Detection of pigments of halophilic endoliths from gypsum: Raman portable instrument and European Space Agency's prototype analysis
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články
PubMed
25368354
PubMed Central
PMC4223862
DOI
10.1098/rsta.2014.0203
PII: rsta.2014.0203
Knihovny.cz E-zdroje
- Klíčová slova
- Mars, Raman, gypsum, halophiles, pigments, prototype,
- Publikační typ
- časopisecké články MeSH
A prototype instrument, under development at the University of Leicester, for the future European Space Agency (ESA) ExoMars mission, was used for the analysis of microbial pigments within a stratified gypsum crust from a hypersaline saltern evaporation pond at Eilat (Israel). Additionally, the same samples were analysed using a miniaturized Raman spectrometer, featuring the same 532 nm excitation. The differences in the position of the specific bands, attributed to carotenoid pigments from different coloured layers, were minor when analysed by the ESA prototype instrument; therefore, making it difficult to distinguish among the different pigments. The portable Delta Nu Advantage instrument allowed for the discrimination of microbial carotenoids from the orange/green and purple layers. The purpose of this study was to complement previous laboratory results with new data and experience with portable or handheld Raman systems, even with a dedicated prototype Raman system for the exploration of Mars. The latter is equipped with an excitation wavelength falling within the carotenoid polyene resonance region. The ESA prototype Raman instrument detected the carotenoid pigments (biomarkers) with ease, although further detailed distinctions among them were not achieved.
Department of Physics and Astronomy University of Leicester Leicester UK
Division of Chemical and Forensic Sciences University of Bradford Bradford BD7 1DP UK
Zobrazit více v PubMed
Russell NC, Edwards HGM, Wynn-Williams DD. 1998. FT-Raman spectroscopic analysis of endolithic microbial communities from beacon sandstone in Victoria Land, Antarctica. Antarct. Sci. 10, 63–74. (10.1017/S0954102098000091) DOI
Wynn-Williams DD, Edwards HGM. 2000. Antarctic ecosystems as models for extraterrestrial surface habitats. Planet. Space Sci. 48, 1065–1075. (10.1016/s0032-0633(00)00080-5) DOI
Wynn-Williams DD, Edwards HGM. 2000. Proximal analysis of regolith habitats and protective biomolecules in situ by laser Raman spectroscopy: Overview of terrestrial Antarctic habitats and Mars analogs. Icarus 144, 486–503. (10.1006/icar.1999.6307) DOI
Edwards HGM, Moody CD, Newton EM, Villar SEJ, Russell MJ. 2005. Raman spectroscopic analysis of cyanobacterial colonization of hydromagnesite, a putative Martian extremophile. Icarus 175, 372–381. (10.1016/j.icarus.2004.12.006) DOI
Villar SEJ, Edwards HGM, Cockell CS. 2005. Raman spectroscopy of endoliths from Antarctic cold desert environments. Analyst 130, 156–162. (10.1039/b410854j) PubMed DOI
Marshall CP, Carter EA, Leuko S, Javaux EJ. 2006. Vibrational spectroscopy of extant and fossil microbes: relevance for the astrobiological exploration of Mars. Vib. Spectrosc. 41, 182–189. (10.1016/j.vibspec.2006.01.008) DOI
Vítek P, Jehlička J, Edwards HGM, Osterrothová K. 2009. Identification of β-carotene in an evaporitic matrix-evaluation of Raman spectroscopic analysis for astrobiological research on Mars. Anal. Bioanal. Chem. 393, 1967–1975. (10.1007/s00216-009-2677-0) PubMed DOI
Osterrothová K, Jehlička J. 2009. Raman spectroscopic identification of usnic acid in hydrothermal minerals as a potential Martian analogue. Spectrochim. Acta, Part A 73, 576–580. (10.1016/j.saa.2008.09.005) PubMed DOI
Culka A, Jehlička J. 2010. Raman microspectrometric investigation of urea in calcite and gypsum powder matrices. J. Raman Spectrosc. 41, 1743–1747. (10.1002/Jrs.2643) DOI
Edwards HGM, Hutchinson IB, Ingley R, Parnell J, Vítek P, Jehlička J. 2013. Raman spectroscopic analysis of geological and biogeological specimens of relevance to the ExoMars mission. Astrobiology 13, 543–549. (10.1089/ast.2012.0872) PubMed DOI PMC
Vandenabeele P, Jehlička J, Vítek P, Edwards HGM. 2012. On the definition of Raman spectroscopic detection limits for the analysis of biomarkers in solid matrices. Planet. Space Sci. 62, 48–54. (10.1016/j.pss.2011.12.006) DOI
Jehlička J, Oren A, Edwards HGM. 2012. Raman spectra of osmotic solutes of halophiles. J. Raman Spectrosc. 43, 1134–1140. (10.1002/Jrs.3136) DOI
Jehlička J, Oren A, Vítek P. 2012. Use of Raman spectroscopy for identification of compatible solutes in halophilic bacteria. Extremophiles 16, 507–514. (10.1007/s00792-012-0450-3) PubMed DOI
Litchfield CD, Oren A. 2001. Polar lipids and pigments as biomarkers for the study of the microbial community structure of solar salterns. Hydrobiologia 466, 81–89. (10.1023/A:1014517501817) DOI
Simoneit BRT. 2004. Biomarkers (molecular fossils) as geochemical indicators of life. Space life sciences: search for signatures of life, and space flight environmental effects on the nervous system?. Adv. Space Res. 33, 1255–1261. (10.1016/j.asr.2003.04.045) PubMed DOI
Edwards HGM, Hutchinson IB, Ingley R. 2013. A Raman spectral signatures in the biogeological record: an astrobiological challenge. In habitability of other planets and satellites (eds de Vera J-P, Seckbach J.), pp. 311–330. The Netherlands: Springer.
Marshall AO, Emry JR, Marshall CP. 2012. Multiple generations of carbon in the Apex Chert and implications for preservation of microfossils. Astrobiology 12, 160–166. (10.1089/ast.2011.0729) PubMed DOI PMC
Jehlička J, Culka A, Vandenabeele P, Edwards HGM. 2011. Critical evaluation of a handheld Raman spectrometer with near infrared (785 nm) excitation for field identification of minerals. Spectrochim. Acta Part A 80, 36–40. (10.1016/j.saa.2011.01.005) PubMed DOI
Jehlička J, Vítek P, Edwards HGM, Hargreaves MD, Capoun T. 2009. Fast detection of sulphate minerals (gypsum, anglesite, baryte) by a portable Raman spectrometer. J. Raman Spectrosc. 40, 1082–1086. (10.1002/Jrs.2246) DOI
Jehlička J, Vítek P, Edwards HGM, Hargreaves M, Capoun T. 2009. Rapid outdoor non-destructive detection of organic minerals using a portable Raman spectrometer. J. Raman Spectrosc. 40, 1645–1651. (10.1002/Jrs.2313) DOI
Marshall AO, Marshall CP. 2013. Field-based Raman spectroscopic analyses of an Ordovician stromatolite. Astrobiology 13, 814–820. (10.1089/ast.2013.1026) PubMed DOI
Culka A, Jehlička J, Capoun T. 2014. Outdoor use of mobile Raman spectrometers to study the solutions and ices of amino acids. J. Raman Spectrosc. 45, 179–187. (10.1002/Jrs.4432) DOI
Culka A, Jehlička J, Strnad L. 2012. Testing a portable Raman instrument: the detection of biomarkers in gypsum powdered matrix under gypsum crystals. Spectrochim. Acta, Part A 86, 347–350. (10.1016/j.saa.2011.10.047) PubMed DOI
Jehlička J, Edwards HGM, Culka A. 2010. Using portable Raman spectrometers for the identification of organic compounds at low temperatures and high altitudes: exobiological applications. Phil. Trans. R. Soc. A 368, 3109–3125. (10.1098/rsta.2010.0075) PubMed DOI
Vítek P, Ali EMA, Edwards HGM, Jehlička J, Cox R, Page K. 2012. Evaluation of portable Raman spectrometer with 1064 nm excitation for geological and forensic applications. Spectrochim. Acta, Part A 86, 320–327. (10.1016/j.saa.2011.10.043) PubMed DOI
Vítek P, Jehlička J, Edwards HGM, Hutchinson I, Ascaso C, Wierzchos J. 2012. The miniaturized Raman system and detection of traces of life in halite from the Atacama Desert: some considerations for the search for life signatures on Mars. Astrobiology 12, 1095–1099. (10.1089/ast.2012.0879) PubMed DOI PMC
Jehlička J, Oren A. 2013. Use of a handheld Raman spectrometer for fast screening of microbial pigments in cultures of halophilic microorganisms and in microbial communities in hypersaline environments in nature. J. Raman Spectrosc. 44, 1285–1291. (10.1002/Jrs.4362) DOI
Wang A, Haskin LA, Cortez E. 1998. Prototype Raman spectroscopic sensor for in situ mineral characterization on planetary surfaces. Appl. Spectrosc. 52, 477–487. (10.1366/0003702981943842) DOI
Dickensheets DL, Wynn-Williams DD, Edwards HGM, Schoen C, Crowder C, Newton EM. 2000. A novel miniature confocal microscope/Raman spectrometer system for biomolecular analysis on future Mars missions after Antarctic trials. J. Raman Spectrosc. 31, 633–635. (10.1002/1097-4555(200007)31:7<633::aid-jrs620>3.0.co;2-r) DOI
Edwards HGM, Newton EM, Dickensheets DL, Wynn-Williams DD. 2003. Raman spectroscopic detection of biomolecular markers from Antarctic materials: evaluation for putative Martian habitats. Spectrochim. Acta, Part A 59, 2277–2290. (10.1016/s1386-1425(03)00071-4) PubMed DOI
Edwards HGM, Hutchinson I, Ingley R. 2012. The ExoMars Raman spectrometer and the identification of biogeological spectroscopic signatures using a flight-like prototype. Anal. Bioanal. Chem. 404, 1723–1731. (10.1007/s00216-012-6285-z) PubMed DOI
Oren A, Kühl M, Karsten U. 1995. An endoevaporitic microbial mat within a gypsum crust: zonation of phototrophs, photopigments, and light penetration. Mar. Ecol. Progr. Series 128, 151–159. (10.3354/meps128151) DOI
Canfield DE, Sørensen KB, Oren A. 2004. Biogeochemistry of a gypsum-encrusted microbial ecosystem. Geobiology 2, 133–150. (10.1111/j.1472-4677.2004.00029.x) DOI
Sørensen KB, Canfield DE, Oren A. 2004. Salinity responses of benthic microbial communities in a solar saltern (Eilat, Israel). Appl. Environ. Microbiol. 70, 1608–1616. (10.1128/aem.70.3.1608-1616.2004) PubMed DOI PMC
Oren A, Sørensen KB, Canfield DE, Teske AP, Ionescu D, Lipski A, Altendorf K. 2009. Microbial communities and processes within a hypersaline gypsum crust in a saltern evaporation pond (Eilat, Israel). Hydrobiologia 626, 15–26. (10.1007/s10750-009-9734-8) DOI
Sørensen KB, Canfield DE, Teske AP, Oren A. 2005. Community composition of a hypersaline endoevaporitic microbial mat. Appl. Environ. Microbiol. 71, 7352–7365. (10.1128/aem.71.11.7352-7365.2005) PubMed DOI PMC
Řeháková K, Zapomêlová E, Práŝil O, Veselá J, Medová H, Oren A. 2009. Composition changes of phototrophic microbial communities along the salinity gradient in the solar saltern evaporation ponds of Eilat, Israel. Hydrobiologia 636, 77–88. (10.1007/s10750-009-9936-0) DOI
Sørensen K, Řeháková K, Zapomêlová E, Oren A. 2009. Distribution of benthic phototrophs, sulfate reducers, and methanogens in two adjacent saltern evaporation ponds in Eilat, Israel. Aquat. Microb. Ecol. 56, 275–284. (10.3354/ame01307) DOI
Práŝil O, Bina D, Medová H, Řeháková K, Zapomêlová E, Veselá J, Oren A. 2009. Emission spectroscopy and kinetic fluorometry studies of phototrophic microbial communities along a salinity gradient in solar saltern evaporation ponds of Eilat, Israel. Aquat. Microb. Ecol. 56, 285–296. (10.3354/ame01311) DOI
Oren A, Elevi Bardavid R, Kandel N, Aizenshtat Z, Jehlička J. 2013. Glycine betaine is the main organic osmotic solute in a stratified microbial community in a hypersaline evaporitic gypsum crust. Extremophiles 17, 445–451. (10.1007/s00792-013-0522-z) PubMed DOI
Jehlička J, Oren A. 2013. Raman spectroscopy in halophile research. Front. Microbiol. 4, 380 (10.3389/fmicb.2013.00380) PubMed DOI PMC
Nübel U, Garcia-Pichel F, Muyzer G. 2000. The halotolerance and phylogeny of Cyanobacteria with tightly coiled trichomes (Spirulina Turpin) and the description of Halospirulina tapeticola gen. nov., sp nov. Int. J. Syst. Evol. Microbiol. 50, 1265–1277. (10.1099/00207713-50-3-1265) PubMed DOI
Inagaki F, Tasumi M, Miyazawa T. 1974. Excitation profile of resonance Raman effect of β-carotene. J. Mol. Spectrosc. 50, 286–303. (10.1016/0022-2852(74)90236-7) DOI
Merlin JC. 1985. Resonance Raman spectroscopy of carotenoids and carotenoid-containing systems. Pure Appl. Chem. 57, 785–792. (10.1351/pac198557050785) DOI
Marshall CP, Leuko S, Coyle CM, Walter MR, Burns BP, Neilan BA. 2007. Carotenoid analysis of halophilic archaea by resonance Raman spectroscopy. Astrobiology 7, 631–643. (10.1089/ast.2006.0097) PubMed DOI
Microbial colonization of gypsum: from the fossil record to the present day
Discovery of carotenoid red-shift in endolithic cyanobacteria from the Atacama Desert