Potential and limits of Raman spectroscopy for carotenoid detection in microorganisms: implications for astrobiology
Status PubMed-not-MEDLINE Language English Country England, Great Britain Media print
Document type Journal Article
PubMed
25368348
PubMed Central
PMC4223861
DOI
10.1098/rsta.2014.0199
PII: rsta.2014.0199
Knihovny.cz E-resources
- Keywords
- Raman spectroscopy, algae, bacteria, cyanobacteria, detecting carotenoids, high-performance liquid chromatography,
- Publication type
- Journal Article MeSH
In this paper, it is demonstrated how Raman spectroscopy can be used to detect different carotenoids as possible biomarkers in various groups of microorganisms. The question which arose from previous studies concerns the level of unambiguity of discriminating carotenoids using common Raman microspectrometers. A series of laboratory-grown microorganisms of different taxonomic affiliation was investigated, such as halophilic heterotrophic bacteria, cyanobacteria, the anoxygenic phototrophs, the non-halophilic heterotrophs as well as eukaryotes (Ochrophyta, Rhodophyta and Chlorophyta). The data presented show that Raman spectroscopy is a suitable tool to assess the presence of carotenoids of these organisms in cultures. Comparison is made with the high-performance liquid chromatography approach of analysing pigments in extracts. Direct measurements on cultures provide fast and reliable identification of the pigments. Some of the carotenoids studied are proposed as tracers for halophiles, in contrast with others which can be considered as biomarkers of other genera. The limits of application of Raman spectroscopy are discussed for a few cases where the current Raman spectroscopic approach does not allow discriminating structurally very similar carotenoids. The database reported can be used for applications in geobiology and exobiology for the detection of pigment signals in natural settings.
Academy of Science of the Czech Republic Institute of Microbiology Třeboň Czech Republic
Centre for Astrobiology and Extremophiles Research University of Bradford Bradford BD7 1DP UK
Department of Ecology Charles University Prague Viničná 7 12844 Prague Czech Republic
Department of Inorganic Chemistry Charles University Prague Hlavova 8 12843 Prague Czech Republic
See more in PubMed
Edwards HGM, Hutchinson I, Ingley R. 2012. The Exomars Raman spectrometer and the identification of biogeological spectroscopic signatures using a flight-like prototype. Anal. Bioanal. Chem. 404, 1723–1731. (10.1007/s00216-012-6285-z) PubMed DOI
Oren A. 2011. Characterization of pigments of prokaryotes and their use in taxonomy and classification. In Methods in microbiology, vol. 38 (eds Rainey F, Oren A.), pp. 261–282. New York, NY: Academic Press.
Oren A. 2002. Pigments of halophilic microorganisms. In Halophilic microorganisms and their environments, pp. 173–206. Dordrecht, The Netherlands: Kluwer Scientific Publishers.
Britton G, Liaaen-Jensen S, Pfander H. (eds). 2004. Carotenoids handbook. Basel, Switzerland: Birkhäuser.
Frank HA, Chynwat V, Desamero RZB, Farhoosh R, Erickson J, Bautista J. 1997. On the photophysics and photochemical properties of carotenoids and their role as light-harvesting pigments in photosynthesis. Pure Appl. Chem. 69, 2117–2124. (10.1351/pac199769102117) DOI
Caumette P. 1993. Ecology and physiology of phototrophic bacteria and sulfate-reducing bacteria in marine salterns. Experientia 49, 473–481. (10.1007/bf01955148) DOI
Wachsmann-Hogiu S, Weeks T, Huser T. 2009. Chemical analysis in vivo and in vitro by Raman spectroscopy-from single cells to humans. Curr. Opin. Biotechnol. 20, 63–73. (10.1016/j.copbio.2009.02.006) PubMed DOI PMC
Wagner WD. 1986. Raman excitation profiles from pigments?. in vivo. J. Raman Spectrosc. 17, 51–53. (10.1002/jrs.1250170111) DOI
Heraud P, Beardall J, McNaughton D, Wood BR. 2007. In vivo prediction of the nutrient status of individual microalgal cells using Raman microspectroscopy. FEMS Microbiol. Lett. 275, 24–30. (10.1111/j.1574-6968.2007.00861.x) PubMed DOI
Spiro TG. 1987. Biological applications of Raman spectroscopy. New York, NY: John Wiley & Sons.
Carey PR. 1982. Biochemical applications of Raman and resonance Raman spectroscopies. New York, NY: Academic Press.
Marshall CP, Leuko S, Coyle CM, Walter MR, Burns BP, Neilan BA. 2007. Carotenoid analysis of halophilic Archaea by resonance Raman spectroscopy. Astrobiology 7, 631–643. (10.1089/ast.2006.0097) PubMed DOI
Jehlička J, Oren A. 2013. Raman spectroscopy in halophile research. Front. Microbiol. 4, 380 (10.3389/fmicb.2013.00380) PubMed DOI PMC
Alexandre MTA, Gundermann K, Pascal AA, van Grondelle R, Buechel C, Robert B. 2014. Probing the carotenoid content of intact Cyclotella cells by resonance Raman spectroscopy. Photosynth. Res. 119, 273–281. (10.1007/s11120-013-9942-y) PubMed DOI
Edwards HGM, Villar SEJ, Parnell J, Cockell CS, Lee P. 2005. Raman spectroscopic analysis of cyanobacterial gypsum halotrophs and relevance for sulfate deposits on Mars. Analyst 130, 917–923. (10.1039/b503533c) PubMed DOI
Wynn-Williams DD, Edwards HGM. 2002. Environmental UV radiation: biological strategies for protection and avoidance. In Astrobiology (eds Horneck G, Baumstark-Khan Ch.), pp. 245–260. Heidelberg, Germany: Springer.
Edwards HGM, Hutchinson IB, Ingley R, Parnell J, Vítek P, Jehlička J. 2013. Raman spectroscopic analysis of geological and biogeological specimens of relevance to the ExoMars mission. Astrobiology 13, 543–549. (10.1089/ast.2012.0872) PubMed DOI PMC
Edwards HGM, Hutchinson IB, Ingley R. 2013. A Raman spectral signatures in the biogeological record: An astrobiological challenge. In Habitability of other planets and satellites (eds de Vera J-P, Seckbach J.), pp. 311–330. The Netherlands: Springer.
Marshall CP, Carter EA, Leuko S, Javaux EJ. 2006. Vibrational spectroscopy of extant and fossil microbes: relevance for the astrobiological exploration of Mars. Vib. Spectrosc 41, 182–189. (10.1016/j.vibspec.2006.01.008) DOI
Jehlička J, Edwards HGM, Vítek P. 2009. Assessment of Raman spectroscopy as a tool for the non-destructive identification of organic minerals and biomolecules for Mars studies. Planet. Space Sci. 57, 606–613. (10.1016/j.pss.2008.05.005) DOI
Vítek P, Osterrothová K, Jehlička J. 2009. Beta-carotene-a possible biomarker in the Martian evaporitic environment: Raman micro-spectroscopic study. Planet. Space Sci. 57, 454–459. (10.1016/j.pss.2008.06.001) DOI
Vítek P, Jehlička J, Edwards HGM. 2013. Practical considerations for the field application of miniaturized portable Raman instrumentation for the identification of minerals. Appl. Spectrosc. 67, 767–778. (10.1366/12-06774) PubMed DOI
Vítek P, Jehlička J, Edwards HGM, Hutchinson I, Ascaso C, Wierzchos J. 2012. The miniaturized Raman system and detection of traces of life in halite from the Atacama desert: Some considerations for the search for life signatures on Mars. Astrobiology 12, 1095–1099. (10.1089/ast.2012.0879) PubMed DOI PMC
Guillard RR, Lorenzen CJ. 1972. Yellow-green algae with chlorophyllide c. J. Phycol. 8, 10–14. (10.1111/j.0022-3646.1972.00010.x) DOI
Brody M, Emerson R. 1959. The quantum yield of photosynthesis in Porphyridium cruentum, and the role of chlorophyll a in the photosynthesis of red algae. J. Gen. Physiol. 43, 251–264. (10.1085/jgp.43.2.251) PubMed DOI PMC
Bold HC. 1949. The morphology of Chlamydomonas chlamydogama sp. nov. Bull. Torrey Bot. Club 76, 101–108. (10.2307/2482218) DOI
Bischoff HW, Bold HC. 1963. Phycological studies. IV. Some soil algae from Enchanted Rock and related algal species. Univ. Texas. Publ. 6318, 1–95.
Oren A, Kessel M, Stackebrandt E. 1989. Ectothiorhodospira marismortui sp. nov., an obligately anaerobic, moderately halophilic purple sulfur bacterium from a hypersaline sulfur spring on the shore of the Dead-Sea. Arch. Microbiol. 151, 524–529. (10.1007/bf00454869) DOI
Antón J, Oren A, Benlloch S, Rodríguez-Valera F, Amann R, Rosselló-Mora R. 2002. Salinibacter ruber gen. Nov., sp nov., a novel, extremely halophilic member of the Bacteria from saltern crystallizer ponds. Int. J. Syst. Evol. Microbiol. 52, 485–491. (10.1099/ijs.0.01913-0) PubMed DOI
Oren A. 1996. Sensitivity of selected members of the family Halobacteriaceae to quinolone antimicrobial compounds. Arch. Microbiol. 165, 354–358. (10.1007/s002030050338) PubMed DOI
Oren A. 1983. Halobacterium-sodomense sp-nov, a Dead-Sea Halobacterium with an extremely high magnesium requirement. Int. J. Syst. Bacteriol. 33, 381–386. (10.1099/00207713-33-2-381) DOI
Eimhjellen KE, Jensen SL. 1964. Biosynthesis of carotenoids in Phodopseudomonas gelatinosa. Biochim. Biophys. Acta 82, 21–40. (10.1016/0304-4165(64)90004-2) DOI
de Oliveira VE, Castro HV, Edwards HGM, de Oliveira LFC. 2010. Carotenes and carotenoids in natural biological samples: a Raman spectroscopic analysis. J. Raman Spectrosc. 41, 642–650. (10.1002/jrs.2493) DOI
Rosch P, et al. 2005. Chemotaxonomic identification of single bacteria by micro-Raman spectroscopy: application to clean-room-relevant biological contaminations. Appl. Environ. Microbiol. 71, 1626–1637. (10.1128/aem.71.3.1626-1637.2005) PubMed DOI PMC
Schulte F, Maeder J, Kroh LW, Panne U, Kneipp J. 2009. Characterization of pollen carotenoids with in situ and high-performance thin-layer chromatography supported resonant Raman spectroscopy. Anal. Chem. 81, 8426–8433. (10.1021/ac901389p) PubMed DOI
Jehlička J, Edwards HGM, Oren A. 2013. Bacterioruberin and salinixanthin carotenoids of extremely halophilic Archaea and Bacteria: a Raman spectroscopic study. Spectrochim. Acta Part A 106, 99–103. (10.1016/j.saa.2012.12.081) PubMed DOI
Vítek P, Camara-Gallego B, Edwards HGM, Jehlička J, Ascaso C, Wierzchos J. 2013. Phototrophic community in gypsum crust from the Atacama Desert studied by Raman spectroscopy and microscopic imaging. Geomicrobiol. J. 30, 399–410. (10.1080/01490451.2012.697976) DOI
Edwards HGM, Vandenabeele P, Jorge-Villar SE, Carter EA, Perez FR, Hargreaves MD. 2007. The Rio Tinto Mars analogue site: an extremophilic Raman spectroscopic study. Spectrochim. Acta Part A 68, 1133–1137. (10.1016/j.saa.2006.12.080) PubMed DOI
Edwards HGM. 2014. Will-o′-the-Wisp: an ancient mystery with extremophile origins?. Phil. Trans. R. Soc. A 372, 20140206 (10.1098/rsta.2014.0206) PubMed DOI
Edwards HGM, Hutchinson IB, Ingley R, Jehlička J. 2014. Biomarkers and their Raman spectroscopic signatures: a spectral challenge for analytical astrobiology. Phil. Trans. R. Soc. A 372, 20140193 (10.1098/rsta.2014.0193) PubMed DOI
Edwards HGM, Edwards KAE, Farwell DW, Lewis IR, Seaward MRD. 1994. An approach to stone and fresco lichen biodeterioration through Fourier-transform Raman microscopic investigation of Thallus substratum encrustations. J. Raman Spectrosc. 25, 99–103. (10.1002/jrs.1250250114) DOI
Edwards HGM, Farwell DW, Seaward MRD. 1997. FT-Raman spectroscopy of Dirina massiliensis f sorediata encrustations growing on diverse substrata. Lichenologist 29, 83–90.
Russell NC, Edwards HGM, Wynn-Williams DD. 1998. FT-Raman spectroscopic analysis of endolithic microbial communities from beacon sandstone in Victoria Land, Antarctica. Antarct. Sci. 10, 63–74. (10.1017/S0954102098000091) DOI
Vítek P, Edwards HGM, scaso Jehlička CA, De Les Rios A, Valea S, Jorge-villar SE, Davila AF, Wierzchos J. 2010. Microbial colonization of halite from the hyper-arid Atacama Desert studied by Raman spectroscopy. Phil. Trans. R. Soc. A 368, 3205–3221. (10.1098/rsta.2010.0059) PubMed DOI
Jehlička J, Oren A. 2013. Use of a handheld Raman spectrometer for fast screening of microbial pigments in cultures of halophilic microorganisms and in microbial communities in hypersaline environments in nature. J. Raman Spectrosc. 44, 1285–1291. (10.1002/Jrs.4362) DOI
Varnali T, Edwards HGM, Hargreaves MD. 2009. Scytonemin: molecular structural studies of a key extremophilic biomarker for astrobiology. Int. J. Astrobiol. 8, 133–140. (10.1017/s1473550409004455) DOI
Brambilla L, Tommasini M, Zerbi G, Stradi R. 2012. Raman spectroscopy of polyconjugated molecules with electronic and mechanical confinement: the spectrum of Corallium rubrum. J. Raman Spectrosc. 43, 1449–1458. (10.1002/jrs.4057) DOI
Withnall R, Chowdhry BZ, Silver J, Edwards HGM, de Oliveira LFC. 2003. Raman spectra of carotenoids in natural products. Spectrochim. Acta Part A 59, 2207–2212. (10.1016/s1386-1425(03)00064-7) PubMed DOI
Karampelas S, Fritsch E, Mevellec J-Y, Sklavounos S, Soldatos T. 2009. Role of polyenes in the coloration of cultured freshwater pearls. Eur. J. Mineral. 21, 85–97. (10.1127/0935-1221/2009/0021-1897) DOI
Bergamonti L, Bersani D, Csermely D, Lottici PP. 2011. The nature of the pigments in corals and pearls: a contribution from Raman spectroscopy. Spectrosc. Lett. 44, 453–458. (10.1080/00387010.2011.610399) DOI
Jehlička J, Osterrothová K, Oren A, Edwards HGM. 2013. Raman spectrometric discrimination of flexirubin pigments from two genera of Bacteroidetes. FEMS Microbiol. Lett. 348, 97–102. (10.1111/1574-6968.12243) PubMed DOI