Gypsum endolithic phototrophs under moderate climate (Southern Sicily): their diversity and pigment composition
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
37485515
PubMed Central
PMC10359912
DOI
10.3389/fmicb.2023.1175066
Knihovny.cz E-zdroje
- Klíčová slova
- cyanobacteria, endoliths, green algae, gypsum, metagenomics, phototrophs,
- Publikační typ
- časopisecké články MeSH
In this study, we used microscopic, spectroscopic, and molecular analysis to characterize endolithic colonization in gypsum (selenites and white crystalline gypsum) from several sites in Sicily. Our results showed that the dominant microorganisms in these environments are cyanobacteria, including: Chroococcidiopsis sp., Gloeocapsopsis pleurocapsoides, Gloeocapsa compacta, and Nostoc sp., as well as orange pigmented green microalgae from the Stephanospherinia clade. Single cell and filament sequencing coupled with 16S rRNA amplicon metagenomic profiling provided new insights into the phylogenetic and taxonomic diversity of the endolithic cyanobacteria. These organisms form differently pigmented zones within the gypsum. Our metagenomic profiling also showed differences in the taxonomic composition of endoliths in different gypsum varieties. Raman spectroscopy revealed that carotenoids were the most common pigments present in the samples. Other pigments such as gloeocapsin and scytonemin were also detected in the near-surface areas, suggesting that they play a significant role in the biology of endoliths in this environment. These pigments can be used as biomarkers for basic taxonomic identification, especially in case of cyanobacteria. The findings of this study provide new insights into the diversity and distribution of phototrophic microorganisms and their pigments in gypsum in Southern Sicily. Furthemore, this study highlights the complex nature of endolithic ecosystems and the effects of gypsum varieties on these communities, providing additional information on the general bioreceptivity of these environments.
Center Algatech Institute of Microbiology The Czech Academy of Sciences Třeboň Czechia
Department of Earth and Planetary Science University of Berkeley Berkeley CA United States
Department of Ecology Faculty of Science Charles University Prague Czechia
Department of Parasitology Faculty of Science University of South Bohemia České Budějovice Czechia
Innovative Genomics Institute University of California Berkeley Berkeley CA United States
Institute of Experimental and Applied Physics Czech Technical University Prague Prague Czechia
Institute of Hydrobiology Biology Centre of the Czech Academy of Sciences České Budějovice Czechia
Zobrazit více v PubMed
Águila B., Alcántara-Hernández R. J., Montejano G., López-Martínez R., Falcón L. I., Becerra-Absalón I. (2021). Cyanobacteria in microbialites of Alchichica Crater Lake: a polyphasic characterization. Eur. J. Phycol. 56, 428–443. doi: 10.1080/09670262.2020.1853815 DOI
Al-Wakeel E.-S. I. (2002). Alabaster, and selenite gypsum: I-dehydration-rehydration comparison studies. J. Mater. Res. Technol. 18, 365–368.
Andrews S. (2010). FastQC: a quality control tool for high throughput sequence data. Available at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc
Archer S. D., de los Ríos A., Lee K. C., Niederberger T. S., Cary S. C., Coyne K. J., et al. . (2017). Endolithic microbial diversity in sandstone and granite from the McMurdo Dry Valleys, Antarctica. Polar Biol. 40, 997–1006. doi: 10.1007/s00300-016-2024-9 DOI
Ascaso C., Wierzchos J., Souza-Egipsy V., Delosrios A., Rodrigues J. (2002). In situ evaluation of the biodeteriorating action of microorganisms and the effects of biocides on carbonate rock of the Jeronimos Monastery (Lisbon). Int. Biodeterior. Biodegrad. 49, 1–12. doi: 10.1016/S0964-8305(01)00097-X DOI
Bahl J., Lau M. C., Smith G. J., Vijaykrishna D., Cary S. C., Lacap D. C., et al. . (2011). Ancient origins determine global biogeography of hot and cold desert cyanobacteria. Nat. Commun. 2, 163–166. doi: 10.1038/ncomms1167, PMID: PubMed DOI PMC
Balskus E. P., Case R. J., Walsh C. T. (2011). The biosynthesis of cyanobacterial sunscreen scytonemin in intertidal microbial mat communities. FEMS Microbiol. Ecol. 77, 322–332. doi: 10.1111/j.1574-6941.2011.01113.x, PMID: PubMed DOI PMC
Basilone L. (2018). Lithostratigraphy of Sicily. Cham: Springer.
Benison K. C., Karmanocky III F. J. (2014). Could microorganisms be preserved in Mars gypsum? Insights from terrestrial examples. Geology 42, 615–618. doi: 10.1130/G35542.1 DOI
Bowers R. M., Nayfach S., Schulz F., Jungbluth S. P., Ruhl I. A., Sheremet A., et al. . (2022). Dissecting the dominant hot spring microbial populations based on community-wide sampling at single-cell genomic resolution. ISME J. 16, 1337–1347. doi: 10.1038/s41396-021-01178-4, PMID: PubMed DOI PMC
Brown J. J., Rodríguez-Ruano S. M., Poosakkannu A., Batani G., Schmidt J. O., Roachell W., et al. . (2020). Ontogeny, species identity, and environment dominate microbiome dynamics in wild populations of kissing bugs (Triatominae). Microbiome 8, 146–116. doi: 10.1186/s40168-020-00921-x, PMID: PubMed DOI PMC
Callahan B. J., McMurdie P. J., Rosen M. J., Han A. W., Johnson A. J. A., Holmes S. P. (2016). DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583. doi: 10.1038/nmeth.3869, PMID: PubMed DOI PMC
Caruso A., Pierre C., Blanc-Valleron M.-M., Rouchy J.-M. (2015). Carbonate deposition and diagenesis in evaporitic environments: the evaporative and Sulphur-bearing limestones during the settlement of the Messinian salinity crisis in Sicily and Calabria. Palaeogeogr. Palaeoclimatol. Palaeoecol. 429, 136–162. doi: 10.1016/j.palaeo.2015.03.035 DOI
Cho S. M., Kim S., Cho H., Lee H., Lee J. H., Lee H., et al. . (2019). Type II ice-binding proteins isolated from an arctic microalga are similar to adhesin-like proteins and increase freezing tolerance in transgenic plants. Plant Cell Physiol. 60, 2744–2757. doi: 10.1093/pcp/pcz162, PMID: PubMed DOI
Collins A. M., Jones H. D., Han D., Hu Q., Beechem T. E., Timlin J. A. (2011). Carotenoid distribution in living cells of Haematococcus pluvialis (Chlorophyceae). PLoS One 6:e24302. doi: 10.1371/journal.pone.0024302 PubMed DOI PMC
Crits-Christoph A., Robinson C. K., Ma B., Ravel J., Wierzchos J., Ascaso C., et al. . (2016). Phylogenetic and functional substrate specificity for endolithic microbial communities in hyper-arid environments. Front. Microbiol. 7:301. doi: 10.3389/fmicb.2016.00301, PMID: PubMed DOI PMC
Culka A., Osterrothová K., Hutchinson I., Ingley R., McHugh M., Oren A., et al. . (2014). Detection of pigments of halophilic endoliths from gypsum: Raman portable instrument and European Space Agency’s prototype analysis. Philos. Trans. A Math. Phys. Eng. Sci. 372:20140203. doi: 10.1098/rsta.2014.0203, PMID: PubMed DOI PMC
Cumbers J., Rothschild L. J. (2014). Salt tolerance and polyphyly in the cyanobacterium Chroococcidiopsis (Pleurocapsales). J. Phycol. 50, 472–482. doi: 10.1111/jpy.12169, PMID: PubMed DOI
Davey M. P., Norman L., Sterk P., Huete-Ortega M., Bunbury F., Loh B. K. W., et al. . (2019). Snow algae communities in Antarctica: metabolic and taxonomic composition. New Phytol. 222, 1242–1255. doi: 10.1111/nph.15701, PMID: PubMed DOI PMC
De los Ríos A., Cámara B., Del Cura M. A. G., Rico V. J., Galván V., Ascaso C. (2009). Deteriorating effects of lichen and microbial colonization of carbonate building rocks in the Romanesque churches of Segovia (Spain). Sci. Total Environ. 407, 1123–1134. doi: 10.1016/j.scitotenv.2008.09.042 PubMed DOI
de Oliveira V. E., Castro H. V., Edwards H. G. M., de Oliveira L. F. C. (2010). Carotenes and carotenoids in natural biological samples: a Raman spectroscopic analysis. J. Raman Spectrosc. 41, 642–650. doi: 10.1002/jrs.2493 DOI
Dillon J. G., Tatsumi C. M., Tandingan P. G., Castenholz R. W. (2002). Effect of environmental factors on the synthesis of scytonemin, a UV-screening pigment, in a cyanobacterium (Chroococcidiopsis sp.). Arch. Microbiol. 177, 322–331. doi: 10.1007/s00203-001-0395-x PubMed DOI
Edgar R. C. (2013). UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996–998. doi: 10.1038/nmeth.2604 PubMed DOI
Edwards H. G. M., Garcia-Pichel F., Newton E., Wynn-Williams D. (2000). Vibrational Raman spectroscopic study of scytonemin, the UV-protective cyanobacterial pigment. Spectrochim. Acta A Mol. Biomol. Spectrosc. 56, 193–200. doi: 10.1016/s1386-1425(99)00218-8 PubMed DOI
Edwards H. G. M., Hutchinson I. B., Ingley R., Jehlička J. (2014). Biomarkers and their Raman spectroscopic signatures: a spectral challenge for analytical astrobiology. Philos. Trans. A Math. Phys. Eng. Sci. 372:20140193. doi: 10.1098/rsta.2014.0193 PubMed DOI
Ekebergh A., Sandin P., Mårtensson J. (2015). On the photostability of scytonemin, analogues thereof and their monomeric counterparts. Photochem. Photobiol. Sci. 14, 2179–2186. doi: 10.1039/C5PP00215J, PMID: PubMed DOI
Ertekin E., Meslier V., Browning A., Treadgold J., DiRuggiero J. (2020). Rock structure drives the taxonomic and functional diversity of endolithic microbial communities in extreme environments. Environ. Microbiol. 23, 3937–3956. doi: 10.1111/1462-2920.15287, PMID: PubMed DOI
Ferris F., Lowson E. (1997). Ultrastructure and geochemistry of endolithic microorganisms in limestone of the Niagara escarpment. Can. J. Microbiol. 43, 211–219. doi: 10.1139/m97-029 DOI
Friedmann E. I. (1982). Endolithic microorganisms in the Antarctic cold desert. Science 215, 1045–1053. doi: 10.1126/science.215.4536.1045, PMID: PubMed DOI
Friedmann I., Lipkin Y., Ocampo-Paus R. (1967). Desert algae of the Negev (Israel). Phycologia 6, 185–200. doi: 10.2216/i0031-8884-6-4-185.1 DOI
Gálvez F. E., Saldarriaga-Córdoba M., Huovinen P., Silva A. X., Gómez I. (2021). Revealing the characteristics of the Antarctic snow alga Chlorominima collina gen. et sp. nov. through taxonomy, physiology, and transcriptomics. Front. Plant Sci. 12:662298. doi: 10.3389/fpls.2021.662298, PMID: PubMed DOI PMC
Gao X. (2017). Scytonemin plays a potential role in stabilizing the exopolysaccharidic matrix in terrestrial cyanobacteria. Microb. Ecol. 73, 255–258. doi: 10.1007/s00248-016-0851-4 PubMed DOI
Garcia-Pichel F., Castenholz R. W. (1991). Characterization and biological implications of scytonemin, a cyanobacterial sheath pigment. J. Phycol. 27, 395–409. doi: 10.1111/j.0022-3646.1991.00395.x DOI
García-Veigas J., Cendón D. I., Gibert L., Lowenstein T. K., Artiaga D. (2018). Geochemical indicators in Western Mediterranean Messinian evaporites: implications for the salinity crisis. Mar. Geol. 403, 197–214. doi: 10.1016/j.margeo.2018.06.005 DOI
Golubic S., Friedmann E. I., Schneider J. (1981). The lithobiontic ecological niche, with special reference to microorganisms. J. Sediment. Res. 51, 475–478. doi: 10.1306/212F7CB6-2B24-11D7-8648000102C1865D DOI
Gorbushina A. A. (2007). Life on the rocks. Environ. Microbiol. 9, 1613–1631. doi: 10.1111/j.1462-2920.2007.01301.x PubMed DOI
Grant C. S., Louda J. W. (2013). Scytonemin-imine, a mahogany-colored UV/Vis sunscreen of cyanobacteria exposed to intense solar radiation. Org. Geochem. 65, 29–36. doi: 10.1016/j.orggeochem.2013.09.014 DOI
Grünewald K., Hirschberg J., Hagen C. (2001). Ketocarotenoid biosynthesis outside of plastids in the unicellular green alga Haematococcus pluvialis. J. Biol. Chem. 276, 6023–6029. doi: 10.1074/jbc.M006400200, PMID: PubMed DOI
Horath T., Neu T., Bachofen R. (2006). An endolithic microbial community in dolomite rock in Central Switzerland: characterization by reflection spectroscopy, pigment analyses, scanning electron microscopy, and laser scanning microscopy. Microb. Ecol. 51, 353–364. doi: 10.1007/s00248-006-9051-y, PMID: PubMed DOI
Jehlička J., Culka A., Mareš J. (2019). Raman spectroscopic screening of cyanobacterial chasmoliths from crystalline gypsum—the Messinian crisis sediments from Southern Sicily. J. Raman Spectrosc. 51, 1802–1812. doi: 10.1002/jrs.5671 DOI
Jehlička J., Culka A., Nedbalová L. (2016). Colonization of snow by microorganisms as revealed using miniature Raman spectrometers—possibilities for detecting carotenoids of psychrophiles on Mars? Astrobiology 16, 913–924. doi: 10.1089/ast.2016.1487, PMID: PubMed DOI
Jehlička J., Edwards H. G. M., Oren A. (2014a). Raman spectroscopy of microbial pigments. Appl. Environ. Microbiol. 80, 3286–3295. doi: 10.1128/AEM.00699-14, PMID: PubMed DOI PMC
Jehlička J., Edwards H. G. M., Osterrothová K., Novotná J., Nedbalová L., Kopecký J., et al. . (2014b). Potential and limits of Raman spectroscopy for carotenoid detection in microorganisms: implications for astrobiology. Philos. Trans. A Math. Phys. Eng. Sci. 372:20140199. doi: 10.1098/rsta.2014.0199, PMID: PubMed DOI PMC
Johansen J. R., Hentschke G. S., Pietrasiak N., Rigonato J., Fiore M. F., Sant’Anna C. L. (2017). Komarekiella atlantica gen. et sp. nov. (Nostocaceae, Cyanobacteria): a new subaerial taxon from the Atlantic rainforest and Kauai, Hawaii. Fottea 17, 178–190. doi: 10.5507/fot.2017.002 DOI
Jung W., Campbell R. L., Gwak Y., Kim J. I., Davies P. L., Jin E. (2016). New cysteine-rich ice-binding protein secreted from Antarctic microalga, Chloromonas sp. PLoS One 11:e0154056. doi: 10.1371/journal.pone.0154056, PMID: PubMed DOI PMC
Katoh K., Standley D. M. (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780. doi: 10.1093/molbev/mst010, PMID: PubMed DOI PMC
Komárek J. (2013). “Cyanoprokaryota: 3rd part: heterocystous genera” in Süßwasserflora von Mitteleuropa, Bd 19 (3). eds. Büdel B., Gärtner G., Krienitz L., Schagerl M. (Berlin: Springer Spektrum; ), 1–1130.
Komárek J. (2016). A polyphasic approach for the taxonomy of cyanobacteria: principles and applications. Eur. J. Phycol. 51, 346–353. doi: 10.1080/09670262.2016.1163738 DOI
Komárek J., Anagnostidis K. (1999). “Cyanoprokaryota. I. Chroococcales” in Süßwasserflora von Mitteleuropa, Begründet von A. PascherBd, 19/3 Cyanoprokaryota, 1. Teil Chroococcales. eds. Ettl H., Gärtner G., Heynig H., Mollenhauer D. (Heidelberg: Spektrum Akademischer Verlag; ), 1–548.
Komárek J., Anagnostidis K. (2005). “Cyanoprokaryota. 2. Teil: Oscillatoriales” in Süßwasserflora von Mitteleuropa, Bd 19 (2). eds. Büdel B., Gärtner G., Krienitz L., Schagerl M. (München: Elsevier GmbH; ), 1–759.
Kurmayer R., Christiansen G., Holzinger A., Rott E. (2018). Single colony genetic analysis of epilithic stream algae of the genus Chamaesiphon spp. Hydrobiologia 811, 61–75. doi: 10.1007/s10750-017-3295-z, PMID: PubMed DOI PMC
Kuzmany H. (1980). Resonance Raman scattering from neutral and doped polyacetylene. Phys. Stat. Solid. B 97, 521–531. doi: 10.1002/pssb.2220970217 DOI
Lamprinou V., Hernández-Mariné M., Canals T., Kormas K., Economou-Amilli A., Pantazidou A. (2011). Morphology and molecular evaluation of Iphinoe spelaeobios gen. nov., sp. nov. and Loriellopsis cavernicola gen. nov., sp. nov., two stigonematalean cyanobacteria from Greek and Spanish caves. Int. J. Syst. Evol. Microbiol. 61, 2907–2915. doi: 10.1099/ijs.0.029223-0, PMID: PubMed DOI
Lara Y. J., McCann A., Malherbe C., François C., Demoulin C. F., Sforna M. C., et al. . (2022). Characterization of the halochromic Gloeocapsin pigment, a cyanobacterial biosignature for paleobiology and astrobiology. Astrobiology 22, 735–754. doi: 10.1089/ast.2021.0061, PMID: PubMed DOI
Maguregui M., Knuutinen U., Trebolazabala J., Morillas H., Castro K., Martinez-Arkarazo I., et al. . (2012). Use of in situ and confocal Raman spectroscopy to study the nature and distribution of carotenoids in brown patinas from a deteriorated wall painting in Marcus Lucretius house (Pompeii). Anal. Bioanal. Chem. 402, 1529–1539. doi: 10.1007/s00216-011-5276-9 PubMed DOI
Mareš J., Hrouzek P., Kaňa R., Ventura S., Strunecký O., Komárek J. (2013). The primitive thylakoid-less cyanobacterium Gloeobacter is a common rock-dwelling organism. PLoS One 8:e66323. doi: 10.1371/journal.pone.0066323, PMID: PubMed DOI PMC
Mareš J., Lara Y., Dadáková I., Hauer T., Uher B., Wilmotte A., et al. . (2015). Phylogenetic analysis of cultivation-resistant terrestrial cyanobacteria with massive sheaths (Stigonema spp. and Petalonema alatum, Nostocales, Cyanobacteria) using single-cell and filament sequencing of environmental samples. J. Phycol. 51, 288–297. doi: 10.1111/jpy.12273 PubMed DOI
Marotz C., Sharma A., Humphrey G., Gottel N., Daum C., Gilbert J. A., et al. . (2019). Triplicate PCR reactions for 16S rRNA gene amplicon sequencing are unnecessary. Biotechniques 67, 29–32. doi: 10.2144/btn-2018-0192, PMID: PubMed DOI PMC
Matsuzaki R., Kawai-Toyooka H., Hara Y., Nozaki H. (2015). Revisiting the taxonomic significance of aplanozygote morphologies of two cosmopolitan snow species of the genus Chloromonas (Volvocales, Chlorophyceae). Phycologia 54, 491–502. doi: 10.2216/15-33.1 DOI
McMurdie P. J., Holmes S. (2013). Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8:e61217. doi: 10.1371/journal.pone.0061217, PMID: PubMed DOI PMC
Meslier V., Casero M. C., Dailey M., Wierzchos J., Ascaso C., Artieda O., et al. . (2018). Fundamental drivers for endolithic microbial community assemblies in the hyperarid Atacama Desert. Environ. Microbiol. 20, 1765–1781. doi: 10.1111/1462-2920.14106, PMID: PubMed DOI
Miscoe L. H., Johansen J. R., Kociolek J. P., Lowe R. L., Vaccarino M. A., Pietrasiak N., et al. . (2016). The diatom flora and cyanobacteria from caves on Kauai, Hawaii. Acta Bot. Hung. 58, 3–4.
Nedbalová L., Mihál M., Kvíderová J., Procházková L., Řezanka T., Elster J. (2017). Identity, ecology and ecophysiology of planktic green algae dominating in ice-covered lakes on James Ross island (northeastern Antarctic peninsula). Extremophiles 21, 187–200. doi: 10.1007/s00792-016-0894-y, PMID: PubMed DOI
Němečková K., Culka A., Jehlička J. (2022). Detecting pigments from gypsum endoliths using Raman spectroscopy: from field prospection to laboratory studies. J. Raman Spectrosc. 53, 630–644. doi: 10.1002/jrs.6144 DOI
Němečková K., Culka A., Němec I., Edwards H. G. M., Mareš J., Jehlička J. (2021). Raman spectroscopic search for scytonemin and gloeocapsin in endolithic colonizations in large gypsum crystals. J. Raman Spectrosc. 52, 2633–2647. doi: 10.1002/jrs.6186 DOI
Němečková K., Jehlička J., Culka A. (2020). Fast screening of carotenoids of gypsum endoliths using portable Raman spectrometer (Messinian gypsum, Sicily). J. Raman Spectrosc. 51, 1127–1137. doi: 10.1002/jrs.5891 DOI
Oksanen J. (2009). Vegan: Community ecology package. R package version 1.15–14. Available at: http://CRAN.R-project.org/package=vegan.
Orellana G., Gómez-Silva B., Urrutia M., Galetović A. (2020). UV-A irradiation increases Scytonemin biosynthesis in Cyanobacteria inhabiting halites at Salar Grande, Atacama Desert. Microorganisms 8:1690. doi: 10.3390/microorganisms8111690, PMID: PubMed DOI PMC
Osterrothová K., Culka A., Němečková K., Kaftan D., Nedbalová L., Procházková L., et al. . (2019). Analyzing carotenoids of snow algae by Raman microspectroscopy and high-performance liquid chromatography. Spectrochim. Acta A Mol. Biomol. Spectrosc. 212, 262–271. doi: 10.1016/j.saa.2019.01.013, PMID: PubMed DOI
Parada A. E., Needham D. M., Fuhrman J. A. (2016). Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ. Microbiol. 18, 1403–1414. doi: 10.1111/1462-2920.13023 PubMed DOI
Pitonzo B. J., Amy P. S., Rudin M. (1999). Effect of gamma radiation on native endolithic microorganisms from a radioactive waste deposit site. Radiat. Res. 152, 64–70. doi: 10.2307/3580050, PMID: PubMed DOI
Posada D. (2008). jModelTest: phylogenetic model averaging. Mol. Biol. Evol. 25, 1253–1256. doi: 10.1093/molbev/msn083, PMID: PubMed DOI
Procházková L., Leya T., Křížková H., Nedbalová L. (2019). Sanguina nivaloides and Sanguina aurantia gen. et spp. nov. (Chlorophyta): the taxonomy, phylogeny, biogeography and ecology of two newly recognised algae causing red and orange snow. FEMS Microbiol. Ecol. 95:fiz064. doi: 10.1093/femsec/fiz064, PMID: PubMed DOI PMC
Quast C., Pruesse E., Yilmaz P., Gerken J., Schweer T., Yarza P., et al. . (2012). The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596. doi: 10.1093/nar/gks1219, PMID: PubMed DOI PMC
Rhind T., Ronholm J., Berg B., Mann P., Applin D., Stromberg J., et al. . (2014). Gypsum-hosted endolithic communities of the Lake St. Martin impact structure, Manitoba, Canada: spectroscopic detectability and implications for Mars. Int. J. Astrobiol. 13, 366–377. doi: 10.1017/S1473550414000378 DOI
R Core Team . (2021). R: A language and environment for statistical computing. Vienna, Austria. Available at: http://www.R-project.org/
Rstudio Team . (2021). RStudio: Integrated Development Environment for R. Boston, MA. Available at: http://www.rstudio.com/
Rott E., Holzinger A., Gesierich D., Kofler W., Sanders D. (2010). Cell morphology, ultrastructure, and calcification pattern of Oocardium stratum, a peculiar lotic desmid. Protoplasma 243, 39–50. doi: 10.1007/s00709-009-0050-y, PMID: PubMed DOI
Sanmartín P., DeAraujo A., Vasanthakumar A. (2018). Melding the old with the new: trends in methods used to identify, monitor, and control microorganisms on cultural heritage materials. Microb. Ecol. 76, 64–80. doi: 10.1007/s00248-016-0770-4, PMID: PubMed DOI
Segawa T., Matsuzaki R., Takeuchi N., Akiyoshi A., Navarro F., Sugiyama S., et al. . (2018). Bipolar dispersal of red-snow algae. Nat. Commun. 9:3094. doi: 10.1038/s41467-018-05521-w, PMID: PubMed DOI PMC
Smith H. D., Baqué M., Duncan A. G., Lloyd C. R., McKay C. P., Billi D. (2014). Comparative analysis of cyanobacteria inhabiting rocks with different light transmittance in the Mojave Desert: a Mars terrestrial analogue. Int. J. Astrobiol. 13, 271–277. doi: 10.1017/S1473550414000056 DOI
Sorrels C. M., Proteau P. J., Gerwick W. H. (2009). Organization, evolution, and expression analysis of the biosynthetic gene cluster for scytonemin, a cyanobacterial UV-absorbing pigment. Appl. Environ. Microbiol. 75, 4861–4869. doi: 10.1128/AEM.02508-08, PMID: PubMed DOI PMC
Stamatakis A. (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313. doi: 10.1093/bioinformatics/btu033, PMID: PubMed DOI PMC
Stivaletta N., Lopez-Garcia P., Boihem L., Millie D. F., Barbieri R. (2010). Biomarkers of endolithic communities within gypsum crusts (southern Tunisia). Geomicrobiol. J. 27, 101–110. doi: 10.1080/01490450903410431 DOI
Storme J.-Y., Golubic S., Wilmotte A., Kleinteich J., Velázquez D., Javaux E. J. (2015). Raman characterization of the UV-protective pigment gloeocapsin and its role in the survival of cyanobacteria. Astrobiology 15, 843–857. doi: 10.1089/ast.2015.1292, PMID: PubMed DOI
Strunecký O., Ivanova A. P., Mareš J. (2022). An updated classification of cyanobacterial orders and families based on phylogenomic and polyphasic analysis. J. Phycol. 59, 12–51. doi: 10.1111/jpy.13304 PubMed DOI
Tang Y., Lian B., Dong H., Liu D., Hou W. (2012). Endolithic bacterial communities in dolomite and limestone rocks from the Nanjiang canyon in Guizhou karst area (China). Geomicrobiol. J. 29, 213–225. doi: 10.1080/01490451.2011.558560 PubMed DOI
Taton A., Grubisic S., Brambilla E., De Wit R., Wilmotte A. (2003). Cyanobacterial diversity in natural and artificial microbial mats of Lake Fryxell (McMurdo Dry Valleys, Antarctica): a morphological and molecular approach. Appl. Environ. Microbiol. 69, 5157–5169. doi: 10.1128/AEM.69.9.5157-5169.2003 PubMed DOI PMC
Villar S. E. J., Edwards H. G. M., Cockell C. S. (2005). Raman spectroscopy of endoliths from Antarctic cold desert environments. Analyst 130, 156–162. doi: 10.1039/b410854j, PMID: PubMed DOI
Vítek P., Ascaso C., Artieda O., Casero M. C., Wierzchos J. (2017). Discovery of carotenoid red-shift in endolithic cyanobacteria from the Atacama Desert. Sci. Rep. 7:11116. doi: 10.1038/s41598-017-11581-7, PMID: PubMed DOI PMC
Vítek P., Ascaso C., Artieda O., Casero M. C., Wierzchos J. (2020). Raman imaging of microbial colonization in rock—some analytical aspects. Anal. Bioanal. Chem. 412, 3717–3726. doi: 10.1007/s00216-020-02622-8, PMID: PubMed DOI
Vítek P., Jehlička J., Ascaso C., Mašek V., Gómez-Silva B., Olivares H., et al. . (2014b). Distribution of scytonemin in endolithic microbial communities from halite crusts in the hyperarid zone of the Atacama Desert, Chile. FEMS Microbiol. Ecol. 90, 351–366. doi: 10.1111/1574-6941.12387, PMID: PubMed DOI
Vítek P., Jehlička J., Edwards H. G. M., Hutchinson I., Ascaso C., Wierzchos J. (2012). The miniaturized Raman system and detection of traces of life in halite from the Atacama desert: some considerations for the search for life signatures on Mars. Astrobiology 12, 1095–1099. doi: 10.1089/ast.2012.0879, PMID: PubMed DOI PMC
Vítek P., Jehlicka J., Edwards H. G. M., Hutchinson I., Ascaso C., Wierzchos J. (2014a). Miniaturized Raman instrumentation detects carotenoids in Mars-analogue rocks from the Mojave and Atacama deserts. Philos. Trans. A Math. Phys. Eng. Sci. 372:20140196. doi: 10.1098/rsta.2014.0196, PMID: PubMed DOI
Walker J. J., Pace N. R. (2007). Endolithic microbial ecosystems. Annu. Rev. Microbiol. 61, 331–347. doi: 10.1146/annurev.micro.61.080706.093302 PubMed DOI
Wegley L., Edwards R., Rodriguez-Brito B., Liu H., Rohwer F. (2007). Metagenomic analysis of the microbial community associated with the coral Porites astreoides. Environ. Microbiol. 9, 2707–2719. doi: 10.1111/j.1462-2920.2007.01383.x, PMID: PubMed DOI
Whitton B. A. (2012). Ecology of cyanobacteria II: their diversity in space and time. Dorddrecht: Springer Science and Business Media.
Wierzchos J., Ascaso C., McKay C. P. (2006). Endolithic cyanobacteria in halite rocks from the hyperarid core of the Atacama Desert. Astrobiology 6, 415–422. doi: 10.1089/ast.2006.6.415, PMID: PubMed DOI
Wierzchos J., Casero M. C., Artieda O., Ascaso C. (2018). Endolithic microbial habitats as refuges for life in polyextreme environment of the Atacama Desert. Curr. Opin. Microbiol. 43, 124–131. doi: 10.1016/j.mib.2018.01.003, PMID: PubMed DOI
Wierzchos J., DiRuggiero J., Vítek P., Artieda O., Souza-Egipsy V., Škaloud P., et al. . (2015). Adaptation strategies of endolithic chlorophototrophs to survive the hyperarid and extreme solar radiation environment of the Atacama Desert. Front. Microbiol. 6:934. doi: 10.3389/fmicb.2015.00934, PMID: PubMed DOI PMC
Withnall R., Chowdhry B. Z., Silver J., Edwards H. G. M., de Oliveira L. F. (2003). Raman spectra of carotenoids in natural products. Spectrochim. Acta A Mol. Biomol. Spectrosc. 59, 2207–2212. doi: 10.1016/s1386-1425(03)00064-7, PMID: PubMed DOI
Wong F. K., Lau M. C., Lacap D. C., Aitchison J. C., Cowan D. A., Pointing S. B. (2010). Endolithic microbial colonization of limestone in a high-altitude arid environment. Microb. Ecol. 59, 689–699. doi: 10.1007/s00248-009-9607-8 PubMed DOI
Yung C. C., Chan Y., Lacap D. C., Pérez-Ortega S., de los Rios-Murillo A., Lee C. K., et al. . (2014). Characterization of chasmoendolithic community in miers valley, Mcmurdo dry valleys, Antarctica. Microb. Ecol. 68, 351–359. doi: 10.1007/s00248-014-0412-7 PubMed DOI
Zapomělová E., Hisem D., Řeháková K., Hrouzek P., Jezberová J., Komárková J., et al. . (2008). Experimental comparison of phenotypical plasticity and growth demands of two strains from the Anabaena circinalis/A. crassa complex (cyanobacteria). J. Plankton Res. 30, 1257–1269. doi: 10.1093/plankt/fbn081 DOI
Ziolkowski L., Mykytczuk N., Omelon C., Johnson H., Whyte L., Slater G. (2013). Arctic gypsum endoliths: a biogeochemical characterization of a viable and active microbial community. Biogeosciences 10, 7661–7675. doi: 10.5194/bg-10-7661-2013 DOI
Microbial colonization of gypsum: from the fossil record to the present day