Microbial colonization of gypsum: from the fossil record to the present day

. 2024 ; 15 () : 1397437. [epub] 20240820

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid39228380

Microorganisms inhabiting gypsum have been observed in environments that differ greatly in water availability. Gypsum colonized by microorganisms, including cyanobacteria, eukaryotic algae, and diverse heterotrophic communities, occurs in hot, arid or even hyperarid environments, in cold environments of the Antarctic and Arctic zones, and in saline and hypersaline lakes and ponds where gypsum precipitates. Fossilized microbial remnants preserved in gypsum were also reported. Gypsum protects the endolithic microbial communities against excessive insolation and ultraviolet radiation, while allowing photosynthetically active radiation to penetrate through the mineral substrate. We here review the worldwide occurrences of microbially colonized gypsum and the specific properties of gypsum related to its function as a substrate and habitat for microbial life on Earth and possibly beyond. Methods for detecting and characterizing endolithic communities and their biomarkers in gypsum are discussed, including microscopic, spectroscopic, chemical, and molecular biological techniques. The modes of adaptation of different microorganisms to life within gypsum crystals under different environmental conditions are described. Finally, we discuss gypsum deposits as possible targets for the search for microbial life or its remnants beyond Earth, especially on Mars, where sulfate-rich deposits occur, and propose strategies to detect them during space exploration missions.

Zobrazit více v PubMed

Allwood A. C., Burch I. W., Rouchy J. M., Coleman M. (2013). Morphological biosignatures in gypsum: diverse formation processes of Messinian (similar to 6.0 Ma) gypsum stromatolites. Astrobiology 13, 870–886. doi: 10.1089/ast.2013.1021, PMID: PubMed DOI

Andreetto F., Aloisi G., Raad F., Heida H., Flecker R. M., Agiadi K., et al. . (2021). Freshening of the Mediterranean Salt Giant: controversies and certainties around the terminal (upper gypsum and Lago-Mare) phases of the Messinian salinity crisis. Earth Sci. Rev. 216:103577. doi: 10.1016/j.earscirev.2021.103577 DOI

Aref M. A., Mahmoud A., Taj R. J. (2018). Recent evaporite deposition associated with microbial mats, Al-Kharrar supratidal-intertidal sabkha, Rabigh area, Red Sea coastal plain of Saudi Arabia. Facies 64:28. doi: 10.1007/s10347-018-0539-y DOI

Aref M. A., Taj R. J., Mannaa A. A. (2020). Sedimentological implications of microbial mats, gypsum, and halite in Dhahban solar saltwork, Red Sea coast, Saudi Arabia. Facies 66:10. doi: 10.1007/s10347-020-0594-z DOI

Auvray C., Homand F., Sorgi C. (2004). The aging of gypsum in underground mines. Eng. Geol. 74, 183–196. doi: 10.1016/j.enggeo.2004.03.008 DOI

Bąbel M. (2004). Models for evaporite, selenite and gypsum microbialite deposition in ancient saline basins. Acta Geol. Pol. 54, 291–249.

Barbeta A., Jones S. P., Clavé L., Gimeno T. E., Fréjaville B., Wohl S., et al. . (2019). Unexplained hydrogen isotope offsets complicate the identification and quantification of tree water sources in a riparian forest. Hydrol. Earth Syst. Sci. 23, 2129–2146. doi: 10.5194/hess-23-2129-2019 DOI

Barbieri R., Stivaletta N., Marinangeli L., Ori G. G. (2006). Microbial signatures in sabkha evaporite deposits of Chott el Gharsa (Tunisia) and their astrobiological implications. Planet. Space Sci. 54, 726–736. doi: 10.1016/j.pss.2006.04.003 DOI

Benison K. C., Karmanocky F. J., III (2014). Could microorganisms be preserved in Mars gypsum? Insights from terrestrial examples. Geology 42, 615–618. doi: 10.1130/G35542.1 DOI

Bhartia R., Beegle L. W., DeFlores L., Abbey W., Razzell Hollis J., Uckert K. (2021). Perseverance's scanning habitable environments with Raman and luminescence for organics and chemicals (SHERLOC) investigation. Space Sci. Rev. 217:58. doi: 10.1007/s11214-021-00812-z PubMed DOI

Birgel D., Guido A., Liu X., Hinrichs K.-U. (2014). Hypersaline conditions during deposition of the Calcare di base revealed from archaeal di- and tetraether inventories. Org. Geochem. 77, 11–21. doi: 10.1016/j.orggeochem.2014.09.002 DOI

Boison G., Mergel A., Jolkver H., Bothe H. (2004). Bacterial life and dinitrogen fixation at a gypsum rock. Appl. Environ. Microbiol. 70, 7070–7077. doi: 10.1128/AEM.70.12.7070-7077.2004, PMID: PubMed DOI PMC

Bowden S. A., Parnell J. (2007). Intracrystalline lipids within sulfates from the Haughton impact structure - implications for survival of lipids on Mars. Icarus 187, 422–429. doi: 10.1016/j.icarus.2006.10.013 DOI

Briskin M., Schreiber B. C. (1978). Authigenic gypsum in marine sediments. Mar. Geol. 28, 37–49. doi: 10.1016/0025-3227(78)90095-6 DOI

Bultel-Poncé V., Felix-Theodose F., Sarthou C., Ponge J.-F., Bodo B. (2004). New pigments from the terrestrial cyanobacterium Scytonema sp collected on the Mitaraka inselberg, French Guyana. J. Nat. Prod. 67, 678–681. doi: 10.1021/np034031u, PMID: PubMed DOI

Cámara B. (2012). Microbial colonization of gypsum and ignimbrite in the hyperarid region of the Atacama Desert. Doctoral thesis. Universidad Autónoma de Madrid, Madrid.

Cámara B., Souza-Egipsy V., Ascaso C., Artieda O. (2016). Biosignatures and microbial fossils in endolithic microbial communities colonizing ca-sulfate crusts in the Atacama Desert. Chem. Geol. 443, 22–31. doi: 10.1016/j.chemgeo.2016.09.019 DOI

Canfield D. E., Sørensen K. B., Oren A. (2004). Biogeochemistry of a gypsum-encrusted microbial ecosystem. Geobiology 2, 133–150. doi: 10.1111/j.1472-4677.2004.00029.x DOI

Carnevale G., Gennari R., Lozar F., Nataliocchio M. (2019). Living in a deep desiccated Mediterranean Sea: an overview of the Italian fossil record of the Messinian salinity crisis. Boll. Soc. Paleontol. Ital. 58, 109–140. doi: 10.4435/BSPI.2019.04 DOI

Caselle C., Baud P., Kushnir A. R. L., Reuschlé T., Bonetto S. R. L. (2022). Influence of water on deformation and failure of gypsum rock. J. Struct. Geol. 163:104722. doi: 10.1016/j.jsg.2022.104722 DOI

Casero M.-C., Meslier V., DiRuggiero J., Quesada A., Ascaso C., Artieda O. (2021). The composition of endolithic communities in gypcrete is determined by the specific microhabitat architecture. Biogeosciences 18, 993–1007. doi: 10.5194/bg-18-993-2021 DOI

Casero M. C., Meslier V., Diruggiero J., Wierzchos J. (2020). “Atacama Desert endolithic microbiology” in Microbial ecosystems in Central Andes extreme environments. ed. Farías M. E. (Springer Nature: Cham, Switzerland; ), 51–72.

Castaneda I. S., Schouten S. (2011). A review of molecular organic proxies for examining modern and ancient lacustrine environments. Quat. Sci. Rev. 30, 2851–2891. doi: 10.1016/j.quascirev.2011.07.009 DOI

Caumette P. (1993). Ecology and physiology of phototrophic bacteria and sulfate-reducing bacteria in salterns. Experientia 49, 473–481. doi: 10.1007/BF01955148 DOI

Caumette P., Matheron R., Raymond N., Relexans J.-C. (1994). Microbial mats in the hypersaline ponds of Mediterranean salterns (Salins-de-Giraud, France). FEMS Microbiol. Ecol. 13, 273–286. doi: 10.1111/j.1574-6941.1994.tb00074.x DOI

Cereceda P., Larrain H., Osses P., Salvador M. S. (2008). The climate of the coast and fog zone in the Tarapacá Region, Atacama Desert, Chile. Atmos. Res. 87, 301–311. doi: 10.1016/j.atmosres.2007.11.011 DOI

Cheng Z. Y., Xiao L., Wang H. M., Yang H. (2017). Bacterial and archaeal lipids recovered from subsurface evaporites of Dalangtan Playa on the Tibetan Plateau and their astrobiological implications. Astrobiology 17, 1112–1122. doi: 10.1089/ast.2016.1526, PMID: PubMed DOI

Christeleit E. C., Brandon M. T., Zhuang G. S. (2015). Evidence for deep-water deposition of abyssal Mediterranean evaporites during the Messinian salinity crisis. Earth Planet. Sci. Lett. 427, 226–235. doi: 10.1016/j.epsl.2015.06.060 DOI

Christensen P. R., Bandfield J. L., Rogers A. D., Glotch R. T. D., Hamilton V. E., Ruff S. W., et al. . (2008). “Global mineralogy mapped from the Mars global surveyor thermal emission spectrometer” in The Martian surface, composition, mineralogy and physical properties. ed. Bell J. F., III (Cambridge, UK: Cambridge University Press; ), 195–220.

Cipriani M., Dominici R., Costanzo A., D'Antonio M., Guido A. (2021). A Messinian gypsum deposit in the Ionian Forearc Basin (Benestare, Calabria, southern Italy): origin and paleoenvironmental indications. Fortschr. Mineral. 11:1305. doi: 10.3390/min11121305 DOI

Clark B. C., Baird A. K. (1979). Is the Martian lithosphere sulfur rich? J. Geophys. Res. 84, 8395–8403. doi: 10.1029/JB084iB14p08395 DOI

Clark B. C., Morris R. V., McLennan S. M., Gellert R., Jolliff B., Knoll A. H., et al. . (2005). Chemistry and mineralogy of outcrops at Meridiani Planum. Earth Planet. Sci. Lett. 240, 73–94. doi: 10.1016/j.epsl.2005.09.040 DOI

Cloutis E., Applin D., Connell S., Kubanek K., Kuik J., Parkinson A., et al. . (2021). A simulated rover exploration of a long-lived hypersaline spring environment: the east German Creek (MB, Canada) Mars analogue site. Planet. Space Sci. 195:105130. doi: 10.1016/j.pss.2020.105130 DOI

Cockell C. S., McKay C. P., Warren-Rhodes H. G. (2008). Ultraviolet radiation-induced limitation to epilithic microbial growth in arid deserts - Dosimetric experiments in the hyperarid core of the Atacama Desert. J. Photochem. Photobiol. B Biol. 90, 79–87. doi: 10.1016/j.jphotobiol.2007.11.009, PMID: PubMed DOI

Cockell C. S., Osinski G. R., Banerjee N. R., Howard K. T., Gilmour I., Watson J. S., et al. . (2010). The microbe-mineral environment and gypsum neogenesis in a weathered polar evaporite. Geobiology 8, 293–308. doi: 10.1111/j.1472-4669.2010.00240.x, PMID: PubMed DOI

Cody A. M., Cody R. D. (1989a). Gypsum nucleation and crystal morphology in analog saline terrestrial environments. J. Sediment. Petrol. 59, 247–255.

Cody A. M., Cody R. D. (1989b). Evidence for micro-biological induction of {101} Montmartre twinning of gypsum (CaSO4·2H2O). J. Cryst. Growth 98, 721–730. doi: 10.1016/0022-0248(89)90310-2 DOI

Cornée A. (1982). Bactéries des saumures et des sediments des marais salants de Salin-de-Giraud (Sud de la France). Géol. Médit. 9, 369–389. doi: 10.3406/geolm.1982.1216 DOI

Cornée A. (1984). Etude préliminaire des bactéries des saumures et des sédiments des salins de Santa Pola (Espagne). Comparaison avec les marais salants de Salin-de-Giraud (Sud de la France). Rev. Inv. Geol. 38, 109–122.

Cornée A. (1989). Communautés benthiques à cyanobactéries des milieu hypersalés: intérêt géologique. Bull. Soc. Bot. Fr. Actual. Bot. 136, 131–145. doi: 10.1080/01811789.1989.10826922 DOI

Costanzo A., Cipriani M., Feely M., Cianfloge G. (2019). Messinian twinned selenite from the Catanzaro Trough, Calabria, Southern Italy: field, petrographic and fluid inclusion perspectives. Carbonates Evaporites 34, 743–756. doi: 10.1007/s13146-019-00516-0 DOI

Culka A., Jehlička J., Ascaso C., Artieda O. (2017). Raman microspectrometric study of pigments in melanized fungi from the hyperarid Atacama desert gypsum crust. J. Raman Spectrosc. 48, 1487–1493. doi: 10.1002/jrs.5137 DOI

Culka A., Jehlička J., Vandenabeele P., Edwards H. G. M. (2011). The detection of biomarkers in evaporite matrices using a portable Raman instrument under Alpine conditions. Spectrochim. Acta A Mol. Biomol. Spectrosc. 80, 8–13. doi: 10.1016/j.saa.2010.12.020, PMID: PubMed DOI

Culka A., Jehlicka J., Oren A., Rousaki A., Vandenabeele P. (2022). Fast outdoor screening and discrimination of carotenoids of halophilic microorganisms using miniaturized Raman spectrometers. Spectrochim. Acta A Mol. Biomol. Spectrosc. 276:121156. doi: 10.1016/j.saa.2022.121156, PMID: PubMed DOI

Culka A., Jehlička J., Strnad L. (2012). Testing a portable Raman instrument: the detection of biomarkers in gypsum powdered matrix under gypsum crystals. Spectrochim. Acta A. Mol. Biomol. Spectrosc. 86, 347–350. doi: 10.1016/j.saa.2011.10.047 PubMed DOI

Culka A., Osterrothová K., Hutchinson I., Ingley R., McHugh M., Oren A., et al. . (2014). Detection of pigments of halophilic endoliths from gypsum: Raman portable instrument and European Space Agency's prototype analysis. Phil. Trans. R. Soc. A 372:20140203. doi: 10.1098/rsta.2014.0203, PMID: PubMed DOI PMC

De la Puente L., Ferrio J. P., Palacio S. (2022). Disentangling water sources in a gypsum plant community. Gypsum crystallization water is a key source of water for shallow-rooted plants. Ann. Bot. 129, 87–100. doi: 10.1093/aob/mcab107, PMID: PubMed DOI PMC

Dela Pierre F., Natalicchio M., Ferrando S., Giustetto R. (2015). Are the large filamentous microfossils preserved in Messinian gypsum colorless sulfide-oxidizing bacteria? Geology 43, 855–858. doi: 10.1130/G37018.1 DOI

Demaret L., Hutchinson I. B., Eppe G., Malherbe C. (2020). Analytical strategy for representative subsampling of Raman-based robotic planetary exploration missions: the case study of solid dispersions of β-carotene and L-cysteine in gypsum. J. Raman Spectrosc. 51, 1624–1635. doi: 10.1002/jrs.5705 DOI

Diloreto Z., Ahmad M. S., Al-Kuwari H. A. S., Sadooni F., Bontognali T. R. R., Dittrich M. (2023). Raman spectroscopic and microbial study of biofilms hosted gypsum deposits in the hypersaline wetlands: Astrobiological perspective. Astrobiology 23, 991–1005. doi: 10.1089/ast.2023.0003, PMID: PubMed DOI

DiRuggiero J., Wierzchos J., Robinson C. K., Souterre T., Ravel J., Artieda O. (2013). Microbial colonization of chasmoendolithic habitats in the hyper-arid zone of the Atacama Desert. Biogeosciences 10, 2439–2450. doi: 10.5194/bg-10-2439-2013 DOI

Dong H. L., Rech J. A., Jiang H. C., Sun H. J., Buck B. J. (2007). Endolithic cyanobacteria in soil gypsum: occurrences in Atacama (Chile), Mojave (United States), and Al-Jafr Basin (Jordan) deserts. J. Geophys. Res. Biogeosci. 112:G02030. doi: 10.1029/2006JG000385 DOI

Douchi D., Si Larbi G., Fel B., Bonnanfant M., Louwagie M., Jouhet J., et al. . (2023). Dryland endolithic Chroococcidiopsis and temperate fresh water Synechocystis have distinct membrane lipid and photosynthesis acclimation strategies upon desiccation and temperature increase. Plant Cell Physiol. 65, 939–957. doi: 10.1093/pcp/pcad139, PMID: PubMed DOI

Douglas S. (2004). Microbial biosignatures in evaporite deposits: evidence from Death Valley, California. Planet. Space Sci. 52, 223–227. doi: 10.1016/j.pss.2003.08.005 DOI

Edwards H. G. M., Jorge Villar S. E., Parnell J., Cockell C. S., Lee P. (2005a). Raman spectroscopic analysis of cyanobacterial gypsum halotrophs and relevance for sulfate deposits on Mars. Analyst 130, 917–923. doi: 10.1039/b503533c, PMID: PubMed DOI

Edwards H. G. M., Jorge Villar S. E., Pullan D., Hargreaves M. (2007). Morphological biosignatures from relict fossilised sedimentary geological specimens: a Raman spectroscopic study. J. Raman Spectrosc. 38, 1352–1361. doi: 10.1002/jrs.1775 DOI

Edwards H. G. M., Mohsin M. A., Sadooni F. N., Nik Hassan N. F., Munshi T. (2006). Life in the sabkha: Raman spectroscopy of halotrophic extremophiles of relevance to planetary exploration. Anal. Bioanal. Chem. 385, 46–56. doi: 10.1007/s00216-006-0396-3 PubMed DOI

Edwards H. G. M., Moody C. D., Jorge Villar S. E., Wynn-Williams D. D. (2005b). Raman spectroscopic detection of key biomarkers of cyanobacteria and lichen symbiosis in extreme Antarctic habitats: evaluation for Mars Lander missions. Icarus 174, 560–571. doi: 10.1016/j.icarus.2004.07.029 DOI

Edwards H. G. M., Němečková K., Jehlička J., Culka A. (2023). Scytonin in gypsum endolithic colonisation: first Raman spectroscopic detection of a new spectral biosignature for terrestrial astrobiological analogues and for exobiological mission database extension. Spectrochim. Acta A Mol. Biomol. Spectrosc. 292:122406. doi: 10.1016/j.saa.2023.122406, PMID: PubMed DOI

Ertekin E., Meslier V., Browning A., Treadgold J. (2021). Rock structure drives the taxonomic and functional diversity of endolithic microbial communities in extreme environments. Environ. Microbiol. 23, 3937–3956. doi: 10.1111/1462-2920.15287, PMID: PubMed DOI

Fairén A. G., Davila A. F., Lim D., Bramall N. (2010). Astrobiology through the ages of Mars: the study of terrestrial analogues to understand the habitability of Mars. Astrobiology 10, 821–843. doi: 10.1089/ast.2009.0440 PubMed DOI

Farías M. E., Contreras M., Rasuk M. C., Kurth D., Flores M. R., Poiré D. G., et al. . (2014). Characterization of bacterial diversity associated to microbial mats, gypsum evaporites, and carbonate microbialites in thalassic wetlands: Tebenquiche and La Brava at Salar de Atacama, Chile. Extremophiles 18, 311–329. doi: 10.1007/s00792-013-0617-6, PMID: PubMed DOI

Farías M. E., Villafañe P. G., Lencina A. I. (2020). “Integral prospection of Andean microbial ecosystem project” in Microbial ecosystems in Central Andes extreme environments. ed. Farías M. E. (Cham, Switzerland: Springer International Publishing; ), 245–259.

Farley K. A., Williford K. H., Stack K. M., Bhartia R., Chen A., de la Torre M., et al. . (2020). Mars 2020 mission overview. Space Sci. Rev. 216:142. doi: 10.1007/s11214-020-00762-y DOI

Fishbaugh K. E., Hvidberg C. S. (2006). Martian north polar layered deposits stratigraphy: implications for accumulation rates and flow. J. Geophys. Res. Planets 111:E06012. doi: 10.1029/2005JE002571 DOI

Garcia-Ruiz J. M., Villasuso R., Ayora C., Canals A. (2007). Formation of natural gypsum megacrystals in Naica, Mexico. Geology 35, 327–330. doi: 10.1130/G23393A.1 DOI

Gorbushina (2007). A. Life on the rocks. Environ. Microbiol. 9, 1613–1631. doi: 10.1111/j.1462-2920.2007.01301.x PubMed DOI

Grotzinger J. P., Arvidson R. E., Bell J. F., III, Calvin W. M. (2005). Stratigraphy and sedimentology of a dry to wet eplian depositional system, burns formation, Meridiani Planum, Mars. Earth Planet. Sci. Lett. 240, 11–72. doi: 10.1016/j.epsl.2005.09.039 DOI

Haffert L., Haeckel M. (2019). Quantification of non-ideal effects on diagenetic processes along extreme salinity gradients at the Mercator mud volcano in the Gulf of Cadiz. Geochim. Cosmochim. Acta 244, 366–382. doi: 10.1016/j.gca.2018.09.038 DOI

Harris C. M., Maclay M. T., Lutz K. A., Vinitra N., Ortega Dominguez N. A., Leavitt W. D. (2022). Remote and in-situ characterization of Mars analogs: coupling scales to improve the search for microbial signatures on Mars. Front. Astron. Space Sci. 9:849078. doi: 10.3389/fspas.2022.849078 DOI

Huang W., Ertekin E., Wang T., Kisailus D. (2020). Mechanism of water extraction from gypsum rock by desert colonizing microorganisms. Proc. Natl. Acad. Sci. USA 117, 10681–10687. doi: 10.1073/pnas.2001613117, PMID: PubMed DOI PMC

Huang W., Wang T., Perez-Fernandez C., DiRuggiero J., Kisailus D. (2022). Iron acquisition and mineral transformation by cyanobacteria living in extreme environments. Materials Today Bio. 17:100493. doi: 10.1016/j.mtbio.2022.100493, PMID: PubMed DOI PMC

Hughes K. A., Lawley B. (2003). A novel Antarctic microbial endolithic community within gypsum crusts. Environ. Microbiol. 5, 555–565. doi: 10.1046/j.1462-2920.2003.00439.x, PMID: PubMed DOI

Huguen C., Foucher J. P., Mascle J. (2009). Menes caldera, a highly active site of brine seepage in the Eastern Mediterranean Sea: "in situ" observations from the NAUTINIL expedition (2003). Mar. Geol. 261, 138–152. doi: 10.1016/j.margeo.2009.02.005 DOI

Ionescu D., Lipski A., Altendorf K. And Oren A. (2007). Characterization of the endoevaporitic microbial communities in a hypersaline gypsum crust by fatty acid analysis. Hydrobiologia 576, 15–26. doi: 10.1007/s10750-006-0289-7 DOI

Isaji Y., Yoshimura T., Kuroda J., Tamenori Y., Jiménez-Espejo F. J., Lugli S. (2019). Biomarker records and mineral compositions of the Messinian halite and K-Mg salts from Sicily. Progr. Earth Planet. Sci 6:60. doi: 10.1186/s40645-019-0306-x DOI

Jafarzadeh A. A., Burnham C. P. (1992). Gypsum crystals in soils. Eur. J. Soil Sci. 43, 409–420. doi: 10.1111/j.1365-2389.1992.tb00147.x DOI

Jahnke L. L., Turk-Kubo K. A., Parenteau M. N., Green S. J., Kubo M. D. Y., Vogel M., et al. . (2014). Molecular and lipid biomarker analysis of a gypsum-hosted endoevaporitic microbial community. Geobiology 12, 62–82. doi: 10.1111/gbi.12068, PMID: PubMed DOI

Jehlička J., Culka A. (2022). Critical evaluation of portable Raman spectrometers: from rock outcrops and planetary analogs to cultural heritage-a review. Anal. Chim. Acta 1209:339027. doi: 10.1016/j.aca.2021.339027 PubMed DOI

Jehlička J., Culka A., Mana L., Oren A. (2018). Using a portable Raman spectrometer to detect carotenoids of halophilic prokaryotes in synthetic inclusions in NaCl, KCl, and sulfates. Anal. Bioanal. Chem. 410, 4437–4443. doi: 10.1007/s00216-018-1098-3, PMID: PubMed DOI

Jehlička J., Culka A., Mareš J. (2020). Raman spectroscopic screening of cyanobacterial chasmoliths from crystalline gypsum—the Messinian crisis sediments from southern Sicily. J. Raman Spectrosc. 51, 1802–1812. doi: 10.1002/jrs.5671 DOI

Jehlička J., Culka A., Němečková K., Mareš J. (2023). Using Raman spectroscopy to detect scytonemin of epiliths and endoliths from marble, serpentinite and gypsum. J. Raman Spectrosc. 54, 1280–1296. doi: 10.1002/jrs.6514 DOI

Jehlička J., Edwards H. G. M., Oren A. (2014). Raman spectroscopy of microbial pigments. Appl. Environ. Microbiol. 80, 3286–3295. doi: 10.1128/AEM.00699-14, PMID: PubMed DOI PMC

Jehlička J., Oren A. (2013). Use of a handheld Raman spectrometer for fast screening of microbial pigments in cultures of halophilic microorganisms and in microbial communities in hypersaline environments in nature. J. Raman Spectrosc. 44, 1285–1291. doi: 10.1002/jrs.4362 DOI

Jorge Villar S. E., Edwards H. G. M., Cockell C. S. (2005a). Raman spectroscopy of endoliths from Antarctic cold desert environments. Analyst 130, 156–162. doi: 10.1039/B410854J, PMID: PubMed DOI

Jorge Villar S. E., Edwards H. G. M., Worland M. R. (2005b). Comparative evaluation of Raman spectroscopy at different wavelengths for extremophile exemplars. Orig. Life Evol. Biosph. 35, 489–506. doi: 10.1007/s11084-005-3528-4, PMID: PubMed DOI

Kah L. C., Stack K. M., Eigenbrode J. L., Yingst A., Edgett K. S. (2018). Syndepositional precipitation of calcium sulfate in Gale crater, Mars. Terra Nova 30, 431–439. doi: 10.1111/ter.12359 DOI

Kasprzyk A., Jasińska B. (1998). Isotopic composition of the crystallization water of gypsum in the Badenian of the northern Carpathian Foredeep: a case study from the cores Przyborów 1 and Strzegom 143. Geol. Quart. 42:10.

Kedar L., Kashman Y., Oren A. (2002). Mycosporine-2-glycine is the major mycosporine-like amino acid in a unicellular cyanobacterium (Euhalothece sp.) isolated from a gypsum crust in a hypersaline saltern pond. FEMS Microbiol. Lett. 208, 233–237. doi: 10.1111/j.1574-6968.2002.tb11087.x, PMID: PubMed DOI

Lara Y. J., McCann A., Malherbe C., François C., Demoulin C. F., Sforna M. C., et al. . (2022). Characterization of the halochromic gloeocapsin pigment, a cyanobacterial biosignature for paleobiology and astrobiology. Astrobiology 22, 735–754. doi: 10.1089/ast.2021.0061, PMID: PubMed DOI

López-Lozano N. E., Eguiarte L. E., Bonilla-Rosso G., García-Oliva F., Martínez-Piedragil C., Rooks C., et al. . (2012). Bacterial communities and the nitrogen cycle in the gypsum soils of Cuatro Ciéngas Basin, Coahuila: a Mars analogue. Astrobiology 12, 699–709. doi: 10.1089/ast.2012.0840, PMID: PubMed DOI PMC

Lugli S., Manzi V., Roveri M. B., Schreiber C. (2010). The primary lower gypsum in the Mediterranean: a new facies interpretation for the first stage of the Messinian salinity crisis. Paleogeogr. Palaeoclimat. Palaeoecol. 297, 83–99. doi: 10.1016/j.palaeo.2010.07.017 DOI

Malherbe C., Hutchinson I. B., McHugh M., Ingley R., Jehlička J., Edwards H. G. M. (2017). Accurate differentiation of carotenoid pigments using flight representative Raman spectrometers. Astrobiology 17, 351–362. doi: 10.1089/ast.2016.1547, PMID: PubMed DOI

Marshall C. P., Carter E. A., Leuko S., Javaux E. J. (2006). Vibrational spectroscopy of extant and fossil microbes: relevance for the astrobiological exploration of Mars. Vib. Spectrosc. 41, 182–189. doi: 10.1016/j.vibspec.2006.01.008 DOI

Martinez-Frias J., Amaral G., Vázquez L. (2006). Astrobiological significance of minerals on Mars surface environment. Rev. Environ. Sci. Biotechnol. 5, 219–231. doi: 10.1007/978-1-4020-6285-8_4 DOI

McGonigle J. M., Bernau J. A., Bowen B. B., Brazelton E. J. (2019). Robust archaeal and bacterial communities inhabit shallow subsurface sediments of the Bonneville salt flats. Clin. Vaccine Immunol. 4, e00378–e00319. doi: 10.1128/mSphere.00378-19, PMID: PubMed DOI PMC

McKay C. P., Friedmann E. I., Gomez-Silva B., Cáceres-Villanueva L., Andersen D. T., Landheim R. (2003). Temperature and moisture conditions for life in the of observations including the El Nino of 1997–1998. Astrobiology 3, 393–406. doi: 10.1089/153110703769016460, PMID: PubMed DOI

Meslier V., Casero M. C., Dailey M., Wierzchos J., Ascaso C., Artieda O., et al. . (2018). Fundamental drivers for endolithic microbial community assemblies in the hyperarid Atacama Desert. Environ. Microbiol. 20, 1765–1781. doi: 10.1111/1462-2920.14106, PMID: PubMed DOI

Natalicchio M., Birgel D., Dela Pierre F., Ziegenbalg S., Hoffmann-Sell L., Gier S., et al. . (2021b). Messinian bottom-grown selenitic gypsum: an archive of microbial life. Geobiology 20, 3–21. doi: 10.1111/gbi.12464, PMID: PubMed DOI

Natalicchio M., Birgel D., Peckmann J., Lozar F., Carnevale G., Liu X., et al. . (2017). An archaeal biomarker record of paleoenvironmental change across the onset of the Messinian salinity crisis in the absence of evaporites (Piedmont Basin, Italy). Org. Geochem. 113, 242–253. doi: 10.1016/j.orggeochem.2017.08.014 DOI

Natalicchio M., Pellegrino L., Clari P., Pastero L. (2021a). Gypsum lithofacies and stratigraphic architecture of a Messinian marginal basin (Piedmont Basin, NW Italy). Sediment. Geol. 425:106009. doi: 10.1016/j.sedgeo.2021.106009 DOI

Němečková K., Culka A., Jehlička J. (2022). Detecting pigments from gypsum endoliths using Raman spectroscopy: from field prospection to laboratory studies. J. Raman Spectrosc. 53, 630–644. doi: 10.1002/jrs.6144 DOI

Němečková K., Culka A., Němec I., Edwards H. G. M., Mareš J., Jehlička J. (2021). Raman spectroscopic search for scytonemin and gloeocapsin in endolithic colonizations in large gypsum crystals. J. Raman Spectrosc. 52, 2633–2647. doi: 10.1002/jrs.6186 DOI

Němečková K., Jehlička J., Culka A. (2020). Fast screening of carotenoids of gypsum endoliths using portable Raman spectrometer (Messinian gypsum, Sicily). J. Raman Spectrosc. 51, 1127–1137. doi: 10.1002/jrs.5891 DOI

Němečková K., Mareš J., Prochazková L., Culka A., Košek F., Wierzchos J., et al. . (2023). Gypsum endolithic phototrophs under moderate climate (southern Sicily): their diversity and pigment composition. Front. Microbiol. 14:1175066. doi: 10.3389/fmicb.2023.1175066, PMID: PubMed DOI PMC

Nimis P. L., Poelt J., Tretiach M. (1996). Lichens from the Gypsum Park of the Northern Apennines (Italy). Cryptogam. Mycol. 17, 67–82.

Oren A. (1997). Mycosporine-like amino acids as osmotic solutes in a community of halophilic cyanobacteria. Geomicrobiol J. 14, 231–240. doi: 10.1080/01490459709378046 DOI

Oren A. (2009). Saltern evaporation ponds as model systems for the study of primary production processes under hypersaline conditions. Aquat. Microb. Ecol. 56, 193–204. doi: 10.3354/ame01297 DOI

Oren A., Elevi Bardavid R., Kandel N., Aizenshtat Z., Jehlicka J. (2013). Glycine betaine is the main organic osmotic solute in a stratified microbial community in a hypersaline evaporitic gypsum crust. Extremophiles 17, 445–451. doi: 10.1007/s00792-013-0522-z, PMID: PubMed DOI

Oren A., Ionescu D., Lipski A., Altendorf K. (2005). Fatty acid analysis of a layered community of cyanobacteria developing in a hypersaline gypsum crust. Algol. Stud. 117, 339–347. doi: 10.1127/1864-1318/2005/0117-0339 DOI

Oren A., Kühl M., Karsten U. (1995). An endoevaporitic microbial mat within a gypsum crust: zonation of phototrophs, photopigments, and light penetration. Mar. Ecol. Prog. Ser. 128, 151–159. doi: 10.3354/meps128151 DOI

Oren A., Sørensen K. B., Canfield D. E., Teske A. P., Ionescu D., Lipski A., et al. . (2009). Microbial communities and processes within a hypersaline gypsum crust in a saltern evaporation pond (Eilat, Israel). Hydrobiologia 626, 15–26. doi: 10.1007/s10750-009-9734-8 DOI

Ortí Cabo F., Puejo Mur J. J., Truc G. (1984). Las salinas maritimas de Santa Pola (Alicante, España). Breve introducción al estudio de un medio natural controlado de sedimentación evaporitica somera. Rev. Inv. Geol. 38, 9–29.

Ossorio M., Van Driessche A. E. S., Pérez P., García-Ruiz J. M. (2014). The gypsum-anhydrite paradox revisited. Chem. Geol. 386, 16–21. doi: 10.1016/j.chemgeo.2014.07.026 DOI

Osterloo M. M., Hamilton V. E., Bandfield J. L. (2008). Chloride-bearing materials in the southern highlands of Mars. Science 319, 1651–1654. doi: 10.1126/science.1150690, PMID: PubMed DOI

Osterrothová K., Jehlička J. (2011). Feasibility of Raman microspectroscopic identification of biomarkers through gypsum crystals. Spectrochim. Acta A Mol. Biomol. Spectrosc. 80, 96–101. doi: 10.1016/j.saa.2010.12.085, PMID: PubMed DOI

Palacio S., Azorín J., Montserrat-Martí G., Ferrio J. P. (2014). The crystallization water of gypsum rocks is a relevant water source for plants. Nat. Commun. 5:4660. doi: 10.1038/ncomms5660, PMID: PubMed DOI

Panieri G., Lugli S., Manzi V., Palinska K. A., Roveri M. (2008). Microbial communities in Messinian evaporite deposits of the Vena del Gesso (northern Apennines, Italy). Stratigraphy 5, 343–352. doi: 10.29041/strat.05.3.09 DOI

Panieri G., Lugli S., Manzi V., Roveri M., Schreiber B. C., Palinska K. A. (2010). Ribosomal RNA gene fragments from fossilized cyanobacteria identified in primary gypsum from the late Miocene, Italy. Geobiology 8, 101–111. doi: 10.1111/j.1472-4669.2009.00230.x, PMID: PubMed DOI

Parnell J., Lee P., Cockell C. S., Osinski G. R. (2004). Microbial colonization in impact-generated hydrothermal sulphate deposits, Haughton impact structure, and implications for sulphates on Mars. Int. J. Astrobiol. 3, 247–256. doi: 10.1017/S1473550404001995 DOI

Pellegrino L., Natalicchio M., Abe K., Jordan R. W., Favero-Longo S. E., Ferrando S., et al. . (2021). Tiny, glassy, and rapidly trapped: the nano-sized planktic diatoms in Messinian (late Miocene) gypsum. Geology 49, 1369–1374. doi: 10.1130/G49342.1 DOI

Pirlet H., Wehrmann L. M., Brunner B., Frank N., Dewanckele J., Van Rooij D., et al. . (2010). Diagenetic formation of gypsum and dolomite in a cold-water coral mound in the Porcupine Seabight, off Ireland. Sedimentology 57, 786–805. doi: 10.1111/j.1365-3091.2009.01119.x DOI

Poca M., Coomans O., Urcelay C., Zeballos S. R., Bodé S., Boeckx P. (2019). Isotope fractionation during root water uptake by Acacia caven is enhanced by arbuscular mycorrhizas. Plant Soil 441, 485–497. doi: 10.1007/s11104-019-04139-1 DOI

Preston L. J., Barcenilla R., Dartnell L. R., Kucukkilic-Stephens E., Olsson-Francis K. (2020). Infrared spectroscopic detection of biosignatures at Lake Tirez, Spain: implications for Mars. Astrobiology 20, 15–25. doi: 10.1089/ast.2019.2106, PMID: PubMed DOI PMC

Proteau P. J., Gerwick W. H., Garcia-Pichel F., Castenholz R. (1993). The structure of scytonemin, an ultraviolet sunscreen pigment from the sheaths of cyanobacteria. Experientia 49, 825–829. doi: 10.1007/BF01923559, PMID: PubMed DOI

Rapin W., Ehlmann B. L., Dromart G., Schieber J., Thomas N. H., Fischer W. W., et al. . (2019). An interval of high salinity in ancient Gale crater lake on Mars. Nat. Geosci. 12, 889–895. doi: 10.1038/s41561-019-0458-8 DOI

Rasuk M. C., Kurth D., Flores M. R., Contreras M., Novoa F., Poire D., et al. . (2014). Microbial characterization of microbial ecosystems associated to evaporites domes of gypsum in Salar de Llamara in Atacama Desert. Microb. Ecol. 68, 483–494. doi: 10.1007/s00248-014-0431-4, PMID: PubMed DOI

Rhind T., Ronholm J., Berg B., Mann P., Applin D., Stromberg J., et al. . (2014). Gypsum-hosted endolithic communities of the Lake St. Martin impact crater, Manitoba, Canada: characterization, detectability, and implications for Mars. Int. J. Astrobiol. 13, 366–377. doi: 10.1017/S1473550414000378 DOI

Rouchy J. M., Monty C. L. V. (1981). “Stromatolites and cryptoalgal laminites associated with Messinian gypsum in Cyprus” in Phanerozoic Stromatolites. ed. Monty C. L. V. (Berlin: Springer; ), 155–180.

Rouchy J. M., Monty C. (2000). “Gypsum microbial sediments: neogene and modern examples” in Microbial sediments. eds. Riding R. E., Awramik S. M. (Berlin: Heidelberg: Springer; ), 209–216.

Rull F., Maurice F., Hutchinson I., Moral A., Perez C., Diaz C., et al. . (2017). The Raman laser spectrometer for the ExoMars Rover Mission to Mars. Astrobiology 17, 627–654. doi: 10.1089/ast.2016.1567 DOI

Russell N. C., Edwards H. G. M., Wynn-Williams D. D. (1998). FT-Raman spectroscopic analysis of endolithic microbial communities from Beacon sandstone in Victoria Land, Antarctica. Antarct. Sci. 10, 63–74. doi: 10.1017/S0954102098000091 DOI

Sabino M., Dela Pierre F., Natalicchio M., Birgel D., Gier S., Peckmann J. (2021). The response of water column and sedimentary environments to the advent of the Messinian salinity crisis: insights from an onshore deep-water section (Govone, NW Italy). Geol. Mag. 158, 825–841. doi: 10.1017/S0016756820000874 DOI

Sabino M., Schefuss E., Natalicchio M., Dela Pierre F., Birgel D., Bortels D., et al. . (2020). Climatic and hydrologic variability in the northern Mediterranean across the onset of the Messinian salinity crisis. Paleogeogr. Paleoclimatol. Paleoecol. 545:109632. doi: 10.1016/j.palaeo.2020.109632 DOI

Scheller E. L., Hollis J. R., Cardarelli E. L., Steele A., Beegle L. W., Bhartia R., et al. . (2022). Aqueous alteration processes in Jezero crater, Mars-implications for organic geochemistry. Science 378, 1105–1110. doi: 10.1126/science.abo5204, PMID: PubMed DOI

Schopf J. W., Farmer J. D., Foster I. S., Kudryavtsev A. B., Gallardo V. A., Espinoza C. (2012). Gypsum-permineralized microfossils and their relevance to the search for life on Mars. Astrobiology 12, 619–633. doi: 10.1089/ast.2012.0827, PMID: PubMed DOI

Schreiber B. C., Friedman G. M., Decima A., Schreiber E. (1976). Depositional environments of upper Miocene (Messinian) evaporite deposits of three Sicilian basins. Sedimentology 23, 729–760. doi: 10.1111/j.1365-3091.1976.tb00107.x DOI

Schulze-Makuch D., Lipus D., Arens F. L., Baque M., Bornemann T. L. V., de Vera J. P., et al. . (2021). Microbial hotspots in lithic microhabitats inferred from DNA fractionation and metagenomics in the Atacama Desert. Microorganisms 9:1038. doi: 10.3390/microorganisms9051038 PubMed DOI PMC

Shen J. X., Chen Y., Sun Y., Liu L., Pan Y. X., Lin W. (2022). Detection of biosignatures in terrestrial analogs of Martian regions: strategical and technical assessments. Earth Planet Phys. 6, 01–450. doi: 10.26464/epp2022042 DOI

Sinha R., Raymahashay B. C. (2004). Evaporite mineralogy and geochemical evolution of the Sambhar Salt Lake, Rajasthan, India. Sediment Geol. 166, 59–71. doi: 10.1016/j.sedgeo.2003.11.021 DOI

Sinninghe Damsté J. S., Schouten S., Hopmans E. C., van Duin A. C. T., Geenevasen J. A. J. (2002). Crenarchaeol: the characteristic core glycerol dibiphytanyl glycerol tetraether membrane lipid of cosmopolitan pelagic crenarchaeota. J. Lipid Res. 43, 1641–1651. doi: 10.1194/jlr.M200148-JLR200 PubMed DOI

Sørensen K. B., Canfield D. E., Oren A. (2004). Salinity responses of benthic microbial communities in a solar saltern (Eilat, Israel). Appl. Environ. Microbiol. 70, 1608–1616. doi: 10.1128/AEM.70.3.1608-1616.2004, PMID: PubMed DOI PMC

Sørensen K. B., Canfield D. E., Teske A. P., Oren A. (2005). Community composition of a hypersaline endoevaporitic microbial mat. Appl. Environ. Microbiol. 71, 7352–7365. doi: 10.1128/AEM.71.11.7352-7365.2005, PMID: PubMed DOI PMC

Sørensen K., Řeháková K., Zapomělová E., Oren A. (2009). Distribution of benthic phototrophs, sulfate reducers, and methanogens in two adjacent salt ponds in Eilat, Israel. Aquat. Microb. Ecol. 56, 275–284. doi: 10.3354/ame01307 DOI

Squier A. H., Hodgson D. A., Keely B. J. (2002). Sedimentary pigments as markers for environmental change in an Antarctic lake. Org. Geochem. 33, 1655–1665. doi: 10.1016/S0146-6380(02)00177-8 DOI

Squyres S. W., Grotzinger J. P., Arvidson R. E., Bell J. F., Calvin W., Christensen P. R., et al. . (2004). In situ evidence for an ancient aqueous environment at Meridiani Planum, Mars. Science 306, 1709–1714. doi: 10.1126/science.1104559, PMID: PubMed DOI

Stivaletta N., Barbieri R. (2009). Endolithic microorganisms from spring mound evaporite deposits (southern Tunisia). J. Arid Environ. 73, 33–39. doi: 10.1016/j.jaridenv.2008.09.024 DOI

Stivaletta N., López-Gacía P., Boihem L., Millie D. F., Barbieri R. (2010). Biomarkers of endolithic communities within gypsum crusts (southern Tunisia). Geomicrobiol J. 27, 101–110. doi: 10.1080/01490450903410431 DOI

Storme J. Y., Golubic S., Wilmotte A., Kleinteich J., Velasquez D. (2015). Raman characterization of the UV-protective pigment gloeocapsin and its role in the survival of cyanobacteria. Astrobiology 15, 843–857. doi: 10.1089/ast.2015.1292, PMID: PubMed DOI

Stromberg J. M., Applin D. M., Cloutis E. A., Rice M., Berard G., Mann P. (2014). The persistence of a chlorophyll spectral biosignature from Martian evaporite and spring analogues under Mars-like conditions. Int. J. Astrobiol. 13, 203–223. doi: 10.1017/S1473550413000402 DOI

Taher A. G. (2014). Formation and calcification of modern gypsum-dominated stromatolites, EMISAL, Fayium, Egypt. Facies 60, 721–735. doi: 10.1007/s10347-014-0405-5 DOI

ten Haven H. L., de Leeuw J. W., Schenck P. A. (1985). Organic geochemical studies of a Messinian evaporitic basin, northern Apennines (Italy) I: hydrocarbon biological markers for a hypersaline environment. Geochim. Cosmochim. Acta 49, 2181–2191. doi: 10.1016/0016-7037(85)90075-4 DOI

Testa G., Lugli S. (2000). Gypsum–anhydrite transformations in Messinian evaporites of Central Tuscany (Italy). Sediment. Geol. 130, 249–268. doi: 10.1016/S0037-0738(99)00118-9 DOI

Thomas J. C. (1984). Formations benthiques à Cyanobactéries des salins de Santa Pola (Espagne): composition spécifique, morphologique et caractéristiques biologiques des principaux peuplements. Rev. Inv. Geol. 38, 139–158.

Thomas J.-C., Geisler D. (1982). Peuplements benthiques à Cyanophycées des marais salants de Salin-de-Giraud (Sud de la France). Géol. Médit. 9, 391–412. doi: 10.3406/geolm.1982.1217 DOI

Turich C., Freeman K. H. (2011). Archaeal lipids record paleosalinity in hypersaline systems. Org. Geochem. 42, 1147–1157. doi: 10.1016/j.orggeochem.2011.06.002 DOI

Turich C., Freeman K. H., Bruns M. A., Conte M., Jones A. D., Wakeham S. G. (2007). Lipids of marine Archaea: patterns and provenance in the water-column and sediments. Geochim. Cosmochim. Acta 71, 3272–3291. doi: 10.1016/j.gca.2007.04.013 DOI

Vai G. B., Ricci Lucchi F. (1977). Algal crusts, autochtonous and clastic gypsum in a cannibalistic evaporite basin: a case history from the Messinian of Northern Apenines. Sedimentology 24, 211–244. doi: 10.1111/j.1365-3091.1977.tb00255.x DOI

Van Driessche A. E. S., Stawski T. M., Kellermeier M. (2019). Calcium sulfate precipitation pathways in natural and engineered environments. Chem. Geol. 530:119274. doi: 10.1016/j.chemgeo.2019.119274 DOI

Vandenabeele P., Edwards H. G. M., Jehlička J. (2014). The role of mobile instrumentation in novel applications of Raman spectroscopy: archaeometry, geosciences, and forensics. Chem. Soc. Rev. 43, 2628–2649. doi: 10.1039/c3cs60263j, PMID: PubMed DOI

Villanueva J., Grimalt J. O., de Wit R., Keely B. J., Maxwell J. R. (1994). Chlorophyll and carotenoid pigments in solar microbial mats. Geochim. Cosmochim. Acta 58, 4703–4715. doi: 10.1016/0016-7037(94)90202-X DOI

Vítek P., Ascaso C., Artieda O., Wierzchos J. (2016). Raman imaging in geomicrobiology: endolithic phototrophic microorganisms in gypsum from the extreme sun irradiation area in the Atacama Desert. Anal. Bioanal. Chem. 408, 4083–4092. doi: 10.1007/s00216-016-9497-9, PMID: PubMed DOI

Vítek P., Ascaso C., Artieda O., Wierzchos J. (2020). Raman imaging of microbial colonization in rock-some analytical aspects. Anal. Bioanal. Chem. 412, 3717–3726. doi: 10.1007/s00216-020-02622-8 PubMed DOI

Vítek P., Cámara-Gallego B., Edwards H. G. M., Jehlička J., Ascaso C., Wierzchos J. (2013). Phototrophic community in gypsum crust from the Atacama desert studied by Raman spectroscopy and microscopic imaging. Geomicrobiol J. 30, 399–410. doi: 10.1080/01490451.2012.697976 DOI

Vítek P., Jehlička J., Edwards H. G. M., Hutchinson I., Ascaso C., Wierzchos J. (2014). Miniaturized Raman instrumentation detects carotenoids in Mars-analog rocks from the Mojave and Atacama Desert. Phil. Trans. R. Soc. A 372:20140196. doi: 10.1098/rsta.2014.0196, PMID: PubMed DOI

Vítek P., Jehlička J., Edwards H. G. M., Osterrothová K. (2009). Identification of β-carotene in an evaporitic matrix —evaluation of Raman spectroscopic analysis for astrobiological research on Mars. Anal. Bioanal. Chem. 393, 1967–1975. doi: 10.1007/s00216-009-2677-0, PMID: PubMed DOI

Vítek P., Wierzchos J. (2020). “Desert biosignatures” in Microbial ecosystems in Central Andes extreme environments. ed. Farías M. E. (Cham, Switzerland: Springer International Publishing; ), 73–85.

Vogel M. B., Des Marais D. J., Parenteau M. N., Jahnke L. L., Turk K. A., Kubo M. D. Y. (2010). Biological influences on modern sulfates: textures and composition of gypsum deposits from Guerrero Negro, Baja California Sur, Mexico. Sed. Geol. 223, 265–280. doi: 10.1016/j.sedgeo.2009.11.013 DOI

Vogel M. B., Des Marais D. J., Turk K. A., Parenteau M. N., Jahnke L. L., Kubo M. D. Y. (2009). The role of biofilms in the sedimentology of actively forming gypsum deposits at Guerrero Negro, Mexico. Astrobiology 9, 875–893. doi: 10.1089/ast.2008.0325, PMID: PubMed DOI

Volkmann M., Gorbushina A. A., Kedar L., Oren A. (2006). The structure of euhalothece-362, a novel red-shifted mycosporine-like amino acid, from a halophilic cyanobacterium (Euhalothece sp.). FEMS Microbiol. Lett. 258, 50–54. doi: 10.1111/j.1574-6968.2006.00203.x PubMed DOI

Walker J. J., Pace N. R. (2007). Phylogenetic composition of Rocky Mountain endolithic microbial ecosystems. Appl. Environ. Microbiol. 73, 3497–3504. doi: 10.1128/AEM.02656-06, PMID: PubMed DOI PMC

Wang A., Haskin L. A., Squyres S. W., Jolliff B. L., Crumpler L., Geller R., et al. . (2006). Sulfate deposition in subsurface regolith in Gusev crater, Mars. J. Geophys. Res. Planets 111:E02S17. doi: 10.1029/2005JE002513 DOI

Wang J. S., Suess E., Rickert D. (2004). Authigenic gypsum found in gas hydrate-associated sediments from hydrate ridge, the eastern North Pacific. Sci. China Ser. D-Earth Sci. 47, 280–288. doi: 10.1360/02yd0069 DOI

Warren J. K. (1982). The hydrological setting, occurrence and significance of gypsum in late quaternary salt lakes in South-Australia. Sedimentology 29, 609–637. doi: 10.1111/j.1365-3091.1982.tb00071.x DOI

Warren J. K. (2010). Evaporites through time: tectonic, climatic and eustatic controls in marine and nonmarine deposits. Earth Sci. Rev. 98, 217–268. doi: 10.1016/j.earscirev.2009.11.004 DOI

Warren J. K. (2016). Evaporites, A Geological Compendium. 2nd Edn. Cham: Springer.

Wierzchos J., Artieda O., Ascaso C., García F. N., Vítek P., Azua-Bustos A., et al. . (2020b). Crystalline water in gypsum is unavailable for cyanobacteria in laboratory experiments and in natural desert endolithic habitats. Proc. Natl. Acad. Sci. USA 117, 27786–27787. doi: 10.1073/pnas.2013134117, PMID: PubMed DOI PMC

Wierzchos J., Ascaso C. (1994). Application of backscattered electron imaging to the study of the lichen rock interface. J. Microsc. (Oxford) 175, 54–59. doi: 10.1111/j.1365-2818.1994.tb04787.x DOI

Wierzchos J., Ascaso C., Artieda O., Casero M.C. (2020a). “The desert polyextreme environment and endolithic habitats, “in Microbial ecosystems in Central Andes extreme environments, ed. Farías. (Cham, Switzerland: Springer International Publishing; ), 37–50.

Wierzchos J., Cámara B., de Los Ríos A., Davila A. F., Sánchez Almazo I. M., Artieda O., et al. . (2011). Microbial colonization of Ca-sulfate crusts in the hyperarid core of the Atacama Desert: implications for the search for life on Mars. Geobiology 9, 44–60. doi: 10.1111/j.1472-4669.2010.00254.x, PMID: PubMed DOI

Wierzchos J., Casero M. C., Artieda O., Ascaso C. (2018). Endolithic microbial habitats as refuges for life in polyextreme environment of the Atacama Desert. Curr. Opin. Microbiol. 43, 124–131. doi: 10.1016/j.mib.2018.01.003, PMID: PubMed DOI

Wierzchos J., DiRuggiero J., Vítek P., Artieda O., Souza-Egipsy V., Škaloud P., et al. . (2015). Adaptation strategies of endolithic chlorophototrophs to survive the hyperarid and extreme solar radiation environment of the Atacama Desert. Front. Microbiol. 6:934. doi: 10.3389/fmicb.2015.00934, PMID: PubMed DOI PMC

Wilson E. O. (2003). The future of life. New York: Random House. Vintage Books.

Winters Y. D., Lowenstein T. K., Timofeeff M. N. (2013). Identification of carotenoids in ancient salt from Death Valley, Saline Valley, and Searles Lake, California using laser Raman spectroscopy. Astrobiology 13, 1065–1080. doi: 10.1089/ast.2012.0952, PMID: PubMed DOI

Wynn-Williams D. D., Edwards H. G. M. (2000a). Antarctic ecosystems as models for extraterrestrial surface habitats. Planet. Space Sci. 48, 1065–1075. doi: 10.1016/S0032-0633(00)00080-5 DOI

Wynn-Williams D. D., Edwards H. G. M. (2000b). Proximal analysis of regolith habitats and protective biomolecules in situ by laser Raman spectroscopy: overview of terrestrial Antarctic habitats and Mars analogs. Icarus 144, 486–503. doi: 10.1006/icar.1999.6307 DOI

Zhao L., Wang L., Cernusak L. A., Liu X. H., Xiao H. L., Zhou M. X., et al. . (2016). Significant difference in hydrogen isotope composition between xylem and tissue water in Populus euphratica. Plant Cell Environ. 39, 1848–1857. doi: 10.1111/pce.12753, PMID: PubMed DOI

Ziolkowski L. A., Mykytczuk N. C. S., Omelon C. R., Johnson H., Whyte L. G., Slater G. F. (2013a). Arctic gypsum endoliths: a biogeochemical characterization of a viable and active microbial community. Biogeosciences 10, 7661–7675. doi: 10.5194/bg-10-7661-2013 DOI

Ziolkowski L. A., Wierzchos J., Davila A. F., Slater G. F. (2013b). Radiocarbon evidence of active endolithic microbial communities in the hyperarid core of the Atacama desert. Astrobiology 13, 607–616. doi: 10.1089/ast.2012.0854, PMID: PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...