Effects of nicotine on the biosynthesis of carotenoids in halophilic Archaea (class Halobacteria): an HPLC and Raman spectroscopy study
Language English Country Germany Media print-electronic
Document type Journal Article
Grant support
2221/15
Israel Science Foundation
850/13
Israel Science Foundation
17-04270S
Grantová Agentura České Republiky
PubMed
29335805
DOI
10.1007/s00792-018-0995-x
PII: 10.1007/s00792-018-0995-x
Knihovny.cz E-resources
- Keywords
- Bacterioruberin, Carotenoids, Haloarchaea, Nicotine,
- MeSH
- Euryarchaeota chemistry drug effects metabolism MeSH
- Carotenoids analysis biosynthesis MeSH
- Nicotine pharmacology MeSH
- Nicotinic Agonists pharmacology MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Carotenoids MeSH
- Nicotine MeSH
- Nicotinic Agonists MeSH
Nicotine has a profound influence on the carotenoid metabolism in halophilic Archaea of the class Halobacteria. In a study of Halobacterium salinarum, Haloarcula marismortui and Halorubrum sodomense, using different analytical techniques to monitor the production of different carotenoids as a function of the presence of nicotine, we showed that the formation of α-bacterioruberin was inhibited in all. In Hbt. salinarum, addition of nicotine led to a significant change in the color of the culture due to the accumulation of lycopene, in addition to the formation of bisanhydrobacterioruberin which does not differ in color from α-bacterioruberin. Very little or no lycopene was formed in Har. marismortui and in Hrr. sodomense; instead bisanhydrobacterioruberin was the only major carotenoid found in nicotine-amended cultures. The findings are discussed in the framework of the recently elucidated biochemical pathway for the formation of the different carotenoid pigments encountered in the Halobacteria.
See more in PubMed
Spectrochim Acta A Mol Biomol Spectrosc. 2003 Aug;59(10):2207-12 PubMed
FEMS Microbiol Ecol. 2001 Jul;36(2-3):123-130 PubMed
Bioresour Technol. 2010 Aug;101(16):6487-93 PubMed
Can J Biochem. 1976 Sep;54(9):816-23 PubMed
Biochim Biophys Acta. 1975 Aug 25;398(2):303-14 PubMed
Pure Appl Chem. 1973;35(1):29-45 PubMed
Can J Microbiol. 1974 Feb;20(2):241-5 PubMed
Astrobiology. 2007 Aug;7(4):631-43 PubMed
Arch Mikrobiol. 1963 Jul 18;46:19-28 PubMed
Extremophiles. 2017 Sep;21(5):933-945 PubMed
Biochim Biophys Acta. 1970 Oct 27;222(1):174-9 PubMed
Spectrochim Acta A Mol Biomol Spectrosc. 2013 Apr;106:99-103 PubMed
Appl Microbiol Biotechnol. 2002 May;58(6):743-50 PubMed
Acta Chem Scand. 1970;24(6):2169-82 PubMed
Mar Drugs. 2015 Aug 25;13(9):5508-32 PubMed
Bioprocess Biosyst Eng. 2015 Dec;38(12):2361-7 PubMed
Front Microbiol. 2014 Mar 17;5:100 PubMed
J Bacteriol. 2015 May;197(9):1614-23 PubMed
Appl Environ Microbiol. 2014 Jun;80(11):3286-95 PubMed
Biotechnol Prog. 2016 May;32(3):592-600 PubMed
J Radiat Res. 1998 Dec;39(4):251-62 PubMed
J Mol Biol. 2008 Feb 1;375(5):1267-81 PubMed
Plant J. 2014 Apr;78(1):80-93 PubMed
Philos Trans A Math Phys Eng Sci. 2014 Dec 13;372(2030): PubMed
Appl Opt. 2014 Nov 1;53(31):7470-5 PubMed
J Biosci Bioeng. 1999;88(6):617-21 PubMed
Can J Biochem. 1976 Sep;54(9):824-9 PubMed
Plant J. 1999 Feb;17(4):341-51 PubMed
Curr Microbiol. 2018 Mar;75(3):266-271 PubMed
J Raman Spectrosc. 2009 Dec;40(12):1996-2003 PubMed
Front Microbiol. 2013 Dec 10;4:380 PubMed
Can J Microbiol. 1979 Nov;25(11):1292-7 PubMed