The immune factors involved in the rapid clearance of bacteria from the midgut of the tick Ixodes ricinus

. 2024 ; 14 () : 1450353. [epub] 20240813

Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39193502

Grantová podpora
Z01 AI000810 Intramural NIH HHS - United States

Ticks are obligate hematophagous arthropods that transmit a wide range of pathogens to humans as well as wild and domestic animals. They also harbor a non-pathogenic microbiota, although our previous study has shown that the diverse bacterial microbiome in the midgut of Ixodes ricinus is quantitatively poor and lacks a core. In artificial infections by capillary feeding of ticks with two model bacteria (Gram-positive Micrococcus luteus and Gram-negative Pantoea sp.), rapid clearance of these microbes from the midgut was observed, indicating the presence of active immune mechanisms in this organ. In the current study, RNA-seq analysis was performed on the midgut of I. ricinus females inoculated with either M. luteus or Pantoea sp. or with sterile water as a control. While no immune-related transcripts were upregulated by microbial inoculation compared to that of the sterile control, capillary feeding itself triggered dramatic transcriptional changes in the tick midgut. Manual curation of the transcriptome from the midgut of unfed I. ricinus females, complemented by the proteomic analysis, revealed the presence of several constitutively expressed putative antimicrobial peptides (AMPs) that are independent of microbial stimulation and are referred to here as 'guard' AMPs. These included two types of midgut-specific defensins, two different domesticated amidase effector 2 (Dae2), microplusin/ricinusin-related molecules, two lysozymes, and two gamma interferon-inducible lysosomal thiol reductases (GILTs). The in vitro antimicrobial activity assays of two synthetic mature defensins, defensin 1 and defensin 8, confirmed their specificity against Gram-positive bacteria showing exceptional potency to inhibit the growth of M. luteus at nanomolar concentrations. The antimicrobial activity of midgut defensins is likely part of a multicomponent system responsible for the rapid clearance of bacteria in the tick midgut. Further studies are needed to evaluate the role of other identified 'guard' AMPs in controlling microorganisms entering the tick midgut.

Zobrazit více v PubMed

Arora G., Tang X., Cui Y., Yang J., Chuang Y. M., Joshi J., et al. . (2024). mosGILT controls innate immunity and germ cell development in Anopheles Gambiae . BMC Genomics 25, 42. doi: 10.1186/s12864-023-09887-0 PubMed DOI PMC

Arunachalam B., Phan U. T., Geuze H. J., Cresswell P. (2000). Enzymatic reduction of disulfide bonds in lysosomes: characterization of a gamma-interferon-inducible lysosomal thiol reductase (GILT). Proc. Natl. Acad. Sci. U.S.A. 97, 745–750. doi: 10.1073/pnas.97.2.745 PubMed DOI PMC

Azambuja P., Garcia E. S., Ratcliffe N. A. (2005). Gut microbiota and parasite transmission by insect vectors. Trends Parasitol. 21, 568–572. doi: 10.1016/j.pt.2005.09.011 PubMed DOI

Bendtsen J. D., Nielsen H., Von Heijne G., Brunak S. (2004). Improved prediction of signal peptides: SignalP 3.0. J. Mol. Biol. 340, 783–795. doi: 10.1016/j.jmb.2004.05.028 PubMed DOI

Bensaoud C., Tenzer S., Poplawski A., Medina J. M., Jmel M. A., Voet H., et al. . (2022). Quantitative proteomics analysis reveals core and variable tick salivary proteins at the tick-vertebrate host interface. Mol. Ecol. 31, 4162–4175. doi: 10.1111/mec.16561 PubMed DOI

Binetruy F., Dupraz M., Buysse M., Duron O. (2019). Surface sterilization methods impact measures of internal microbial diversity in ticks. Parasit Vectors 12, 268. doi: 10.1186/s13071-019-3517-5 PubMed DOI PMC

Cabezas-Cruz A., Tonk M., Bleackley M. R., Valdes J. J., Barrero R. A., Hernandez-Jarguin A., et al. . (2019). Antibacterial and antifungal activity of defensins from the Australian paralysis tick, Ixodes holocyclus . Ticks Tick Borne Dis. 10, 101269. doi: 10.1016/j.ttbdis.2019.101269 PubMed DOI

Caragata E. P., Short S. M. (2022). Vector microbiota and immunity: modulating arthropod susceptibility to vertebrate pathogens. Curr. Opin. Insect Sci. 50, 100875. doi: 10.1016/j.cois.2022.100875 PubMed DOI

Cerqueira De Araujo A., Noël B., Bretaudeau A., Labadie K., Boudet M., Tadrent N., et al. . (2024). Genome sequences of four Ixodes species expands understanding of tick evolution. bioRxiv 2024, 1–69. doi: 10.1101/2024.02.29.581698 DOI

Chou S., Daugherty M. D., Peterson S. B., Biboy J., Yang Y., Jutras B. L., et al. . (2015). Transferred interbacterial antagonism genes augment eukaryotic innate immune function. Nature 518, 98–101. doi: 10.1038/nature13965 PubMed DOI PMC

Chrudimska T., Slaninova J., Rudenko N., Ruzek D., Grubhoffer L. (2011). Functional characterization of two defensin isoforms of the hard tick Ixodes ricinus . Parasit Vectors 4, 63. doi: 10.1186/1756-3305-4-63 PubMed DOI PMC

Cox J., Mann M. (2008). MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372. doi: 10.1038/nbt.1511 PubMed DOI

De La Fuente J., Kocan K. M., Almazan C., Blouin E. F. (2007). RNA interference for the study and genetic manipulation of ticks. Trends Parasitol. 23, 427–433. doi: 10.1016/j.pt.2007.07.002 PubMed DOI

Fogaca A. C., Lorenzini D. M., Kaku L. M., Esteves E., Bulet P., Daffre S. (2004). Cysteine-rich antimicrobial peptides of the cattle tick Boophilus microplus: isolation, structural characterization and tissue expression profile. Dev. Comp. Immunol. 28, 191–200. doi: 10.1016/j.dci.2003.08.001 PubMed DOI

Fogaça A. C., Sousa G., Pavanelo D. B., Esteves E., Martins L. A., Urbanova V., et al. . (2021). Tick immune system: what is known, the interconnections, the gaps, and the challenges. Front. Immunol. 12. doi: 10.3389/fimmu.2021.628054 PubMed DOI PMC

Fu L., Niu B., Zhu Z., Wu S., Li W. (2012). CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28, 3150–3152. doi: 10.1093/bioinformatics/bts565 PubMed DOI PMC

Gilliland C. A., Patel V., Mccormick A. C., Mackett B. M., Vogel K. J. (2023). Using axenic and gnotobiotic insects to examine the role of different microbes on the development and reproduction of the kissing bug Rhodnius prolixus (Hemiptera: Reduviidae). Mol. Ecol. 32, 920–935. doi: 10.1111/mec.16800 PubMed DOI PMC

Grabherr M. G., Haas B. J., Yassour M., Levin J. Z., Thompson D. A., Amit I., et al. . (2011). Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 29, 644–652. doi: 10.1038/nbt.1883 PubMed DOI PMC

Grunclova L., Fouquier H., Hypsa V., Kopacek P. (2003). Lysozyme from the gut of the soft tick Ornithodoros moubata: the sequence, phylogeny and post-feeding regulation. Dev. Comp. Immunol. 27, 651–660. doi: 10.1016/S0145-305X(03)00052-1 PubMed DOI

Guizzo M. G., Dolezelikova K., Neupane S., Frantova H., Hrbatova A., Pafco B., et al. . (2022). Characterization and manipulation of the bacterial community in the midgut of Ixodes ricinus . Parasit Vectors 15, 248. doi: 10.1186/s13071-022-05362-z PubMed DOI PMC

Guizzo M. G., Neupane S., Kucera M., Perner J., Frantova H., Da Silva Vaz I., et al. . (2020). Poor unstable midgut microbiome of hard ticks contrasts with abundant and stable monospecific microbiome in ovaries. Front. Cell Infect. Microbiol. 10. doi: 10.3389/fcimb.2020.00211 PubMed DOI PMC

Hajdusek O., Sima R., Ayllon N., Jalovecka M., Perner J., de la Fuente J., et al. . (2013). Interaction of the tick immune system with transmitted pathogens. Front. Cell Infect. Microbiol. 3. doi: 10.3389/fcimb.2013.00026 PubMed DOI PMC

Harrison R. E., Yang X., Eum J. H., Martinson V. G., Dou X., Valzania L., et al. . (2023). The mosquito Aedes aEgypti requires a gut microbiota for normal fecundity, longevity and vector competence. Commun. Biol. 6, 1154. doi: 10.1038/s42003-023-05545-z PubMed DOI PMC

Hayes B. M., Radkov A. D., Yarza F., Flores S., Kim J., Zhao Z., et al. . (2020). Ticks resist skin commensals with immune factor of bacterial origin. Cell 183, 1562–1571.e1512. doi: 10.1016/j.cell.2020.10.042 PubMed DOI PMC

Kongton K., Mccall K., Phongdara A. (2014). Identification of gamma-interferon-inducible lysosomal thiol reductase (GILT) homologues in the fruit fly Drosophila melanogaster . Dev. Comp. Immunol. 44, 389–396. doi: 10.1016/j.dci.2014.01.007 PubMed DOI

Kopacek P., Hajdusek O., Buresova V., Daffre S. (2010). Tick innate immunity. Adv. Exp. Med. Biol. 708, 137–162. PubMed

Kopacek P., Vogt R., Jindrak L., Weise C., Safarik I. (1999). Purification and characterization of the lysozyme from the gut of the soft tick Ornithodoros moubata . Insect Biochem. Mol. Biol. 29, 989–997. doi: 10.1016/S0965-1748(99)00075-2 PubMed DOI

Kotsyfakis M., Kopacek P., Franta Z., Pedra J. H. F., Ribeiro J. M. C. (2015). Deep sequencing analysis of the ixodes ricinus haemocytome. PloS Negl. Trop. Dis. 9, e0003754. doi: 10.1371/journal.pntd.0003754 PubMed DOI PMC

Kozelkova T., Dycka F., Lu S., Urbanova V., Frantova H., Sojka D., et al. . (2023). Insight into the dynamics of the ixodes ricinus nymphal midgut proteome. Mol. Cell Proteomics 22, 100663. doi: 10.1016/j.mcpro.2023.100663 PubMed DOI PMC

Lai R., Takeuchi H., Lomas L. O., Jonczy J., Rigden D. J., Rees H. H., et al. . (2004). A new type of antimicrobial protein with multiple histidines from the hard tick, Amblyomma hebraeum . FASEB J. 18, 1447–1449. doi: 10.1096/fj.03-1154fje PubMed DOI

Li B., Dewey C. N. (2011). RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinf. 12, 323. doi: 10.1186/1471-2105-12-323 PubMed DOI PMC

Liu M., Liu L., Abbas M. N., Kausar S., Zhang J. W., Ye Z. Z., et al. . (2019). Involvement of gamma interferon inducible lysosomal thiol reductase in the innate immune responses of red swamp crayfish, Procambarus clarkii . Dev. Comp. Immunol. 99, 103405. doi: 10.1016/j.dci.2019.103405 PubMed DOI

Lorenzini D. M., Da Silva P. I., Jr., Fogaca A. C., Bulet P., Daffre S. (2003). Acanthoscurrin: a novel glycine-rich antimicrobial peptide constitutively expressed in the hemocytes of the spider Acanthoscurria gomesiana . Dev. Comp. Immunol. 27, 781–791. doi: 10.1016/S0145-305X(03)00058-2 PubMed DOI

Lu S., Martins L. A., Kotal J., Ribeiro J. M. C., Tirloni L. (2023). A longitudinal transcriptomic analysis from unfed to post-engorgement midguts of adult female Ixodes scapularis . Sci. Rep. 13, 11360. doi: 10.1038/s41598-023-38207-5 PubMed DOI PMC

Lu S., Waldman J., Parizi L. F., Junior I., Tirloni L. (2024). A longitudinal transcriptomic analysis of Rhipicephalus microplus midgut upon feeding. Ticks Tick Borne Dis. 15, 102304. doi: 10.1016/j.ttbdis.2023.102304 PubMed DOI PMC

Maldonado-Ruiz L. P., Neupane S., Park Y., Zurek L. (2021). The bacterial community of the lone star tick (Amblyomma americanum). Parasit Vectors 14, 49. doi: 10.1186/s13071-020-04550-z PubMed DOI PMC

Martins L. A., Malossi C. D., Galletti M., Ribeiro J. M., Fujita A., Esteves E., et al. . (2019). The Transcriptome of the Salivary Glands of Amblyomma aureolatum Reveals the Antimicrobial Peptide Microplusin as an Important Factor for the Tick Protection Against Rickettsia rickettsii Infection. Front. Physiol. 10. doi: 10.3389/fphys.2019.00529 PubMed DOI PMC

Mcfall-Ngai M., Hadfield M. G., Bosch T. C., Carey H. V., Domazet-Loso T., Douglas A. E., et al. . (2013). Animals in a bacterial world, a new imperative for the life sciences. Proc. Natl. Acad. Sci. U.S.A. 110, 3229–3236. doi: 10.1073/pnas.1218525110 PubMed DOI PMC

Pavanelo D. B., Piloto-Sardiñas E., Maitre A., Abuin-Denis L., Kopáček P., Cabezas-Cruz A., et al. . (2023). Arthropod microbiota: shaping pathogen establishment and enabling control. Front. Arachn. Sci. 2. doi: 10.3389/frchs.2023.1297733 DOI

Pavanelo D. B., Schroder N. C. H., Pin Viso N. D., Martins L. A., Malossi C. D., Galletti M., et al. . (2020). Comparative analysis of the midgut microbiota of two natural tick vectors of Rickettsia rickettsii . Dev. Comp. Immunol. 106, 103606. doi: 10.1016/j.dci.2019.103606 PubMed DOI

Perner J., Kropackova S., Kopacek P., Ribeiro J. M. C. (2018). Sialome diversity of ticks revealed by RNAseq of single tick salivary glands. PloS Negl. Trop. Dis. 12, e0006410. doi: 10.1371/journal.pntd.0006410 PubMed DOI PMC

Perner J., Provaznik J., Schrenkova J., Urbanova V., Ribeiro J. M., Kopacek P. (2016). RNA-seq analyses of the midgut from blood- and serum-fed Ixodes ricinus ticks. Sci. Rep. 6, 36695. doi: 10.1038/srep36695 PubMed DOI PMC

Ribeiro J. M., Hartmann D., Bartosova-Sojkova P., Debat H., Moos M., Simek P., et al. . (2023). Blood-feeding adaptations and virome assessment of the poultry red mite Dermanyssus gallinae guided by RNA-seq. Commun. Biol. 6, 517. doi: 10.1038/s42003-023-04907-x PubMed DOI PMC

Ribeiro J. M. C., Mans B. J. (2020). TickSialoFam (TSFam): A database that helps to classify tick salivary proteins, a review on tick salivary protein function and evolution, with considerations on the tick sialome switching phenomenon. Front. Cell Infect. Microbiol. 10. doi: 10.3389/fcimb.2020.00374 PubMed DOI PMC

Robinson M. D., Mccarthy D. J., Smyth G. K. (2010). edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140. doi: 10.1093/bioinformatics/btp616 PubMed DOI PMC

Ross B. D., Hayes B., Radey M. C., Lee X., Josek T., Bjork J., et al. . (2018). Ixodes scapularis does not harbor a stable midgut microbiome. ISME J. 12, 2596–2607. doi: 10.1038/s41396-018-0161-6 PubMed DOI PMC

Rudenko N., Golovchenko M., Edwards M. J., Grubhoffer L. (2005). Differential expression of Ixodes ricinus tick genes induced by blood feeding or Borrelia burgdorferi infection. J. Med. Entomol 42, 36–41. doi: 10.1093/jmedent/42.1.36 PubMed DOI

Saito Y., Konnai S., Yamada S., Imamura S., Nishikado H., Ito T., et al. . (2009). Identification and characterization of antimicrobial peptide, defensin, in the taiga tick, Ixodes persulcatus . Insect Mol. Biol. 18, 531–539. doi: 10.1111/j.1365-2583.2009.00897.x PubMed DOI

Schleicher T. R., Yang J., Freudzon M., Rembisz A., Craft S., Hamilton M., et al. . (2018). A mosquito salivary gland protein partially inhibits Plasmodium sporozoite cell traversal and transmission. Nat. Commun. 9, 2908. doi: 10.1038/s41467-018-05374-3 PubMed DOI PMC

Schwarz A., Von Reumont B. M., Erhart J., Chagas A. C., Ribeiro J. M., Kotsyfakis M. (2013). De novo Ixodes ricinus salivary gland transcriptome analysis using two next-generation sequencing methodologies. FASEB J. 27, 4745–4756. doi: 10.1096/fj.13-232140 PubMed DOI PMC

Seppey M., Manni M., Zdobnov E. M. (2019). BUSCO: assessing genome assembly and annotation completeness. Methods Mol. Biol. 1962, 227–245. doi: 10.1007/978-1-4939-9173-0_14 PubMed DOI

Silva F. D., Rezende C. A., Rossi D. C., Esteves E., Dyszy F. H., Schreier S., et al. . (2009). Structure and mode of action of microplusin, a copper II-chelating antimicrobial peptide from the cattle tick Rhipicephalus (Boophilus) microplus . J. Biol. Chem. 284, 34735–34746. doi: 10.1074/jbc.M109.016410 PubMed DOI PMC

Silva F. D., Rossi D. C., Martinez L. R., Frases S., Fonseca F. L., Campos C. B., et al. . (2011). Effects of microplusin, a copper-chelating antimicrobial peptide, against Cryptococcus neoformans . FEMS Microbiol. Lett. 324, 64–72. doi: 10.1111/fml.2011.324.issue-1 PubMed DOI

Simpson J. T., Wong K., Jackman S. D., Schein J. E., Jones S. J., Birol I. (2009). ABySS: a parallel assembler for short read sequence data. Genome Res. 19, 1117–1123. doi: 10.1101/gr.089532.108 PubMed DOI PMC

Simser J. A., Macaluso K. R., Mulenga A., Azad A. F. (2004). Immune-responsive lysozymes from hemocytes of the American dog tick, Dermacentor variabilis and an embryonic cell line of the Rocky Mountain wood tick, D. andersoni . Insect Biochem. Mol. Biol. 34, 1235–1246. doi: 10.1016/j.ibmb.2004.07.003 PubMed DOI

Sojka D., Franta Z., Horn M., Caffrey C. R., Mares M., Kopacek P. (2013). New insights into the machinery of blood digestion by ticks. Trends Parasitol. 29, 276–285. doi: 10.1016/j.pt.2013.04.002 PubMed DOI

Tanaka T., Kawano S., Nakao S., Umemiya-Shirafuji R., Rahman M. M., Boldbaatar D., et al. . (2010). The identification and characterization of lysozyme from the hard tick Haemaphysalis longicornis . Ticks Tick Borne Dis. 1, 178–185. doi: 10.1016/j.ttbdis.2010.09.001 PubMed DOI

Tonk M., Cabezas-Cruz A., Valdes J. J., Rego R. O., Chrudimska T., Strnad M., et al. . (2014). Defensins from the tick Ixodes scapularis are effective against phytopathogenic fungi and the human bacterial pathogen Listeria grayi . Parasit Vectors 7, 554. doi: 10.1186/s13071-014-0554-y PubMed DOI PMC

Tonk M., Cabezas-Cruz A., Valdes J. J., Rego R. O., Grubhoffer L., Estrada-Pena A., et al. . (2015). Ixodes ricinus defensins attack distantly-related pathogens. Dev. Comp. Immunol. 53, 358–365. doi: 10.1016/j.dci.2015.08.001 PubMed DOI

Tsuji N., Battsetseg B., Boldbaatar D., Miyoshi T., Xuan X., Oliver J. H., Jr., et al. . (2007). Babesial vector tick defensin against Babesia sp. parasites. Infect. Immun. 75, 3633–3640. doi: 10.1128/IAI.00256-07 PubMed DOI PMC

Tyanova S., Temu T., Sinitcyn P., Carlson A., Hein M. Y., Geiger T., et al. . (2016). The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods 13, 731–740. doi: 10.1038/nmeth.3901 PubMed DOI

Urbanova V., Lu S., Kalinova E., Martins L., Kozelkova T., Dycka F., et al. . (2024). From the fat body to the hemolymph: Profiling tick immune and storage proteins through transcriptomics and proteomics. Insect Biochem. Mol. Biol. 165, 104072. doi: 10.1016/j.ibmb.2024.104072 PubMed DOI

Wang J., Gao L., Aksoy S. (2023). Microbiota in disease-transmitting vectors. Nat. Rev. Microbiol. 21, 604–618. doi: 10.1038/s41579-023-00901-6 PubMed DOI

West L. C., Cresswell P. (2013). Expanding roles for GILT in immunity. Curr. Opin. Immunol. 25, 103–108. doi: 10.1016/j.coi.2012.11.006 PubMed DOI PMC

Wu J., Zhou X., Chen Q., Chen Z., Zhang J., Yang L., et al. . (2022). Defensins as a promising class of tick antimicrobial peptides: a scoping review. Infect. Dis. Poverty 11, 71. doi: 10.1186/s40249-022-00996-8 PubMed DOI PMC

Yang J., Schleicher T. R., Dong Y., Park H. B., Lan J., Cresswell P., et al. . (2020). Disruption of mosGILT in Anopheles Gambiae impairs ovarian development and Plasmodium infection. J. Exp. Med. 217, 1–13. doi: 10.1084/jem.20190682 PubMed DOI PMC

Zhou M., Abbas M. N., Kausar S., Jiang C. X., Dai L. S. (2017). Transcriptome profiling of red swamp crayfish (Procambarus clarkii) hepatopancreas in response to lipopolysaccharide (LPS) infection. Fish Shellfish Immunol. 71, 423–433. doi: 10.1016/j.fsi.2017.10.030 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...