Effects of nicotine on the biosynthesis of carotenoids in halophilic Archaea (class Halobacteria): an HPLC and Raman spectroscopy study
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
2221/15
Israel Science Foundation
850/13
Israel Science Foundation
17-04270S
Grantová Agentura České Republiky
PubMed
29335805
DOI
10.1007/s00792-018-0995-x
PII: 10.1007/s00792-018-0995-x
Knihovny.cz E-zdroje
- Klíčová slova
- Bacterioruberin, Carotenoids, Haloarchaea, Nicotine,
- MeSH
- Euryarchaeota chemie účinky léků metabolismus MeSH
- karotenoidy analýza biosyntéza MeSH
- nikotin farmakologie MeSH
- nikotinoví agonisté farmakologie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- karotenoidy MeSH
- nikotin MeSH
- nikotinoví agonisté MeSH
Nicotine has a profound influence on the carotenoid metabolism in halophilic Archaea of the class Halobacteria. In a study of Halobacterium salinarum, Haloarcula marismortui and Halorubrum sodomense, using different analytical techniques to monitor the production of different carotenoids as a function of the presence of nicotine, we showed that the formation of α-bacterioruberin was inhibited in all. In Hbt. salinarum, addition of nicotine led to a significant change in the color of the culture due to the accumulation of lycopene, in addition to the formation of bisanhydrobacterioruberin which does not differ in color from α-bacterioruberin. Very little or no lycopene was formed in Har. marismortui and in Hrr. sodomense; instead bisanhydrobacterioruberin was the only major carotenoid found in nicotine-amended cultures. The findings are discussed in the framework of the recently elucidated biochemical pathway for the formation of the different carotenoid pigments encountered in the Halobacteria.
Zobrazit více v PubMed
Spectrochim Acta A Mol Biomol Spectrosc. 2003 Aug;59(10):2207-12 PubMed
FEMS Microbiol Ecol. 2001 Jul;36(2-3):123-130 PubMed
Bioresour Technol. 2010 Aug;101(16):6487-93 PubMed
Can J Biochem. 1976 Sep;54(9):816-23 PubMed
Biochim Biophys Acta. 1975 Aug 25;398(2):303-14 PubMed
Pure Appl Chem. 1973;35(1):29-45 PubMed
Can J Microbiol. 1974 Feb;20(2):241-5 PubMed
Astrobiology. 2007 Aug;7(4):631-43 PubMed
Arch Mikrobiol. 1963 Jul 18;46:19-28 PubMed
Extremophiles. 2017 Sep;21(5):933-945 PubMed
Biochim Biophys Acta. 1970 Oct 27;222(1):174-9 PubMed
Spectrochim Acta A Mol Biomol Spectrosc. 2013 Apr;106:99-103 PubMed
Appl Microbiol Biotechnol. 2002 May;58(6):743-50 PubMed
Acta Chem Scand. 1970;24(6):2169-82 PubMed
Mar Drugs. 2015 Aug 25;13(9):5508-32 PubMed
Bioprocess Biosyst Eng. 2015 Dec;38(12):2361-7 PubMed
Front Microbiol. 2014 Mar 17;5:100 PubMed
J Bacteriol. 2015 May;197(9):1614-23 PubMed
Appl Environ Microbiol. 2014 Jun;80(11):3286-95 PubMed
Biotechnol Prog. 2016 May;32(3):592-600 PubMed
J Radiat Res. 1998 Dec;39(4):251-62 PubMed
J Mol Biol. 2008 Feb 1;375(5):1267-81 PubMed
Plant J. 2014 Apr;78(1):80-93 PubMed
Philos Trans A Math Phys Eng Sci. 2014 Dec 13;372(2030): PubMed
Appl Opt. 2014 Nov 1;53(31):7470-5 PubMed
J Biosci Bioeng. 1999;88(6):617-21 PubMed
Can J Biochem. 1976 Sep;54(9):824-9 PubMed
Plant J. 1999 Feb;17(4):341-51 PubMed
Curr Microbiol. 2018 Mar;75(3):266-271 PubMed
J Raman Spectrosc. 2009 Dec;40(12):1996-2003 PubMed
Front Microbiol. 2013 Dec 10;4:380 PubMed
Can J Microbiol. 1979 Nov;25(11):1292-7 PubMed