Reumont BM, Erhart J, Chagas AC, Ribeiro JMC, Kotsyfakis M. De novo Ixodes ricinus salivary gland transcriptome analysis using two next-generation sequencing methodologies. FASEB J. 2013;27:4745–4756. PubMed PMC

Mans BJ, Andersen JF, Francischetti IM, Valenzuela JG, Schwan TG, Pham VM, Garfield MK, Hammer CH, Ribeiro JM. Comparative sialomics between hard and soft ticks: implications for the evolution of blood-feeding behavior. Insect Biochem Mol Biol. 2008;38:42–58. PubMed PMC

Francischetti IMB, Mans BJ, Meng Z, Gudderra N, Veenstra TD, Pham VM, Ribeiro JMC. An insight into the sialome of the soft tick, Ornithodorus parkeri. Insect Biochem Mol Biol. 2008;38:1–21. PubMed PMC

Francischetti IMB, Meng Z, Mans BJ, Gudderra N, Hall M, Veenstra TD, Pham VM, Kotsyfakis M, Ribeiro JMC. An insight into the salivary transcriptome and proteome of the soft tick and vector of epizootic bovine abortion, Ornithodoros coriaceus. J Proteomics. 2008;71:493–512. PubMed PMC

Wang Y, Zhu S. The defensin gene family expansion in the tick Ixodes scapularis. Dev Comp Immunol. 2011;35:1128–1134. PubMed

Rego RO, Kovár V, Kopácek P, Weise C, Man P, Sauman I, Grubhoffer L. The tick plasma lectin, Dorin M, is a fibrinogen-related molecule. Insect Biochem Mol Biol. 2006;36:291–299. PubMed

Schwarz A, Valdés JJ, Kotsyfakis M. The role of cystatins in tick physiology and blood feeding. Ticks Tick Borne Dis. 2012;3:117–127. PubMed PMC

Rodriguez-Valle M, Moolhuijzen P, Piper EK, Weiss O, Vance M, Bellgard M, Lew-Tabor A. Rhipicephalus microplus lipocalins (LRMs): genomic identification and analysis of the bovine immune response using in silico predicted B and T cell epitopes. Int J Parasitol. 2013;43:739–752. PubMed

Mans BJ, Venter JD, Vrey PJ, Louw AI, Neitz AW. Identification of putative proteins involved in granule biogenesis of tick salivary glands. Electrophoresis. 2001;22:1739–1746. PubMed

Mans BJ, Louw AI, Neitz AW. The major tick salivary gland proteins and toxins from the soft tick, Ornithodoros savignyi, are part of the tick Lipocalin family: implications for the origins of tick toxicoses. Mol Biol Evol. 2003;20:1158–1167. PubMed

Mans BJ, Ribeiro JM. Function, mechanism and evolution of the moubatin-clade of soft tick lipocalins. Insect Biochem Mol Biol. 2008;38:841–852. PubMed PMC

Neitz AW, Howell CJ, Potgieter DJ, Bezuidenhout JD. Proteins and free amino acids in the salivary secretion and haemolymph of the tick Amblyomma hebraeum. Onderstepoort J Vet Res. 1978;45:235–240. PubMed

Bowman AS, Gengler CL, Surdick MR, Zhu K, Essenberg RC, Sauer JR, Dillwith JW. A novel phospholipase A2 activity in saliva of the lone star tick, Amblyomma americanum (L.) Exp Parasitol. 1997;87:121–132. PubMed

Louw E, van der Merwe NA, Neitz AWH, Maritz-Olivier C. Evolution of the tissue factor pathway inhibitor-like Kunitz domain-containing protein family in Rhipicephalus microplus. Int J Parasitol. 2013;43:81–94. PubMed

Valdés JJ, Schwarz A, Cabeza de Vaca I, Calvo E, Pedra JHF, Guallar V, Kotsyfakis M. Tryptogalinin is a tick Kunitz serine protease inhibitor with a unique intrinsic disorder. PLoS One. 2013;8:e62562. PubMed PMC

Francischetti IM, Mather TN, Ribeiro JM. Cloning of a salivary gland metalloprotease and characterization of gelatinase and fibrin(ogen)lytic activities in the saliva of the Lyme disease tick vector Ixodes scapularis. Biochem Biophys Res Commun. 2003;305:869–875. PubMed PMC

Ribeiro JM, Alarcon-Chaidez F, Francischetti IM, Mans BJ, Mather TN, Valenzuela JG, Wikel SK. An annotated catalog of salivary gland transcripts from Ixodes scapularis ticks. Insect Biochem Mol Biol. 2006;36:111–129. PubMed

Wong ES, Papenfuss AT, Whittington CM, Warren WC, Belov K. A limited role for gene duplications in the evolution of platypus venom. Mol Biol Evol. 2012;29:167–177. PubMed PMC

Kunitz M, Northrop JH. Isolation from beef pancreas of crystalline trypsinogen, trypsin, a trypsin inhibitor, and an inhibitor-trypsin compound. J Gen Physiol. 1936;19:991–1007. PubMed PMC

Schwarz A, Cabezas-Cruz A, Kopecký J, Valdés JJ. Understanding the evolutionary structural variability and target specificity of tick salivary Kunitz peptides using next generation transcriptome data. BMC Evol Biol. 2014;14:4. PubMed PMC

Mans BJ, Neitz AW. Adaptation of ticks to a blood-feeding environment: evolution from a functional perspective. Insect Biochem Mol Biol. 2004;34:1–17. PubMed

Chen ZY, Hu YT, Yang WS, He YW, Feng J, Wang B, Zhao RM, Ding JP, Cao ZJ, Li WX, Wu YL. Hg1, novel peptide inhibitor specific for Kv1.3 channels from first scorpion Kunitz-type potassium channel toxin family. J Biol Chem. 2012;287:13813–13821. PubMed PMC

Peng K, Lin Y, Liang SP. Nuclear magnetic resonance studies on huwentoxin-XI from the Chinese bird spider Ornithoctonus huwena: 15N labeling and sequence-specific 1H, 15N nuclear magnetic resonance assignments. Acta Biochim Biophys Sin. 2006;38:457–466. PubMed

Selisko B, Garcia C, Becerril B, Delepierre M, Possani LD. An insect-specific toxin from Centruroides noxius Hoffmann. cDNA, primary structure, three-dimensional model and electrostatic surface potentials in comparison with other toxin variants. Eur J Biochem. 1996;242:235–242. PubMed

Paesen GC, Siebold C, Dallas ML, Peers C, Harlos K, Nuttall PA, Nunn MA, Stuart DI, Esnouf RM. An ion-channel modulator from the saliva of the brown ear tick has a highly modified kunitz/BPTI structure. J Mol Biol. 2009;389:734–747. PubMed

Jordan SP, Waxman L, Smith DE, Vlasuk GP. Tick anticoagulant peptide: kinetic analysis of the recombinant inhibitor with blood coagulation factor Xa. Biochemistry. 1990;29:11095–11100. PubMed

van de Locht A, Stubbs MT, Bode W, Friedrich T, Bollschweiler C, Höffken W, Huber R. The ornithodorin-thrombin crystal structure, a key to the TAP enigma? EMBO J. 1996;15:6011–6017. PubMed PMC

Soares TS, Watanabe RM, Tanaka-Azevedo AM, Torquato RJ, Lu S, Figueiredo AC, Pereira PJ, Tanaka AS. Expression and functional characterization of boophilin, a thrombin inhibitor from Rhipicephalus (Boophilus) microplus midgut. Vet Parasitol. 2012;187:521–528. PubMed

Paesen GC, Siebold C, Harlos K, Peacey MF, Nuttall PA, Stuart DI. A tick protein with a modified kunitz fold inhibits human tryptase. J Mol Biol. 2007;368:1172–1186. PubMed

Chen J, Deng M, He Q, Meng E, Jiang L, Liao Z, Rong M, Liang S. Molecular diversity and evolution of cystine knot toxins of the tarantula Chilobrachys jingzhao. Cell Mol Life Sci. 2008;65:2431–2444. PubMed PMC

Richards R, St Pierre L, Trabi M, Johnson LA, de Jersey J, Masci PP, Lavin MF. Cloning and characterisation of novel cystatins from elapid snake venom glands. Biochimie. 2011;93:659–668. PubMed

Veiga AB, Ribeiro JM, Guimarães JA, Francischetti IM. A catalog for the transcripts from the venomous structures of the caterpillar Lonomia obliqua: identification of the proteins potentially involved in the coagulation disorder and hemorrhagic syndrome. Gene. 2005;1:11–27. PubMed PMC

Evans HJ, Barrett AJ. A cystatin-like cysteine proteinase inhibitor from venom of the African puff adder (Bitis arietans) Biochem J. 1987;246:795–797. PubMed PMC

Imamura S, Konnai S, Yamada S, Parizi LF, Githaka N, Vaz I, Murata S, Ohashi K. Identification and partial characterization of a gut Rhipicephalus appendiculatus cystatin. Ticks Tick Borne Dis. 2013;4:138–144. PubMed

Zhou J, Ueda M, Umemiya R, Battsetseg B, Boldbaatar D, Xuan X, Fujisaki K. A secreted cystatin from the tick Haemaphysalis longicornis and its distinct expression patterns in relation to innate immunity. Insect Biochem Mol Biol. 2006;36:527–535. PubMed

Ibelli AR, Hermance M, Kim T, Gonzalez C, Mulenga A. Bioinformatics and expression analyses of the Ixodes scapularis tick cystatin family. Exp Appl Acarol. 2013;60:41–53. PubMed PMC

Gachomo EW, Jimenez-Lopez JC, Kayodé AP, Baba-Moussa L, Kotchoni SO. Structural characterization of plant defensin protein superfamily. Mol Biol Rep. 2012;39:4461–4469. PubMed

van Dijk A, Veldhuizen EJ, Haagsman HP. Avian defensins. Vet Immunol Immunopathol. 2008;124:1–18. PubMed PMC

Zhu S, Peigneur S, Gao B, Umetsu Y, Ohki S, Tytgat J. Experimental conversion of a defensin into a neurotoxin: implications for origin of toxic function. Mol Biol Evol. 2014;31:546–559. PubMed

Jarczak J, Kościuczuk EM, Lisowski P, Strzałkowska N, Jóźwik A, Horbańczuk J, Krzyżewski J, Zwierzchowski L, Bagnicka E. Defensins: natural component of human innate immunity. Hum Immunol. 2013;74:1069–1079. PubMed

Menendez A, Finlay BB. Defensins in the immunology of bacterial infections. Curr Opin Immunol. 2007;19:385–391. PubMed

Zhu S, Gao B, Tytgat J. Phylogenetic distribution, functional epitopes and evolution of the CSalphabeta superfamily. Cell Mol Life Sci. 2005;62:2257–2269. PubMed PMC

Zhu S, Tytgat J. The scorpine family of defensins: gene structure, alternative polyadenylation and fold recognition. Cell Mol Life Sci. 2004;61:1751–1763. PubMed PMC

Feng J, Yu C, Wang M, Li Z, Wu Y, Cao Z, Li W, He X, Han S. Expression and characterization of a novel scorpine-like peptide Ev37, from the scorpion Euscorpiops validus. Protein Expr Purif. 2013;88:127–133. PubMed

Oguiura N, Boni-Mitake M, Affonso R, Zhang G. In vitro antibacterial and hemolytic activities of crotamine, a small basic myotoxin from rattlesnake Crotalus durissus. J Antibiot (Tokyo) 2011;64:327–331. PubMed

Dalla VL, Benato F, Maistro S, Quinzani S, Alibardi L. Bioinformatic and molecular characterization of beta-defensins-like peptides isolated from the green lizard Anolis carolinensis. Dev Comp Immunol. 2012;36:222–229. PubMed

Whittington CM, Papenfuss AT, Bansal P, Torres AM, Wong ES, Deakin JE, Graves T, Alsop A, Schatzkamer K, Kremitzki C, Ponting CP, Temple-Smith P, Warren WC, Kuchel PW, Belov K. Defensins and the convergent evolution of platypus and reptile venom genes. Genome Res. 2008;18:986–994. PubMed PMC

Zhao H, Kong Y, Wang H, Yan T, Feng F, Bian J, Yang Y, Yu H. A defensin-like antimicrobial peptide from the venoms of spider, Ornithoctonus hainana. J Pept Sci. 2011;17:540–544. PubMed

Yamane ES, Bizerra FC, Oliveira EB, Moreira JT, Rajabi M, Nunes GL, de Souza AO, da Silva ID, Yamane T, Karpel RL, Silva PI Jr, Hayashi MA. Unraveling the antifungal activity of a South American rattlesnake toxin crotamine. Biochimie. 2013;95:231–240. PubMed

Ceraul SM, Dreher-Lesnick SM, Gillespie JJ, Rahman MS, Azad AF. New tick defensin isoform and antimicrobial gene expression in response to Rickettsia montanensis challenge. Infect Immun. 2007;75:1973–1983. PubMed PMC

Chrudimská T, Slaninová J, Rudenko N, Růžek D, Grubhoffer L. Functional characterization of two defensin isoforms of the hard tick Ixodes ricinus. Parasit Vectors. 2011;4:63. PubMed PMC

Zhou J, Liao M, Ueda M, Gong H, Xuan X, Fujisaki K. Sequence characterization and expression patterns of two defensin-like antimicrobial peptides from the tick Haemaphysalis longicornis. Peptides. 2007;28:1304–1310. PubMed

Chrudimská T, Chrudimsky´ T, Golovchenko M, Rudenko N, Grubhoffer L. New defensins from hard and soft ticks: similarities, differences, and phylogenetic analyses. Vet Parasitol. 2010;167:298–303. PubMed

Lu X, Che Q, Lv Y, Wang M, Lu Z, Feng F, Liu J, Yu H. A novel defensin-like peptide from salivary glands of the hard tick, Haemaphysalis longicornis. Protein Sci. 2010;19:392–397. PubMed PMC

Fogaça AC, Almeida IC, Eberlin MN, Tanaka AS, Bulet P, Daffre S. Ixodidin, a novel antimicrobial peptide from the hemocytes of the cattle tick Boophilus microplus with inhibitory activity against serine proteinases. Peptides. 2006;27:667–674. PubMed

Zhang H, Zhang W, Wang X, Zhou Y, Wang N, Zhou J. Identification of a cysteine-rich antimicrobial peptide from salivary glands of the tick Rhipicephalus haemaphysaloides. Peptides. 2011;32:441–446. PubMed

Froy O, Gurevitz M. Membrane potential modulators: a thread of scarlet from plants to humans. FASEB J. 1998;12:1793–1796. PubMed

Duda TF, Palumbi SR. Molecular genetics of ecological diversification: duplication and rapid evolution of toxin genes of the venomous gastropod Conus. Proc Natl Acad Sci U S A. 1998;96:6820–6823. PubMed PMC

Terlau H, Olivera BM. Conus venoms: a rich source of novel ion channel-targeted peptides. Physiol Rev. 2004;84:41–68. PubMed

Carrijo-Carvalho LC, Maria DA, Ventura JS, Morais KL, Melo RL, Rodrigues CJ, Chudzinski-Tavassi AM. A lipocalin-derived Peptide modulating fibroblasts and extracellular matrix proteins. J Toxicol. 2012;2012:325250. PubMed PMC

Fry BG, Scheib H, de L M Junqueira de Azevedo I, Silva DA, Casewell NR. Novel transcripts in the maxillary venom glands of advanced snakes. Toxicon. 2012;59:696–708. PubMed

Keller PM, Waxman L, Arnold BA, Schultz LD, Condra C, Connolly TM. Cloning of the cDNA and expression of moubatin, an inhibitor of platelet aggregation. J Biol Chem. 1993;268:5450–5456. PubMed

Nunn MA, Sharma A, Paesen GC, Adamson S, Lissina O, Willis AC, Nuttall PA. Complement inhibitor of C5 activation from the soft tick Ornithodoros moubata. J Immunol. 2005;174:2084–2091. PubMed

Roversi P, Ryffel B, Togbe D, Maillet I, Teixeira M, Ahmat N, Paesen GC, Lissina O, Boland W, Ploss K, Caesar JJ, Leonhartsberger S, Lea SM, Nunn MA. Bifunctional lipocalin ameliorates murine immune complex-induced acute lung injury. J Biol Chem. 2013;288:18789–18802. PubMed PMC

Alvarez FMP, Zannin M, Chudzinski-Tavassi AM. New insight into the mechanism of Lonomia obliqua envenoming: toxin involvement and molecular approach. Pathophysiol Haemost Thromb. 2010;37:1–16. PubMed

Weckesser S, Hilger C, Lentz D, Jakob T. Anaphylactic reactions to bites of the pigeon tick Argas reflexus. Eur J Dermatol. 2010;20:244–245. PubMed

Hilger C, Bessot JC, Hutt N, Grigioni F, De Blay F, Pauli G, Hentges F. IgE-mediated anaphylaxis caused by bites of the pigeon tick Argas reflexus: cloning and expression of the major allergen Arg r 1. J Allergy Clin Immunol. 2005;115:617–622. PubMed

Mans BJ. Tick histamine-binding proteins and related lipocalins: potential as therapeutic agents. Curr Opin Investig Drugs. 2005;6:1131–1135. PubMed

Mans BJ, Ribeiro JM. A novel clade of cysteinyl leukotriene scavengers in soft ticks. Insect Biochem Mol Biol. 2008;38:862–870. PubMed PMC

Burke JE, Dennis EA. Phospholipase A2 biochemistry. Cardiovasc Drugs Ther. 2009;23:49–59. PubMed PMC

Schaloske RH, Dennis EA. The phospholipase A2 superfamily and its group numbering system. Biochim Biophys Acta. 2006;1761:1246–1259. PubMed

Chang HC, Tsai TS, Tsai IH. Functional proteomic approach to discover geographic variations of king cobra venoms from Southeast Asia and China. J Proteomics. 2013;89:141–153. PubMed

Harris JB, Scott-Davey T. Secreted phospholipases A2 of snake venoms: effects on the peripheral neuromuscular system with comments on the role of phospholipases A2 in disorders of the CNS and their uses in industry. Toxins (Basel) 2013;5:2533–2571. PubMed PMC

Zhu K, Bowman AS, Dillwith JW, Sauer JR. Phospholipase A2 activity in salivary glands and saliva of the lone star tick (Acari: Ixodidae) during tick feeding. J Med Entomol. 1998;35:500–504. PubMed

Zhu K, Sauer JR, Bowman AS, Dillwith JW. Identification and characterization of anticoagulant activities in the saliva of the lone star tick, Amblyomma americanum (L.) J Parasitol. 1997;83:38–43. PubMed

Zeidner N, Ullmann A, Sackal C, Dolan M, Dietrich G, Piesman J, Champagne D. A borreliacidal factor in Amblyomma americanum saliva is associated with phospholipase A2 activity. Exp Parasitol. 2009;121:370–375. PubMed

Sampaio SC, Hyslop S, Fontes MR, Prado-Franceschi J, Zambelli VO, Magro AJ, Brigatte P, Gutierrez VP, Cury Y. Crotoxin: novel activities for a classic beta-neurotoxin. Toxicon. 2010;55:1045–1060. PubMed

Noetzel C, Chandra V, Perbandt M, Rajashankar K, Singh T, Aleksiev B, Kalkura N, Genov N, Betzel C. Enzymatic activity and inhibition of the neurotoxic complex vipoxin from the venom of Vipera ammodytes meridionalis. Z Naturforsch C. 2002;57:1078–1083. PubMed

Sousa PC, Brito TS, Freire DS, Ximenes RM, Magalhães PJ, Monteiro HS, Alves RS, Martins AM, Toyama DO, Toyama MH. Vasoconstrictor effect of Africanized honeybee (Apis mellifera L.) venom on rat aorta. J Venom Anim Toxins Incl Trop Dis. 2013;19:24. PubMed PMC

Valdivia HH, Kirby MS, Lederer WJ, Coronado R. Scorpion toxins targeted against the sarcoplasmic reticulum Ca(2+)-release channel of skeletal and cardiac muscle. Proc Natl Acad Sci U S A. 1992;89:12185–12189. PubMed PMC

Vasta GR, Nita-Lazar M, Giomarelli B, Ahmed H, Du S, Cammarata M, Parrinello N, Bianchet MA, Amzel LM. Structural and functional diversity of the lectin repertoire in teleost fish: relevance to innate and adaptive immunity. Dev Comp Immunol. 2011;35:1388–1399. PubMed PMC

Herrera C, Rucavado A, Warrell DA, Gutiérrez JM. Systemic effects induced by the venom of the snake Bothrops caribbaeus in a murine model. Toxicon. 2013;1:19–31. PubMed

Momic T, Cohen G, Reich R, Arlinghaus FT, Eble JA, Marcinkiewicz C, Lazarovici P. Vixapatin (VP12), a c-type lectin-protein from Vipera xantina palestinae venom: characterization as a novel anti-angiogenic compound. Toxins (Basel) 2012;4:862–877. PubMed PMC

Magalhães GS, Junqueira-de-Azevedo IL, Lopes-Ferreira M, Lorenzini DM, Ho PL, Moura-da-Silva AM. Transcriptome analysis of expressed sequence tags from the venom glands of the fish Thalassophryne nattereri. Biochimie. 2006;88:693–699. PubMed

Kopácek P, Hajdusek O, Buresová V, Daffre S. Tick innate immunity. Adv Exp Med Biol. 2010;708:137–162. PubMed

Hajdušek O, Síma R, Ayllón N, Jalovecká M, Perner J, de la Fuente J, Kopáček P. Interaction of the tick immune system with transmitted pathogens. Front Cell Infect Microbiol. 2013;16:26. PubMed PMC

Bautista-Garfias CR, Martínez-Cruz MA, Córdoba-Alva F. Lectin activity from the cattle tick (Boophilus microplus) saliva. Rev Latinoam Microbiol. 1997;39:83–89. PubMed

Rego RO, Hajdusek O, Kovár V, Kopácek P, Grubhoffer L, Hypsa V. Molecular cloning and comparative analysis of fibrinogen-related proteins from the soft tick Ornithodoros moubata and the hard tick Ixodes ricinus. Insect Biochem Mol Biol. 2005;35:991–1004. PubMed

OmPraba G, Chapeaurouge A, Doley R, Devi KR, Padmanaban P, Venkatraman C, Velmurugan D, Lin Q, Kini RM. Identification of a novel family of snake venom proteins Veficolins from Cerberus rynchops using a venom gland transcriptomics and proteomics approach. J Proteome Res. 2010;9:1882–1893. PubMed

Jágr M, Eckhardt A, Pataridis S, Broukal Z, Dušková J, Mikšík I. Proteomics of human teeth and saliva. Physiol Res. 2014;63:S141–S154. PubMed

Loo JA, Yan W, Ramachandran P, Wong DT. Comparative human salivary and plasma proteomes. J Dent Res. 2010;89:1016–1023. PubMed PMC

Walter DE, Proctor HC. Feeding behaviour and phylogeny: observations on early derivative Acari. Exp Appl Acarol. 1998;22:39–50.

Steen NA, Barker SC, Alewood PF. Proteins in the saliva of the Ixodida (ticks): pharmacological features and biological significance. Toxicon. 2006;47:1–20. PubMed

Grimaldi D, Engel MS. Evolution of the Insects. UK: Cambridge University Press; 2005.

Ovchinnikov S, Masta SE. Pseudoscorpion mitochondria show rearranged genes and genome-wide reductions of RNA gene sizes and inferred structures, yet typical nucleotide composition bias. BMC Evol Biol. 2012;12:12–31. PubMed PMC

Murienne J, Harvey MS, Giribet G. First molecular phylogeny of the major clades of Pseudoscorpiones (Arthropoda: Chelicerata) Mol Phylogenet Evol. 2008;49:170–184. PubMed

Mans BJ, de Klerk DG, Pienaar R, Latif AA. The host preferences of Nuttalliella namaqua (Ixodoidea: Nuttalliellidae): a generalist approach to surviving multiple host-switches. Exp Appl Acarol. 2014;62:233–240. PubMed

Randolph SE. Tick ecology: processes and patterns behind the epidemiological risk posed by ixodid ticks as vectors. Parasitol. 2004;129:S37–S65. PubMed

Goddard J. Observations on questing activity of adult Ixodes brunneus Koch (Acari: Ixodidae) in Mississippi. J Parasitol. 2013;99:346–349. PubMed

Bartosik K, Wiśniowski Ł, Buczek A. Questing behavior of Dermacentor reticulatus adults (Acari: Amblyommidae) during diurnal activity periods in eastern Poland. J Med Entomol. 2012;49:859–864. PubMed

Leonovich SA. The main evolutionary trends in sensory organs and questing behavior of parasitiform ticks and mites (Parasitiformes) Parazitol. 2013;47:204–211. PubMed

Foelix RF, Chu-Wang IW, Beck L. Fine structure of tarsal sensory organs in the whip spider Admetus pumilio (Amblypygi, Arachnida) Tissue Cell. 1975;7:331–346. PubMed

Kelley LA, Sternberg MJE. Protein structure prediction on the Web: a case study using the Phyre server. Nat Protocols. 2009;4:363–371. PubMed

Li X, Jacobson MP, Zhu K, Zhao S, Friesner RA. Assignment of polar states for protein amino acid residues using an interaction cluster decomposition algorithm and its application to high resolution protein structure modeling. Proteins Struct Funct Bioinformatics. 2007;66:824–837. PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Environmental and Molecular Drivers of the α-Gal Syndrome

. 2019 ; 10 () : 1210. [epub] 20190531

Antiplasmodial Activity Is an Ancient and Conserved Feature of Tick Defensins

. 2016 ; 7 () : 1682. [epub] 20161024

Modulation of host immunity by tick saliva

. 2015 Oct 14 ; 128 () : 58-68. [epub] 20150717

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace