C50 carotenoids extracted from Haloterrigena thermotolerans strain K15: antioxidant potential and identification
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
34510323
DOI
10.1007/s12223-021-00905-w
PII: 10.1007/s12223-021-00905-w
Knihovny.cz E-zdroje
- Klíčová slova
- AFM, Antioxidant, Bacterioruberin, Haloterrigena thermotolerans, SEM,
- MeSH
- antioxidancia * MeSH
- Halobacteriaceae * genetika MeSH
- karotenoidy MeSH
- RNA ribozomální 16S genetika MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antioxidancia * MeSH
- karotenoidy MeSH
- RNA ribozomální 16S MeSH
Halophilic archaea are one of the microorganism groups that have adapted to living in high saline environments and are important in terms of their potential use in biotechnology industry. One of the most important compounds they have, carotenoid, is used in food, cosmetics, and medical industries. The selected strain was identified as an extremely halophilic and thermophilic archaeon, Haloterrigena thermotolerans K15, based on morphological, biochemical, and physiological evidence as well as 16S rRNA analysis and screened by a scanning electron microscope and an atomic force microscope for the first time. The carotenoid contents of H. thermotolerans K15 isolated from Salt Lake (Tuz Gölü, Turkey) were determined by RP-HPLC-DAD and their isomers were characterized according to UV-Vis spectra by cis peak intensity and spectral fine structure. In addition to all-trans bacterioruberin as a major carotenoid, many isomers of the bacterioruberin such as monoanhydrobacterioruberin and bisanhydrobacterioruberin were also found. The antioxidant activity of carotenoid extract from H. thermotolerans was analyzed by the 2,2-diphenyl-1-picrylhydrazyl radical scavenging method. The carotenoid extract showed antioxidant activity statistically significantly higher than ascorbic acid and butylated hydroxytoluene as reference compounds (p < 0.05). This is the first study about carotenoid characterization and antioxidant activity of H. thermotolerans K15. The obtained results suggest the potential use of H. thermotolerans K15 products as a substitute for synthesized chemical carotenoids and antioxidants.
Central Research Laboratory Kastamonu University Kastamonu Turkey
Department of Fisheries Fundamental Sciences Fisheries Faculty Ataturk University Erzurum Turkey
Zobrazit více v PubMed
Albuquerque L, Taborda M, La Cono V, Yakimov M, da Costa MS (2012) Natrinema salaciae sp. nov., a halophilic archaeon isolated from the deep, hypersaline anoxic Lake Medee in the Eastern Mediterranean Sea. Syst Appl Microbiol 35(6):368–373. https://doi.org/10.1016/j.syapm.2012.06.005 PubMed DOI
Asker D, Awad T, Ohta Y (2002) Lipids of Haloferax alexandrinus strain TMT: an extremely halophilic canthaxanthin-producing archaeon. J Biosci Bioeng 93(1):37–43. https://doi.org/10.1016/S1389-1723(02)80051-2 PubMed DOI
Britton G (1985) [5] General carotenoid methods. In: Law JH, Rilling HC (eds) Methods in enzymology, vol 111. Elsevier, Amsterdam, pp 113–149. https://doi.org/10.1016/S0076-6879(85)11007-4 DOI
Britton G, Liaaen-Jensen S, Pfander H (1995) Carotenoids: spectroscopy Vol 1B. Birkhäuser, Verlag. https://doi.org/10.1007/978-3-0348-7836-4 DOI
Calegari-Santos R, Diogo RA, Fontana JD, Bonfim TMB (2016) Carotenoid production by halophilic archaea under different culture conditions. Curr Microbiol 72(5):641–651. https://doi.org/10.1007/s00284-015-0974-8 PubMed DOI
Castillo AM, Gutiérrez MC, Kamekura M, Ma Y, Cowan DA, Jones BE, Grant WD, Ventosa A (2006) Halovivax asiaticus gen. nov., sp. nov., a novel extremely halophilic archaeon isolated from Inner Mongolia, China. Int J Syst Evol 56(4):765–770. https://doi.org/10.1099/ijs.0.63954-0 DOI
Enache M, Itoh T, Kamekura M, Popescu G, Dumitru L (2008) Halophilic archaea isolated from man-made young (200 years) salt lakes in Slănic, Prahova, Romania. Open Life Sci 3(4):388–395. https://doi.org/10.2478/s11535-008-0034-5 DOI
Flores N, Hoyos S, Venega M, Galetović A, Zúñiga LM, Fábrega F, Paredes B, Salazar-Ardiles C, Vilo C, Ascaso C, Wierzchos J, Souza-Egipsy V, Araya JE, Batista-Garcia RA, Gómez-Silva B (2020) Haloterrigena sp. strain SGH1, a bacterioruberin-rich, perchlorate-tolerant halophilic archaeon isolated from halite microbial communities, Atacama Desert, Chile. Front Microbiol 11: 324. https://doi.org/10.3389/fmicb.2020.00324
Fong N, Burgess M, Barrow K, Glenn D (2001) Carotenoid accumulation in the psychrotrophic bacterium Arthrobacter agilis in response to thermal and salt stress. Appl Microbiol Biotechnol 56(5–6):750–756. https://doi.org/10.1007/s002530100739 PubMed DOI
Galasso C, Corinaldesi C, Sansone C (2017) Carotenoids from marine organisms: biological functions and industrial applications. Antioxidants 6(4):96. https://doi.org/10.3390/antiox6040096 DOI
Giani M, Martínez-Espinosa RM (2020) Carotenoids as a protection mechanism against oxidative stress in Haloferax mediterranei. Antioxidants 9(11):1060. https://doi.org/10.3390/antiox9111060 DOI PMC
Giani M, Garbayo I, Vílchez C, Martínez-Espinosa RM (2019) Haloarchaeal carotenoids: healthy novel compounds from extreme environments. Mar Drugs 17(9):524. https://doi.org/10.3390/md17090524 DOI PMC
Gruszecki WI, Strzałka K (2005) Carotenoids as modulators of lipid membrane physical properties. Biochim Biophys Acta Mol Basis Dis 1740(2):108–115. https://doi.org/10.1016/j.bbadis.2004.11.015 DOI
Holmes ML, Dyall-Smith ML (1991) Mutations in DNA gyrase result in novobiocin resistance in halophilic archaebacteria. J Bacteriol 173(2):642–648. https://doi.org/10.1128/jb.173.2.642-648.1991 PubMed DOI PMC
Hou J, Cui HL (2018) In vitro antioxidant, antihemolytic, and anticancer activity of the carotenoids from halophilic archaea. Curr Microbiol 75(3):266–271. https://doi.org/10.1007/s00284-017-1374-z PubMed DOI
Jiménez-Escrig A, Jiménez-Jiménez I, Sánchez-Moreno C, Saura-Calixto F (2000) Evaluation of free radical scavenging of dietary carotenoids by the stable radical 2,2-diphenyl-1-picrylhydrazyl. J Sci Food Agric 80(11):1686–1690. https://doi.org/10.1002/1097-0010(20000901)80:11%3c1686::AID-JSFA694%3e3.0.CO;2-Y DOI
Kemp BL, Tabish EM, Wolford AJ, Jones DL, Butler JK, Baxter BK (2018) The biogeography of Great Salt Lake halophilic archaea: testing the hypothesis of avian mechanical carriers. Diversity 10(4):124. https://doi.org/10.3390/d10040124 DOI
Kirti K, Amita S, Priti S, Mukesh Kumar A, Jyoti S (2014) Colorful world of microbes: carotenoids and their applications. Adv Biol 2014:837891. https://doi.org/10.1155/2014/837891 DOI
Lazrak T, Wolff G, Albrecht AM, Nakatani Y, Ourisson G, Kates M (1988) Bacterioruberins reinforce reconstituted Halobacterium lipid membranes. Biochim Biophys Acta Biomembr 939(1):160–162. https://doi.org/10.1016/0005-2736(88)90057-0 DOI
Li Z, Cheng J, Yang X, Liu H, Xu X, Ma L, Shang S, Song Z (2020) Construction of antimicrobial and biocompatible cotton textile based on quaternary ammonium salt from rosin acid. Int J Biol Macromol 150:1–8. https://doi.org/10.1016/j.ijbiomac.2020.01.259 PubMed DOI
Mandelli F, Miranda VS, Rodrigues E, Mercadante AZ (2012) Identification of carotenoids with high antioxidant capacity produced by extremophile microorganisms. World J Microb Biot 28(4):1781–1790. https://doi.org/10.1007/s11274-011-0993-y DOI
Miller NJ, Sampson J, Candeias LP, Bramley PM, Rice-Evans CA (1996) Antioxidant activities of carotenes and xanthophylls. FEBS Lett 384(3):240–242. https://doi.org/10.1016/0014-5793(96)00323-7 PubMed DOI
Montalvo-Rodriguez R, Lopez-Garriga J, Vreeland RH, Oren A, Ventosa A, Kamekura M (2000) Haloterrigena thermotolerans sp. nov., a halophilic archaeon from Puerto Rico. Int J Syst Evol Microbiol 50(3):1065–1071. https://doi.org/10.1099/00207713-50-3-1065 PubMed DOI
Mutlu MB (2006) Characterization and seasonal variations of Tuz Lake Bacteria. PhD Thesis, Anadolu University, Eskişehir
Naziri D, Hamidi M, Hassanzadeh S, Tarhriz V, Zanjani BM, Nazemyieh H, Hejazi MA, Hejazi MS (2014) Analysis of carotenoid production by Halorubrum sp. TBZ126: an extremely halophilic archeon from Urmia Lake. Adv Pharm Bull 4(1):61. https://doi.org/10.5681/apb.2014.010 PubMed DOI
Neumann BR, Pospiech A, Schairer HU (1992) Rapid isolation of genomic DNA from gram-negative bacteria. Trends Genet 8(10):332–333. https://doi.org/10.1016/0168-9525(92)90269-A PubMed DOI
Oliver J, Palou A (2000) Chromatographic determination of carotenoids in foods. J Chromatogr A 881(1–2):543–555. https://doi.org/10.1016/S0021-9673(00)00329-0 PubMed DOI
Oren A (2010) Industrial and environmental applications of halophilic microorganisms. Environ Technol 31(8–9):825–834. https://doi.org/10.1080/09593330903370026 PubMed DOI
Oren A, Hirschberg J, Mann V, Jehlička J (2018) Effects of nicotine on the biosynthesis of carotenoids in halophilic Archaea (class Halobacteria): an HPLC and Raman spectroscopy study. Extremophiles 22(3):359–366. https://doi.org/10.1007/s00792-018-0995-x PubMed DOI
Ozcan B, Ozcengiz G, Coleri A, Cokmus C (2007) Diversity of halophilic Archaea from six hypersaline environments in Turkey. J Microbiol Biotechnol 17(5):745–752
Rodrigo-Baños M, Garbayo I, Vílchez C, Bonete MJ, Martínez-Espinosa RM (2015) Carotenoids from Haloarchaea and their potential in biotechnology. Mar Drugs 13(9):5508–5532. https://doi.org/10.3390/md13095508 PubMed DOI PMC
Ronnekleiv M (1995) Bacterial carotenoids 53∗ C50-carotenoids 23: carotenoids of Haloferax volcanii versus other halophilic bacteria. Biochem Syst Ecol 23(6):627–634. https://doi.org/10.1016/0305-1978(95)00047-X DOI
Shahmohammadi HR, Asgarani E, Terato H, Saito T, Ohyama Y, Gekko K, Yamamoto O, Ide H (1998) Protective roles of bacterioruberin and intracellular KCl in the resistance of Halobacterium salinarium against DNA-damaging agents. J Radiat Res 39(4):251–262. https://doi.org/10.1269/jrr.39.251 PubMed DOI
Squillaci G, Parrella R, Carbone V, Minasi P, La Cara F, Morana A (2017) Carotenoids from the extreme halophilic archaeon Haloterrigena turkmenica: identification and antioxidant activity. Extremophiles 21(5):933–945. https://doi.org/10.1007/s00792-017-0954-y PubMed DOI
Torregrosa-Crespo J, Montero Z, Fuentes JL, Reig García-Galbis M, Garbayo I, Vílchez C, Martínez-Espinosa RM (2018) Exploring the valuable carotenoids for the large-scale production by marine microorganisms. Mar Drugs 16(6):203. https://doi.org/10.3390/md16060203 DOI PMC
Yachai M (2009). Carotenoid production by halophilic Archaea and its applications (Doctoral dissertation, Prince of Songkla University)