Adaptation strategies of endolithic chlorophototrophs to survive the hyperarid and extreme solar radiation environment of the Atacama Desert
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
26441871
PubMed Central
PMC4564735
DOI
10.3389/fmicb.2015.00934
Knihovny.cz E-zdroje
- Klíčová slova
- Atacama Desert, carotenoids, endolithic chlorophototrophs, extreme environment, gypsum, scytonemin,
- Publikační typ
- časopisecké články MeSH
The Atacama Desert, northern Chile, is one of the driest deserts on Earth and, as such, a natural laboratory to explore the limits of life and the strategies evolved by microorganisms to adapt to extreme environments. Here we report the exceptional adaptation strategies of chlorophototrophic and eukaryotic algae, and chlorophototrophic and prokaryotic cyanobacteria to the hyperarid and extremely high solar radiation conditions occurring in this desert. Our approach combined several microscopy techniques, spectroscopic analytical methods, and molecular analyses. We found that the major adaptation strategy was to avoid the extreme environmental conditions by colonizing cryptoendolithic, as well as, hypoendolithic habitats within gypsum deposits. The cryptoendolithic colonization occurred a few millimeters beneath the gypsum surface and showed a succession of organized horizons of algae and cyanobacteria, which has never been reported for endolithic microbial communities. The presence of cyanobacteria beneath the algal layer, in close contact with sepiolite inclusions, and their hypoendolithic colonization suggest that occasional liquid water might persist within these sub-microhabitats. We also identified the presence of abundant carotenoids in the upper cryptoendolithic algal habitat and scytonemin in the cyanobacteria hypoendolithic habitat. This study illustrates that successful lithobiontic microbial colonization at the limit for microbial life is the result of a combination of adaptive strategies to avoid excess solar irradiance and extreme evapotranspiration rates, taking advantage of the complex structural and mineralogical characteristics of gypsum deposits-conceptually called "rock's habitable architecture." Additionally, self-protection by synthesis and accumulation of secondary metabolites likely produces a shielding effect that prevents photoinhibition and lethal photooxidative damage to the chlorophototrophs, representing another level of adaptation.
Biology Department The Johns Hopkins University Baltimore MD USA
Carl Sagan Center SETI Institute Mountain View CA USA
Department of Botany Charles University Prague Czech Republic
Facultad de Ciencias Experimentales Universidad de Huelva Huelva Spain
Zobrazit více v PubMed
Aburai N., Sumida D., Abe K. (2015). Effect of light level and salinity on the composition and accumulation of free and ester-type carotenoids in the aerial microalga Scenedesmus sp. (Chlorophyceae). Algal Res. 8, 30–36. 10.1016/j.algal.2015.01.005 DOI
Alves P. L. D. C.A., Magalhães A. C. N., Barja P. R. (2002). The phenomenon of photoinhibition of photosynthesis and its importance in reforestation. Bot. Rev. 68, 193–208. 10.1663/0006-8101(2002)068[0193:TPOPOP]2.0.CO;2 DOI
Amaral G., Martinez-Frias J., Vázquez L. (2007). Astrobiological significance of minerals on Mars surface environment, UV-shielding properties of Fe (jarosite) vs. Ca (gypsum) sulphates. World App. Sci. J. 2, 112–116.
Artieda O. (2013). Morphology and micro-fabrics of weathering features on gyprock exposures in a semiarid environment (Ebro Tertiary Basin, NE Spain). Geomorphology 196, 198–210. 10.1016/j.geomorph.2012.03.020 DOI
Asada K. (1994). Production and action of active oxygen species in photosynthetic tissues, in Causes of Photooxidative Stress and Amelioration of Defense Systems in Plants, ed Foyer C. H., Mullineaux P. M. (Boca Raton, FL: CRC; ), 77–104.
Ascaso C., Wierzchos J. (2002). New approaches to the study of Antarctic lithobiontic microorganisms and their inorganic traces, and their application in the detection of life in Martian rocks. Inter. Microbiol. 5, 215–222. 10.1007/s10123-002-0088-6 PubMed DOI
Azua-Bustos A., Caro-Lara L., Vicuña R. (2015). Discovery and microbial content of the driest site of the hyperarid Atacama Desert, Chile. Environ. Microbiol. Rep. 7, 388–394. 10.1111/1758-2229.12261 PubMed DOI
Bachy C., Lopez-Garcia P., Vereshchaka A., Moreira D. (2011). Diversity and vertical distribution of microbial eukaryotes in the snow, sea ice and seawater near the North Pole at the end of the polar night. Front. Microbiol. 2:106. 10.3389/fmicb.2011.00106 PubMed DOI PMC
Bao H. (2005). Sulfate in modern playa settings and in ash beds in hyperarid deserts, implication for the origin of 17O-anomalous sulfate in an Oligocene ash bed. Chem. Geol. 214, 127–134. 10.1016/j.chemgeo.2004.08.052 DOI
Boison G., Mergel A., Jolkver H., Bothe H. (2004). Bacterial life and dinitrogen fixation at a gypsum rock. Appl. Environ. Microbiol. 70, 7070–7077. 10.1128/AEM.70.12.7070-7077.2004 PubMed DOI PMC
Cabrol N. A., Feister U., Häder D. P., Piazena H., Grin E. A., Klein A. (2014). Record Solar UV Irradiance in the Tropical Andes. Front. Environ. Sci. 2:19 10.3389/fenvs.2014.00019 DOI
Caporaso J. G., Kuczynski J., Stombaugh J., Bittinger K., Bushman F. D., Costello E. K., et al. . (2010). QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336. 10.1038/nmeth.f.303 PubMed DOI PMC
Caturla F., Molina-Sabio M., Rodriguez-Reinoso F. (1999). Adsorption-desorption of water vapor by natural and heat-treated sepiolite in ambient air. App. Clay Sci. 15, 367–380. 10.1016/S0169-1317(99)00030-7 DOI
Cockell C. S., Knowland J. (1999). Ultraviolet radiation screening compounds. Biol. Rev. Cambridge Philosoph. Soc. 74, 311–345. PubMed
Cockell C. S., McKay C. P., Warren-Rhodes K., Horneck G. (2008). Ultraviolet radiation-induced limitation to epilithic microbial growth in arid deserts–dosimetric experiments in the hyperarid core of the Atacama Desert. J. Photochem. Photobiol. B Biol. 90, 79–87. 10.1016/j.jphotobiol.2007.11.009 PubMed DOI
Cockell C. S., Osinski G. R., Banerjee N. R., Howard K. T., Gilmour I., Watson J. S. (2010). The microbe-mineral environment and gypsum neogenesis in a weathered polar evaporite. Geobiology 8, 293–308. 10.1111/j.1472-4669.2010.00240.x PubMed DOI
Cordero R. R., Seckmeyer G., Damiani A., Riechelmann S., Rayas J., Labbe F., et al. . (2014). The world's highest levels of surface UV. Photochem. Photobiol. Sci. 13, 70–81. 10.1039/c3pp50221j PubMed DOI
Deason T. R., Bold H. C. (1960). Phycological Studies I. Exploratory Studies of Texas Soil Algae. University of Texas: Austin, TX.
de los Ríos A., Cary C., Cowan D. (2014b). The spatial structures of hypolithic communities in the Dry Valleys of East Antarctica. Polar Biol. 37, 1823–1833. 10.1007/s00300-014-1564-0 DOI
de los Ríos A., Valea S., Ascaso C., Davila A., Kastovsky J., McKay C. P., et al. . (2010). Comparative analysis of the microbial communities inhabiting halite evaporites of the Atacama Desert. Inter. Microbiol. 13, 79–89. 10.2436/20.1501.01.113 PubMed DOI
de los Ríos A., Wierzchos J., Ascaso C. (2014a). The lithic microbial ecosystems of Antarctica's McMurdo Dry Valleys. Antarctic Sci. 26, 459–477. 10.1017/S0954102014000194 DOI
de Oliveira V. E., Castro H. S., Edwards H. G. M., de Oliveira L. F. C. (2010). Carotenes and carotenoids in natural biological samples, a Raman spectroscopic analysis. J. Raman Spectros. 41, 642–650. 10.1002/jrs.2493 DOI
DiRuggiero J., Wierzchos J., Robinson C. K., Souterre T., Ravel J., Artieda O., et al. (2013). Microbial colonisation of chasmoendolithic habitats in the hyper-arid zone of the Atacama Desert. Biogeosciences 10, 2439–2450. 10.5194/bg-10-2439-2013 DOI
Dong H., Rech J. A., Jiang H., Sun H., Buck B. J. (2007). Endolithic cyanobacteria in soil gypsum: occurrences in Atacama (Chile), Mojave (United States), and Al-Jafr Basin (Jordan) Deserts. J. Geophysic. Res. 112, G02030. 10.1029/2006jg000385 DOI
Edwards H. G. M., Garcia-Pichel F., Newton E. M., Wynn-Williams D. D. (2000). Vibrational Raman spectroscopic study of scytonemin, the UV-protective cyanobacterial pigment. Spectrochim. Acta A Mol. Biomol. Spectrosc. 56, 193–200. 10.1016/S1386-1425(99)00218-8 PubMed DOI
Edwards H. G., Villar S. E., Parnell J., Cockell C. S., Lee P. (2005). Raman spectroscopic analysis of cyanobacterial gypsum halotrophs and relevance for sulfate deposits on Mars. Analyst 130, 917–923. 10.1039/b503533c PubMed DOI
Fleming E. D., Castenholz R. W. (2007). Effects of periodic desiccation on the synthesis of the UV-screening compound, scytonemin, in cyanobacteria. Environ. Microbiol. 9, 1448–1455. 10.1111/j.1462-2920.2007.01261.x PubMed DOI
Garcia-Pichel F., Castenholz R. W. (1991). Characterization and biological implications of scytonemin, a cyanobacterial sheath pigment. J. Phycol. 27, 395–409.
Gorbushina A. A. (2007). Life on the rocks. Environ. Microbiol. 9, 1613–1631. 10.1111/j.1462-2920.2007.01301.x PubMed DOI
Häder D. P. (1986). Effects of solar and artificial UV irradiation on motility and phototaxis in the flagellate, Euglena gracilis. Photochem. Photobiol. 44, 651–656.
Hanagata N., Dubinsky Z. (1999). Secondary carotenoid accumulation in Scenedesmus komarekii (Chlorophyceae, Chlorophyta). J. Phycol. 35, 960–966.
Hartley A. J., Chong G., Houston J., Mather A. E. (2005). 150 million years of climatic stability, evidence from the Atacama Desert, northern Chile. J. Geol. Soc. 162, 421–424. 10.1144/0016-764904-071 DOI
Horta J. D. O. S. (1980). Calcrete, gypcrete and soil classification in Algeria. Engineering Geol. 15, 15–52. 10.1016/0013-7952(80)90028-9 DOI
Houston J. (2006a). Evaporation in the Atacama Desert, An empirical study of spatio-temporal variations and their causes. J. Hydrol. 330, 402–412. 10.1016/j.jhydrol.2006.03.036 DOI
Houston J. (2006b). Variability of precipitation in the Atacama desert; its causes and hydrological impact. Inter. J. Climat. 26, 2181–2198. 10.1002/joc.1359 DOI
Houston J., Hartley A. J. (2003). The central Andean west-slope rainshadow and its potential contribution to the origin of hyper-aridity in the Atacama Desert. Inter. J. Climat. 23, 1453–1464. 10.1002/joc.938 DOI
Hughes K. A., Lawley B. (2003). A novel Antarctic microbial endolithic community within gypsum crusts. Environ. Microbiol. 5, 555–565. 10.1046/j.1462-2920.2003.00439.x PubMed DOI
Jeffrey W. H., Aas P., Lyons M. M., Pledger R., Mitchell D. L., Coffin R. B. (1996). Ambient solar radiation induced photodamage in marine bacterioplankton. Photochem. Photobiol. 64, 419–427. PubMed
Karsten U., Holzinger A. (2014). Green algae in alpine biological soil crust communities. Acclimation strategies against ultraviolet radiation and dehydration. Biodiver. Conserv. 23, 1845–1858. 10.1007/s10531-014-0653-2 PubMed DOI PMC
Leguey S., Ruiz A. I., Fernández R., Cuevas J. (2014). Resistant cellulose-derivative biopolymer templates in natural sepiolite. Am. J. Sci. 314, 1041–1063. 10.2475/06.2014.03 DOI
Lewis L. A., Lewis P. O. (2005). Unearthing the molecular phylodiversity of desert soil green algae (Chlorophyta). Syst. Biol. 54, 936–947. 10.1080/10635150500354852 PubMed DOI
Lichtenthaler H. K. (1987). Chlorophylls and carotenoids. Pigments of photosynthetic biomembranes, in Methods in Enzymology, ed Lester Packer R. D. (Waltham, MA: Academic Press; ), 350–382.
Long S. P., Humphries S., Falkowski P. G. (1994). Photoinhibition of photosynthesis in nature. Annu. Rev. Plant Physiol. Plant Mol. Biol. 45, 633–662. PubMed
Makhalanyane T. P., Valverde A., Gunnigle E., Frossard A., Ramond J. B., Cowan D. A. (2015). Microbial ecology of hot desert edaphic systems. FEMS Microbiol. Rev. 39, 203–221. 10.1093/femsre/fuu011 PubMed DOI
Matthes U., Turner S. J., Larson D. W. (2001). Light attenuation by limestone rock and its constraint on the depth distribution of endolithic algae and cyanobacteria. Inter. J. Plant Sci. 162, 263–270. 10.1086/319570 DOI
McKay C. P., Friedmann E. I., Gómez-Silva B., Cáceres-Villanueva L., Andersen D. T. (2003). Temperature and moisture conditions for life in the extreme arid region of the Atacama Desert: four years of observations including the El Niño of 1997–1998. Astrobiology 3, 393–406. 10.1089/153110703769016460 PubMed DOI
Moro C. V., Crouzet O., Rasconi S., Thouvenot A., Coffe G., Batisson I., et al. . (2009). New design strategy for development of specific primer sets for PCR-based detection of Chlorophyceae and Bacillariophyceae in environmental samples. App. Environ. Microbiol. 75, 5729–5733. 10.1128/AEM.00509-09 PubMed DOI PMC
Nguyen K. H., Chollet-Krugler M., Gouault N., Tomasi S. (2013). UV-protectant metabolites from lichens and their symbiotic partners. Nat. Prod. Rep. 30, 1490–1508. 10.1039/c3np70064j PubMed DOI
Nienow J. A. (2009). Extremophiles, dry environments (including Cryptoendoliths), in Encyclopedia of Microbiology, ed Schaechter M. (Oxford: Elsevier; ), 159–173.
Nienow J. A., McKay C., Friedmann E. I. (1988). The Cryptoendolithic microbial environment in the Ross Desert of Antarctica, light in the photosynthetically active region. Microb. Ecol. 16, 271–289. PubMed
Oren A., Kühl M., Karsten U. (1995). An evaporitic microbial mat within a gypsum crust, zonation of phototrophs, photopigments, and light penetration. Mar. Ecol. Prog. Ser. 128, 151–159.
Orosa M., Torres E., Fidalgo P., Abalde J. (2000). Production and analysis of secondary carotenoids in green algae. J. App. Phycol. 12, 553–556. 10.1023/A:1008173807143 PubMed DOI
Orosa M., Valero J. F., Herrero C., Abalde J. (2001). Comparison of the accumulation of astaxanthin in Haematococcus pluvialis and other green microalgae under N-starvation and high light conditions. Biotechnol. Lett. 23, 1079–1085. 10.1023/A:1010510508384 DOI
Palmer R. J., Friedmann E. I. (1990a). Water relations and photosynthesis in the cryptoendolithic microbial habitat of hot and cold deserts. Microb. Ecol. 19, 111–118. PubMed
Palmer R. J., Jr., Friedmann E. I. (1990b). Water relations, thallus structure and photosynthesis in NegevDesert lichens. New Phytol. 116, 597–603. PubMed
Parnell J., Lee P., Cockell C. S., Osinski G. R. (2004). Microbial colonization in impact-generated hydrothermal sulphate deposits, Haughton impact structure, and implications for sulphates on Mars. Inter. J. Astrobiol. 3, 247–256. 10.1017/S1473550404001995 DOI
Phoenix V. R., Bennett P. C., Engel A. S., Tyler S. W., Ferris F. G. (2006). Chilean high-altitude hot-spring sinters. A model system for UV screening mechanisms by early Precambrian cyanobacteria. Geobiology 4, 15–28. 10.1111/j.1472-4669.2006.00063.x DOI
Piacentini R. D., Cede A., Bárcena H. (2003). Extreme solar total and UV irradiances due to cloud effect measured near the summer solstice at the high-altitude desertic plateau Puna of Atacama (Argentina). J. Atmosph. Solar Terr. Phys. 65, 727–731. 10.1016/S1364-6826(03)00084-1 DOI
Pointing S. B., Belnap J. (2012). Microbial colonization and controls in dryland systems. Nat. Rev. Microbiol. 10, 551–562. 10.1038/nrmicro2831 PubMed DOI
Proteau P. J., Gerwick W. H., Garcia-Pichel F., Castenholz R. (1993). The structure of scytonemin, an ultraviolet sunscreen pigment from the sheaths of cyanobacteria. Experientia 49, 825–829. PubMed
Rhind T., Ronholm J., Berg B., Mann P., Applin D., Stromberg J., et al. (2014). Gypsum-hosted endolithic communities of the Lake St. Martin impact structure, Manitoba, Canada, spectroscopic detectability and implications for Mars. Inter. J. Astrobiol. 13, 366–377. 10.1017/S1473550414000378 DOI
Robinson C. K., Wierzchos J., Black C., Crits-Christoph A., Ma B., Ravel J., et al. . (2015). Microbial diversity and the presence of algae in halite endolithic communities are correlated to atmospheric moisture in the hyper-arid zone of the Atacama Desert. Environ. Microbiol. 17, 299–315. 10.1111/1462-2920.12364 PubMed DOI
Roldán M., Ascaso C., Wierzchos J. (2014). Fluorescent fingerprints of endolithic phototrophic cyanobacteria living within halite rocks in the Atacama Desert. App. Environ. Microbiol. 80, 2998–3006. 10.1128/AEM.03428-13 PubMed DOI PMC
Romari K., Vaulot D. (2004). Composition and temporal variability of picoeukaryote communities at a coastal site of the English Channel from 18S rDNA sequences. Limnol. Oceanogr. 49, 784–798. 10.4319/lo.2004.49.3.0784 DOI
Rondanelli R., Molina A., Falvey M. (2015). The Atacama surface solar maximum. Bull. Am. Meteorol. Soc. 96, 405–418. 10.1175/BAMS-D-13-00175.1 DOI
Rossi F., De Philippis R. (2015). Role of cyanobacterial exopolysaccharides in phototrophic biofilms and in complex microbial mats. Life 5, 1218–1238. 10.3390/life5021218 PubMed DOI PMC
Rubio C., Fernández E., Hidalgo M. E., Quilhot W. (2002). Effects of solar UV-B radiation in the accumulation of rhizocarpic acid in a lichen species from alpine zones of Chile. Bol. Soc. Chilena Quím. 47, 67–72. 10.4067/s0366-16442002000100012 DOI
Solovchenko A. E., Merzlyak M. N. (2008). Screening of visible and UV radiation as a photoprotective mechanism in plants. Russ. J. Plant Physiol. 55, 719–737. 10.1134/s1021443708060010 DOI
Stanier R. Y., Kunisawa R., Mandel M., Cohen-Bazire G. (1971). Purification and properties of unicellular blue-green algae (Order Chroococcales). Bacteriol. Rev. 35, 171–205. PubMed PMC
Stivaletta N., Barbieri R. (2009). Endolithic microorganisms from spring mound evaporite deposits (southern Tunisia). J. Arid Environ. 73, 33–39. 10.1016/j.jaridenv.2008.09.024 DOI
Stivaletta N., Barbieri R., Billi D. (2012). Microbial colonization of the salt deposits in the driest place of the Atacama Desert (Chile). Orig. Life Evol. Biosph. 42, 187–200. 10.1007/s11084-012-9289-y PubMed DOI
Stivaletta N., López-García P., Boihem L., Millie D. F., Barbieri R. (2010). Biomarkers of endolithic communities within gypsum crusts (southern Tunisia). Geomicrobiol. J. 27, 101–110. 10.1080/01490450903410431 DOI
Telfer A., Pascal A., Gall A. (2008). Carotenoids in Photosynthesis, in Carotenoids, Vol. 4, eds Britton G., Liaaen-Jensen S., Pfander H. (Basel: Birkhäuser; ), 265–308.
Vítek P., Cámara-Gallego B., Edwards H. G. M., Jehlièka J., Ascaso C., Wierzchos J. (2013). Phototrophic community in gypsum crust from the Atacama Desert studied by Raman spectroscopy and microscopic imaging. Geomicrobiol. J. 30, 399–410. 10.1080/01490451.2012.697976 DOI
Vítek P., Edwards H. G., Jehlicka J., Ascaso C., De los Ríos A., Valea S., et al. . (2010). Microbial colonization of halite from the hyper-arid Atacama Desert studied by Raman spectroscopy. Philos. Trans. A Math. Phys. Eng. Sci. 368, 3205–3221. 10.1098/rsta.2010.0059 PubMed DOI
Vítek P., Jehlièka J., Ascaso C., Mašek V., Gómez-Silva B., Olivares H., et al. . (2014). Distribution of scytonemin in endolithic microbial communities from halite crusts in the hyperarid zone of the Atacama Desert, Chile. FEMS Microbiol. Ecol. 90, 351–366. 10.1111/1574-6941.12387 PubMed DOI
Vítek P., Jehlièka J., Edwards H. G., Hutchinson I., Ascaso C., Wierzchos J. (2012). The miniaturized Raman system and detection of traces of life in halite from the Atacama desert; some considerations for the search for life signatures on Mars. Astrobiol. 12, 1095–1099. 10.1089/ast.2012.0872 PubMed DOI PMC
Walker J. J., Pace N. R. (2007). Endolithic microbial ecosystems. Annu. Rev. Microbiol. 61, 331–347. 10.1146/annurev.micro.61.080706.093302 PubMed DOI
Wierzchos J., Ascaso C., McKay C. P. (2006). Endolithic cyanobacteria in halite rocks from the hyperarid core of the Atacama Desert. Astrobiology 6, 415–422. 10.1089/ast.2006.6.415 PubMed DOI
Wierzchos J., Cámara B., de los Ríos A., Davila A. F., Sánchez-Almazo I. M., Artieda O., et al. . (2011). Microbial colonization of Ca-sulfate crusts in the hyperarid core of the Atacama Desert; implications for the search for life on Mars. Geobiology 9, 44–60. 10.1111/j.1472-4669.2010.00254.x PubMed DOI
Wierzchos J., Davila A. F., Artieda O., Cámara-Gallego B., de los Ríos A., Nealson K. H., et al. . (2013). Ignimbrite as a substrate for endolithic life in the hyper-arid Atacama Desert; implications for the search for life on Mars. Icarus 224, 334–346. 10.1016/j.icarus.2012.06.009 PubMed DOI
Wierzchos J., Davila A. F., Sánchez-Almazo I. M., Hajnos M., Swieboda R., Ascaso C. (2012b). Novel water source for endolithic life in the hyperarid core of the Atacama Desert. Biogeosciences 9, 2275–2286. 10.5194/bg-9-2275-2012 DOI
Wierzchos J., de los Ríos A., Ascaso C. (2012a). Microorganisms in desert rocks; the edge of life on Earth. Inter. Microbiol. 15, 173–183. 10.2436/20.1501.01.170 PubMed DOI
Zhu F., Massana R., Not F., Marie D., Vaulot D. (2005). Mapping of picoeucaryotes in marine ecosystems with quantitative PCR of the 18S rRNA gene. FEMS Microbiol. Ecol. 52, 79–92. 10.1016/j.femsec.2004.10.006 PubMed DOI
Ziolkowski L. A., Mykytczuk N. C. S., Omelon C. R., Johnson H., Whyte L. G., Slater G. F. (2013b). Arctic gypsum endoliths. A biogeochemical characterization of a viable and active microbial community. Biogeosciences 10, 7661–7675. 10.5194/bg-10-7661-2013 DOI
Ziolkowski L. A., Wierzchos J., Davila A. F., Slater G. F. (2013a). Radiocarbon evidence of active endolithic microbial communities in the hyperarid core of the Atacama Desert. Astrobiology 13, 607–616. 10.1089/ast.2012.0854 PubMed DOI PMC
Microbial colonization of gypsum: from the fossil record to the present day
Discovery of carotenoid red-shift in endolithic cyanobacteria from the Atacama Desert