Raman spectroscopy in halophile research
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
24339823
PubMed Central
PMC3857566
DOI
10.3389/fmicb.2013.00380
Knihovny.cz E-zdroje
- Klíčová slova
- Raman spectroscopy, carotenoids, compatible solutes, gypsum crusts, halophilic, salterns,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Raman spectroscopy plays a major role in robust detection of biomolecules and mineral signatures in halophile research. An overview of Raman spectroscopic investigations in halophile research of the last decade is given here to show advantages of the approach, progress made as well as limits of the technique. Raman spectroscopy is an excellent tool to monitor and identify microbial pigments and other biomolecules in extant and extinct halophile biomass. Studies of bottom gypsum crusts from salterns, native evaporitic sediments, halite inclusions, and endoliths as well as cultures of halophilic microorganisms permitted to understand the content, distribution, and behavior of important molecular species. The first papers describing Raman spectroscopic detection of microbiological and geochemical key markers using portable instruments are highlighted as well.
Zobrazit více v PubMed
Antón J., Oren A., Benlloch S., Rodríguez-Valera F., Amann R., Rosselló-Móra R. (2002). Salinibacter ruber gen. nov., sp. nov., a novel extreme halophilic member of the Bacteria from saltern crystallizer ponds. Int. J. Syst. Evol. Microbiol. 52, 485–491 10.1099/ijs.0.01913-0 PubMed DOI
De Gelder J., de Gussem K., Vandenabeele P., Moens L. (2007). Reference database of Raman spectra of biological molecules. J. Raman Spectrosc. 38, 1133–1147 10.1002/jrs.1734 DOI
de los Ríos A., Valea S., Ascaso C., Davila A., Kaštovský J., McKay C. P., et al. (2010). Comparative analysis of the microbial communities inhabiting halite evaporites of the Atacama Desert. Int. Microbiol. 13, 79–89 10.2436/20.1501.01.113 PubMed DOI
Edwards H. G. M., Garcia-Pichel F., Newton E. M., Wynn-Williams D. D. (2000). Vibrational Raman spectroscopic study of scytonemin, the UV-protective cyanobacterial pigment. Spectrochim. Acta A 56, 193–200 10.1016/S1386-1425(99)00218-8 PubMed DOI
Edwards H. G. M., Hutchinson I. B., Ingley R., Parnell J., Vítek P., Jehlička J. (2013). Raman spectroscopic analysis of geological and biogeological specimens of relevance to the ExoMars mission. Astrobiology 13, 543–549 10.1089/ast.2012.0872 PubMed DOI PMC
Edwards H. G. M., Jorge Villar S. E., Parnell J., Cockell C. S., Lee P. (2005). Raman spectroscopic analysis of cyanobacterial gypsum halotrophs and relevance for sulfate deposits on Mars. Analyst 130, 917–923 10.1039/b503533c PubMed DOI
Fendrihan S., Musso M., Stan-Lotter H. (2009). Raman spectroscopy as a potential method for the detection of extremely halophilic archaea embedded in halite in terrestrial and possibly extraterrestrial samples. J. Raman Spectrosc. 40, 1996–2003 10.1002/jrs.2357 PubMed DOI PMC
Galinski E. A. (1995). Osmoadaptation in bacteria. Adv. Microb. Physiol. 37, 272–328 10.1016/S0065-2911(08)60148-4 PubMed DOI
Galinski E. A., Oren A. (1991). Isolation and structure determination of a novel compatible solute from the moderately halophilic purple sulfur bacterium Ectothiorhodospira marismortui. Eur. J. Biochem. 198, 593–598 10.1111/j.1432-1033.1991.tb16055.x PubMed DOI
Galinski E. A., Pfeiffer H.-P., Trüper H. G. (1985). 1,4,5,6-tetrahydro-2-methyl-4-pyrimidinecarboxylic acid. A novel cyclic amino acid from halophilic phototrophic bacteria of the genus Ectothiorhodospira. Eur. J. Biochem. 149, 135–139 10.1111/j.1432-1033.1985.tb08903.x PubMed DOI
Hagemann M. (2011). Molecular biology of cyanobacterial salt acclimation. FEMS Microbiol. Rev. 35, 87–123 10.1111/j.1574-6976.2010.00234.x PubMed DOI
Ilczyszyn M. M., Ratajczak H. (1996). Polarized vibrational spectra of betaine monohydrate single crystal. Vibrat. Spectrosc. 10, 177–184 10.1016/0924-2031(95)00040-2 PubMed DOI
Imhoff J. F., Rodriguez-Valera F. (1984). Betaine is the main compatible solute of halophilic eubacteria. J. Bacteriol. 160, 478–479 PubMed PMC
Jehlička J., Edwards H. G. M. (2008). Raman spectroscopy as a tool for the non-destructive identification of organic minerals in the geological record. Org. Geochem. 39, 371–386 10.1016/j.orggeochem.2008.01.005 DOI
Jehlička J., Oren A. (2013). Use of a handheld Raman spectrometer for fast screening of microbial pigments in cultures of halophilic microorganisms and in microbial communities in hypersaline environments in nature. J. Raman Spectrosc. 43, 1285–1291 10.1002/jrs.4362 DOI
Jehlička J., Oren A., Edwards H. G. M. (2012a). Raman spectra of compatible osmotic solutes of halophiles. J. Raman Spectrosc. 43, 1134–1140 10.1002/jrs.3136 DOI
Jehlička J., Oren A., Vítek P. (2012b). Use of Raman spectroscopy for identification of compatible solutes in halophilic bacteria. Extremophiles 16, 507–514 10.1007/s00792-012-0450-3 PubMed DOI
Jehlička J., Oren A., Edwards H. G. M. (2013). Bacterioruberin and salinixanthin carotenoids of extremely halophilic Archaea and Bacteria: a Raman spectroscopic study. Spectrochim. Acta A 106, 99–103 10.1016/j.saa.2012.12.081 PubMed DOI
Jehlička J., Vitek P., Oren A., Edwards H. G. M. (2011). Raman spectroscopic identification of evaporitic minerals and biomarkers using miniaturised portable devices. Mineral. Mag. 75, 1107 ISSN: 0026-461X.
Lutnæs B. F., Oren A., Liaaen-Jensen S. (2002). New C40-carotenoid acyl glycoside as principal carotenoid of Salinibacter ruber, an extremely halophilic eubacterium. J. Nat. Prod. 65, 1340–1343 10.1021/np020125c PubMed DOI
Mackay M. A., Norton R. S., Borowitzka L. J. (1984). Organic osmoregulatory solutes in cyanobacteria. J. Gen. Microbiol. 130, 2177–2191 10.1099/00221287-130-9-2177 DOI
Marshall C. P., Leuko S., Coyle C. M., Walter M. R., Burns B. P., Neilan B. A. (2007). Carotenoid analysis of halophilic Archaea by resonance Raman Spectroscopy. Astrobiology 7, 631–643 10.1089/ast.2006.0097 PubMed DOI
Merlin J. C. (1985). Resonance Raman spectroscopy of carotenoids and carotenoid-containing systems. Pure Appl. Chem. 57, 785–792 10.1351/pac198557050785 DOI
Oren A. (1988). “The microbial ecology of the Dead Sea,” in Advances in Microbial Ecology, Vol. 10, ed Marshall K. C. (New York, NY: Plenum Publishing Company; ), 193–229 10.1007/978-1-4684-5409-3_6 DOI
Oren A. (2009). “Microbial diversity and microbial abundance in salt-saturated brines: why are the waters of hypersaline lakes red?” in Saline Lakes Around the World: Unique Systems with Unique Values, eds Oren A., Naftz D. L., Palacios P., Wurtsbaugh W. A. (Salt Lake City: Utah State University, The S. J. and Jessie E. Quinney Natural Resources Research Library, College of Natural Resources; ), 247–255
Oren A. (2011). “Characterization of pigments of prokaryotes and their use in taxonomy and classification,” in Taxonomy of Prokaryotes - Methods in Microbiology, Vol. 38, eds Rainey F. A., Oren A. (Amsterdam: Elsevier/Academic Press; ), 262–283 10.1016/B978-0-12-387730-7.00012-7 DOI
Oren A. (2013a). “The family Halobacteriaceae,” in The Prokaryotes. A Handbook on the Biology of Bacteria: Ecophysiology and Biochemistry, 4th Edn., eds Rosenberg E., DeLong E. F., Thompson F., Lory S., Stackebrandt E. (New York, NY: Springer; ).
Oren A. (2013b). “Life at high salt concentrations,” in The Prokaryotes. A Handbook on the Biology of Bacteria: Ecophysiology and Biochemistry, 4th Edn., eds Rosenberg E., DeLong E. F., Thompson F., Lory S., Stackebrandt E. (New York, NY: Springer; ).
Oren A. (2013c). Salinibacter, an extremely halophilic bacterium with archaeal properties. FEMS Microbiol. Lett. 342, 1–9 10.1111/1574-6968.12094 PubMed DOI
Oren A., Dubinsky Z. (1994). On the red coloration of saltern crystallizer ponds. II. Additional evidence for the contribution of halobacterial pigments. Int. J. Salt Lake Res. 3, 9–13 10.1007/BF01990638 DOI
Oren A., Elevi Bardavid R., Kandel N., Aizenshtat Z., Jehlička J. (2013). Glycine betaine is the main organic osmotic solute in a stratified microbial community in a hypersaline evaporitic gypsum crust. Extremophiles 17, 445–451 10.1007/s00792-013-0522-z PubMed DOI
Oren A., Kühl M., Karsten U. (1995). An endoevaporitic microbial mat within a gypsum crust: zonation of phototrophs, photopigments, and light penetration. Mar. Ecol. Prog. Ser. 128, 151–159 10.3354/meps128151 DOI
Oren A., Rodríguez-Valera F. (2001). The contribution of Salinibacter species to the red coloration of saltern crystallizer ponds. FEMS Microbiol. Ecol. 36, 123–130 PubMed
Oren A., Sørensen K. B., Canfield D. E., Teske A. P., Ionescu D., Lipski A., et al. (2009). Microbial communities and processes within a hypersaline gypsum crust in a saltern evaporation pond (Eilat, Israel). Hydrobiologia 626, 15–26 10.1007/s10750-009-9734-8 DOI
Osterrothová K., Jehlička J. (2011). Investigation of biomolecules trapped in fluid inclusions inside halite crystals by Raman spectroscopy. Spectrochim. Acta A 83, 288–296 10.1016/j.saa.2011.08.032 PubMed DOI
Post F. J. (1977). The microbial ecology of the Great Salt Lake. Microb. Ecol. 3, 143–165 10.1007/BF02010403 PubMed DOI
Roberts M. F. (2000). Osmoadaptation and osmoregulation in Archaea. Front. Biosci. 5, d796–d812 10.2741/roberts PubMed DOI
Roberts M. F. (2006). “Characterization of organic compatible solutes of halotolerant and halophilic microorganisms,” in Extremophiles - Methods in Microbiology, Vol. 35, eds Rainey F. A., Oren A. (Amsterdam: Elsevier/Academic Press; ), 615–627
Rösch P., Schmitt M., Kiefer W., Popp J. (2003). The identification of microorganisms by micro-Raman spectroscopy. J. Mol. Struct. 661–662, 363–369. 10.1016/j.molstruc.2003.06.004 DOI
Schmitt M., Popp J. (2006). Raman spectroscopy at the beginning of the twenty-first century. J. Raman Spectrosc. 37, 20–28 10.1002/jrs.1486 DOI
Schrader B., Klump H. H., Schenzel K., Schulz H. (1999). Non-destructive NIR FT Raman analysis of plants. J. Mol. Struct. 509, 201–212 10.1016/S0022-2860(99)00221-5 DOI
Schubert B. A., Lowenstein T. K., Timofeeff M. N. (2009). Microscopic identification of prokaryotes in modern and ancient halite, Saline Valley and Death Valley, California. Astrobiology 9, 467–482 10.1089/ast.2008.0282 PubMed DOI
Severin J., Wohlfarth A., Galinski E. A. (1992). The predominant role of recently discovered tetrahydropyrimidines for the osmoadaptation of halophilic eubacteria. J. Gen. Microbiol. 138, 1629–1638 10.1099/00221287-138-8-1629 DOI
Vítek P., Cámara-Gallego B., Edwards H. G. M., Jehlička J., Ascaso C., Wierzchos J. (2013). Phototrophic community in gypsum crust from the Atacama Desert studied by Raman spectroscopy and microscopic imaging. Geomicrobiol. J. 30, 399–410 10.1080/01490451.2012.697976 DOI
Vítek P., Edwards H. G. M., Jehlička J., Ascaso C., De los Ríos A., Valea S., et al. (2010). Microbial colonization of halite from the hyper-arid Atacama desert studied by Raman spectroscopy. Philos. Trans. A Math. Phys. Eng. Sci. 368, 3205–3221 10.1098/rsta.2010.0059 PubMed DOI
Vítek P., Jehlička J., Edwards H. G. M., Hutchinson I., Ascaso C., Wierzchos J. (2012). The miniaturized Raman system and detection of traces of life in halite from the Atacama Desert: some considerations for the search for life signatures on Mars. Astrobiology 12, 1095–1099 10.1089/ast.2012.0879 PubMed DOI PMC
Vítek P., Jehlička J., Edwards H. G. M., Osterrothová K. (2009). Identification of β-carotene in an evaporitic matrix—evaluation of Raman spectroscopic analysis for astrobiological research on Mars. Anal. Bioanal. Chem. 393, 1967–1975 10.1007/s00216-009-2677-0 PubMed DOI
Welsh D. T. (2000). Ecological significance of compatible solute accumulation by micro-organisms: from single cells to global climate. FEMS Microbiol. Rev. 24, 263–290 10.1111/j.1574-6976.2000.tb00542.x PubMed DOI
Wierzchos J., Ascaso C., McKay C. P. (2006). Endolithic cyanobacteria in halite rocks from the hyperarid core of the Atacama Desert. Astrobiology 6, 415–422 10.1089/ast.2006.6.415 PubMed DOI
Winters Y. D., Lowenstein T. K., Timofeff M. N. (2013). Identification of Carotenoids in Ancient Salt from Death Valley, Saline Valley, and Searles Lake, California using Laser Raman Spectroscopy. Astrobiology 13, 1065–1080 10.1089/ast.2012.0952 PubMed DOI
Wohlfarth A., Severin J., Galinski E. A. (1990). The spectrum of compatible solutes in heterotrophic halophilic eubacteria of the family Halomonadaceae. J. Gen. Microbiol. 136, 705–712 10.1099/00221287-136-4-705 PubMed DOI