BRCA1 and BRCA2 5' noncoding region variants identified in breast cancer patients alter promoter activity and protein binding
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
30204945
PubMed Central
PMC6282814
DOI
10.1002/humu.23652
Knihovny.cz E-zdroje
- Klíčová slova
- BRCA1, BRCA2, breast cancer, promoter, transcription, variants of unknown clinical significance (VUS),
- MeSH
- 5' nepřekládaná oblast MeSH
- aktivátorový protein specifický pro B-buňky metabolismus MeSH
- faktor vázající CCAAT metabolismus MeSH
- genetická predispozice k nemoci MeSH
- lidé MeSH
- MFC-7 buňky MeSH
- nádorové buněčné linie MeSH
- nádory prsu genetika MeSH
- promotorové oblasti (genetika) * MeSH
- protein BRCA1 chemie genetika metabolismus MeSH
- protein BRCA2 chemie genetika metabolismus MeSH
- vazba proteinů MeSH
- věk při počátku nemoci MeSH
- zárodečné mutace * MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 5' nepřekládaná oblast MeSH
- aktivátorový protein specifický pro B-buňky MeSH
- BRCA1 protein, human MeSH Prohlížeč
- BRCA2 protein, human MeSH Prohlížeč
- faktor vázající CCAAT MeSH
- NFYA protein, human MeSH Prohlížeč
- PAX5 protein, human MeSH Prohlížeč
- protein BRCA1 MeSH
- protein BRCA2 MeSH
The widespread use of next generation sequencing for clinical testing is detecting an escalating number of variants in noncoding regions of the genome. The clinical significance of the majority of these variants is currently unknown, which presents a significant clinical challenge. We have screened over 6,000 early-onset and/or familial breast cancer (BC) cases collected by the ENIGMA consortium for sequence variants in the 5' noncoding regions of BC susceptibility genes BRCA1 and BRCA2, and identified 141 rare variants with global minor allele frequency < 0.01, 76 of which have not been reported previously. Bioinformatic analysis identified a set of 21 variants most likely to impact transcriptional regulation, and luciferase reporter assays detected altered promoter activity for four of these variants. Electrophoretic mobility shift assays demonstrated that three of these altered the binding of proteins to the respective BRCA1 or BRCA2 promoter regions, including NFYA binding to BRCA1:c.-287C>T and PAX5 binding to BRCA2:c.-296C>T. Clinical classification of variants affecting promoter activity, using existing prediction models, found no evidence to suggest that these variants confer a high risk of disease. Further studies are required to determine if such variation may be associated with a moderate or low risk of BC.
A C Camargo Cancer Center São Paulo Brazil
Area of Clinical and Molecular Genetics University Hospital Vall d'Hebron Barcelona Spain
Center for Genomic Medicine Copenhagen University Hospital Rigshospitalet Copenhagen Denmark
CytoGnomix Inc London Ontario Canada
Department of Clinical Genetics Maastricht University Medical Centre Maastricht The Netherlands
Division of Cancer Prevention and Genetics Istituto Europeo di Oncologia Milan Italy
Gustave Roussy Villejuif France
Huntsman Cancer Institute University of Utah Salt Lake City Utah
IFOM Fondazione Istituto FIRC di Oncologia Molecolare Milan Italy
Oncogenetics Group Vall d'Hebron Institute of Oncology Barcelona Spain
School of Chemistry and Molecular Biosciences University of Queensland Brisbane Australia
Service de Génétique Department de Biologie des Tumeurs Institut Curie Paris France
Unit of Medical Genetics Department of Medical Oncology and Hematology Fondazione IRCCS Milan Italy
Zobrazit více v PubMed
Amendola, L. M. , Dorschner, M. O. , Robertson, P. D. , Salama, J. S. , Hart, R. , Shirts, B. H. , … Jarvik, G. P. (2015). Actionable exomic incidental findings in 6503 participants: Challenges of variant classification. Genome Research, 25(3), 305–315. 10.1101/gr.183483.114 PubMed DOI PMC
Atlas, E. , Stramwasser, M. , & Mueller, C. R. (2001). A CREB site in the BRCA1 proximal promoter acts as a constitutive transcriptional element. Oncogene, 20(48), 7110–7114. 10.1038/sj.onc.1204890 PubMed DOI
Atlas, E. , Stramwasser, M. , Whiskin, K. , & Mueller, C. R. (2000). GA‐binding protein alpha/beta is a critical regulator of the BRCA1 promoter. Oncogene, 19(15), 1933–1940. 10.1038/sj.onc.1203516 PubMed DOI
Betts, J. A. , French, J. D. , Brown, M. A. , & Edwards, S. L. (2013). Long‐range transcriptional regulation of breast cancer genes. Genes, Chromosomes and Cancer, 52(2), 113–125. 10.1002/gcc.22020 PubMed DOI
Bindra, R. S. , Gibson, S. L. , Meng, A. , Westermark, U. , Jasin, M. , Pierce, A. J. , … Glazer, P. M. (2005). Hypoxia‐induced down‐regulation of BRCA1 expression by E2Fs. Cancer Research, 65(24), 11597–11604. 10.1158/0008-5472.CAN-05-2119 PubMed DOI
Bogdanova, N. , Helbig, S. , & Dork, T. (2013). Hereditary breast cancer: Ever more pieces to the polygenic puzzle. Hereditary Cancer in Clinical Practice, 11(1), 12 10.1186/1897-4287-11-12 PubMed DOI PMC
Brewster, B. L. , Rossiello, F. , French, J. D. , Edwards, S. L. , Wong, M. , Wronski, A. , … Peterlongo, P. (2012). Identification of fifteen novel germline variants in the BRCA1 3'UTR reveals a variant in a breast cancer case that introduces a functional miR‐103 target site. Human Mutation, 33(12), 1665–1675. 10.1002/humu.22159 PubMed DOI
Brown, M. A. , Lo, L. J. , Catteau, A. , Xu, C. F. , Lindeman, G. J. , Hodgson, S. , & Solomon, E. (2002). Germline BRCA1 promoter deletions in UK and Australian familial breast cancer patients: Identification of a novel deletion consistent with BRCA1:pSiBRCA1 recombination. Human Mutation, 19(4), 435–442. 10.1002/humu.10055 PubMed DOI
Caminsky, N. G. , Mucaki, E. J. , Perri, A. M. , Lu, R. , Knoll, J. H. , & Rogan, P. K. (2016). Prioritizing variants in complete hereditary breast and ovarian cancer genes in patients lacking known BRCA mutations. Human Mutation, 37(7), 640–652. 10.1002/humu.22972 PubMed DOI
Couch, F. J. , Shimelis, H. , Hu, C. , Hart, S. N. , Polley, E. C. , Na, J. , … Dolinsky, J. S. (2017). Associations between cancer predisposition testing panel genes and breast cancer. JAMA Oncology, 3(9), 1190–1196. 10.1001/jamaoncol.2017.0424 PubMed DOI PMC
Davis, P. L. , Miron, A. , Andersen, L. M. , Iglehart, J. D. , & Marks, J. R. (1999). Isolation and initial characterization of the BRCA2 promoter. Oncogene, 18(44), 6000–6012. 10.1038/sj.onc.1202990 PubMed DOI
de la Hoya, M. , Soukarieh, O. , Lopez‐Perolio, I. , Vega, A. , Walker, L. C. , van Ierland, Y. , … Spurdle, A. B. (2016). Combined genetic and splicing analysis of BRCA1 c.[594‐2A>C; 641A>G] highlights the relevance of naturally occurring in‐frame transcripts for developing disease gene variant classification algorithms. Human Molecular Genetics, 25(11), 2256–2268. 10.1093/hmg/ddw094 PubMed DOI PMC
Diederichs, S. , Bartsch, L. , Berkmann, J. C. , Frose, K. , Heitmann, J. , Hoppe, C. , … Wullenkord, R. (2016). The dark matter of the cancer genome: Aberrations in regulatory elements, untranslated regions, splice sites, non‐coding RNA and synonymous mutations. EMBO Molecular Medicine, 8(5), 442–457. 10.15252/emmm.201506055 PubMed DOI PMC
Ding, Y. C. , McGuffog, L. , Healey, S. , Friedman, E. , Laitman, Y. , & Paluch‐Shimon, S. , … Consortium of Investigators of Modifiers of, B . (2012). A nonsynonymous polymorphism in IRS1 modifies risk of developing breast and ovarian cancers in BRCA1 and ovarian cancer in BRCA2 mutation carriers. Cancer Epidemiology, Biomarkers & Prevention, 21(8), 1362–1370. 10.1158/1055-9965.EPI-12-0229 PubMed DOI PMC
Eccles, S. A. , Aboagye, E. O. , Ali, S. , Anderson, A. S. , Armes, J. , Berditchevski, F. , … Thompson, A. M. (2013). Critical research gaps and translational priorities for the successful prevention and treatment of breast cancer. Breast Cancer Research, 15(5), R92 10.1186/bcr3493 PubMed DOI PMC
Evans, D. G. R. , van Veen, E. M. , Byers, H. J. , Wallace, A. J. , Ellingford, J. M. , Beaman, G. , … Newman, W. G. (2018). A dominantly inherited 5' UTR variant causing methylation‐associated silencing of BRCA1 as a cause of breast and ovarian cancer. American Journal of Human Genetics, 103(2), 213–220. 10.1016/j.ajhg.2018.07.002 PubMed DOI PMC
Fraile‐Bethencourt, E. , Valenzuela‐Palomo, A. , Diez‐Gomez, B. , Infante, M. , Duran, M. , Marcos, G. , … Velasco, E. A. (2018). Genetic dissection of the BRCA2 promoter and transcriptional impact of DNA variants. Breast Cancer Research and Treatment. 10.1007/s10549-018-4826-7 PubMed DOI
French, J. D. , Ghoussaini, M. , Edwards, S. L. , Meyer, K. B. , Michailidou, K. , Ahmed, S. , … Dunning, A. M. (2013). Functional variants at the 11q13 risk locus for breast cancer regulate cyclin D1 expression through long‐range enhancers. American Journal of Human Genetics, 92(4), 489–503. 10.1016/j.ajhg.2013.01.002 PubMed DOI PMC
Ghoussaini, M. , Pharoah, P. D. P. , & Easton, D. F. (2013). Inherited genetic susceptibility to breast cancer: The beginning of the end or the end of the beginning? The American Journal of Pathology, 183(4), 1038–1051. 10.1016/j.ajpath.2013.07.003 PubMed DOI
Gochhait, S. , Bukhari, S. I. , Bairwa, N. , Vadhera, S. , Darvishi, K. , Raish, M. , … Bamezai, R. N. (2007). Implication of BRCA2 ‐26G>A 5' untranslated region polymorphism in susceptibility to sporadic breast cancer and its modulation by p53 codon 72 Arg>Pro polymorphism. Breast Cancer Research, 9(5), R71 10.1186/bcr1780 PubMed DOI PMC
Graves, M. L. , Zhou, L. , MacDonald, G. , Mueller, C. R. , & Roskelley, C. D. (2007). Regulation of the BRCA1 promoter in ovarian surface epithelial cells and ovarian carcinoma cells. FEBS Letters, 581(9), 1825–1833. 10.1016/j.febslet.2007.03.072 PubMed DOI
Heikkinen, T. , Greco, D. , Pelttari, L. M. , Tommiska, J. , Vahteristo, P. , Heikkila, P. , … Nevanlinna, H. (2011). Variants on the promoter region of PTEN affect breast cancer progression and patient survival. Breast Cancer Research, 13(6), R130 10.1186/bcr3076 PubMed DOI PMC
Hitchins, M. P. , Rapkins, R. W. , Kwok, C. T. , Srivastava, S. , Wong, J. J. , Khachigian, L. M. , … Ward, R. L. (2011). Dominantly inherited constitutional epigenetic silencing of MLH1 in a cancer‐affected family is linked to a single nucleotide variant within the 5'UTR. Cancer Cell, 20(2), 200–213. 10.1016/j.ccr.2011.07.003 PubMed DOI
Horn, S. , Figl, A. , Rachakonda, P. S. , Fischer, C. , Sucker, A. , Gast, A. , … Kumar, R. (2013). TERT promoter mutations in familial and sporadic melanoma. Science, 339(6122), 959–961. 10.1126/science.1230062 PubMed DOI
Kao, J. , Salari, K. , Bocanegra, M. , Choi, Y. L. , Girard, L. , Gandhi, J. , … Pollack, J. R. (2009). Molecular profiling of breast cancer cell lines defines relevant tumor models and provides a resource for cancer gene discovery. PLoS One, 4(7), e6146 10.1371/journal.pone.0006146 PubMed DOI PMC
Kozmik, Z. , Wang, S. , Dorfler, P. , Adams, B. , & Busslinger, M. (1992). The promoter of the CD19 gene is a target for the B‐cell‐specific transcription factor BSAP. Molecular and Cellular Biology, 12(6), 2662–2672. PubMed PMC
Kuchenbaecker, K. B. , McGuffog, L. , Barrowdale, D. , Lee, A. , Soucy, P. , Dennis, J. , … Antoniou, A. C. (2017). Evaluation of polygenic risk scores for breast and ovarian cancer risk prediction in BRCA1 and BRCA2 mutation carriers. Journal of the National Cancer Institute, 109(7). 10.1093/jnci/djw302 PubMed DOI PMC
Lhota, F. , Zemankova, P. , Kleiblova, P. , Soukupova, J. , Vocka, M. , Stranecky, V. , … Kleibl, Z. (2016). Hereditary truncating mutations of DNA repair and other genes in BRCA1/BRCA2/PALB2‐negatively tested breast cancer patients. Clinical Genetics, 90(4), 324–333. 10.1111/cge.12748 PubMed DOI
Lu, R. , & Rogan, P. K. (2018). Information‐dense transcription factor binding site clusters identify target genes with similar tissue‐wide expression profiles and serve as a buffer against mutations. bioRxiv. 10.1101/283267 PubMed DOI PMC
Lu, R. , Mucaki, E. J. , & Rogan, P. K. (2017). Discovery and validation of information theory‐based transcription factor and cofactor binding site motifs. Nucleic Acids Research, 45(5), e27 10.1093/nar/gkw1036 PubMed DOI PMC
Manolio, T. A. , Collins, F. S. , Cox, N. J. , Goldstein, D. B. , Hindorff, L. A. , Hunter, D. J. , … Visscher, P. M. (2009). Finding the missing heritability of complex diseases. Nature, 461(7265), 747–753. 10.1038/nature08494 PubMed DOI PMC
McCoy, M. L. , Mueller, C. R. , & Roskelley, C. D. (2003). The role of the breast cancer susceptibility gene 1 (BRCA1) in sporadic epithelial ovarian cancer. Reproductive Biology and Endocrinology, 1, 72 10.1186/1477-7827-1-72 PubMed DOI PMC
Michailidou, K. , Lindstrom, S. , Dennis, J. , Beesley, J. , Hui, S. , Kar, S. , … Easton, D. F. (2017). Association analysis identifies 65 new breast cancer risk loci. Nature, 551(7678), 92–94. 10.1038/nature24284 PubMed DOI PMC
Millot, G. A. , Carvalho, M. A. , Caputo, S. M. , Vreeswijk, M. P. , Brown, M. A. , Webb, M. , … Group, E. C. F. A. W. (2012). A guide for functional analysis of BRCA1 variants of uncertain significance. Human Mutation, 33(11), 1526–1537. 10.1002/humu.22150 PubMed DOI PMC
Mucaki, E. J. , Caminsky, N. G. , Perri, A. M. , Lu, R. , Laederach, A. , Halvorsen, M. , … Rogan, P. K. (2016). A unified analytic framework for prioritization of non‐coding variants of uncertain significance in heritable breast and ovarian cancer. BMC Medical Genomics, 9, 19 10.1186/s12920-016-0178-5 PubMed DOI PMC
Mueller, C. R. , & Roskelley, C. D. (2003). Regulation of BRCA1 expression and its relationship to sporadic breast cancer. Breast Cancer Research, 5(1), 45–52. 10.1186/bcr557 PubMed DOI PMC
Peng, Y. , & Jahroudi, N. (2002). The NFY transcription factor functions as a repressor and activator of the von Willebrand factor promoter. Blood, 99(7), 2408–2417. PubMed
Peng, Y. , Stewart, D. , Li, W. , Hawkins, M. , Kulak, S. , Ballermann, B. , & Jahroudi, N. (2007). Irradiation modulates association of NF‐Y with histone‐modifying cofactors PCAF and HDAC. Oncogene, 26(54), 7576–7583. 10.1038/sj.onc.1210565 PubMed DOI
Plon, S. E. , Eccles, D. M. , Easton, D. , Foulkes, W. D. , Genuardi, M. , Greenblatt, M. S. , … Group, I. U. G. V. W. (2008). Sequence variant classification and reporting: recommendations for improving the interpretation of cancer susceptibility genetic test results. Hum Mutat, 29(11), 1282–1291. 10.1002/humu.20880 PubMed DOI PMC
Plon, S. E. , Cooper, H. P. , Parks, B. , Dhar, S. U. , Kelly, P. A. , Weinberg, A. D. , … Hilsenbeck, S. (2011). Genetic testing and cancer risk management recommendations by physicians for at‐risk relatives. Genetics in Medicine, 13(2), 148–154. 10.1097/GIM.0b013e318207f564 PubMed DOI PMC
Popanda, O. , Seibold, P. , Nikolov, I. , Oakes, C. C. , Burwinkel, B. , Hausmann, S. , … Schmezer, P. (2013). Germline variants of base excision repair genes and breast cancer: A polymorphism in DNA polymerase gamma modifies gene expression and breast cancer risk. International Journal of Cancer, 132(1), 55–62. 10.1002/ijc.27665 PubMed DOI
Richards, S. , Aziz, N. , Bale, S. , Bick, D. , Das, S. , Gastier‐Foster, J. , … ACMG Laboratory Quality Assurance Committee . (2015). Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genetics in Medicine, 17(5), 405–424. 10.1038/gim.2015.30 PubMed DOI PMC
Santana dos Santos, E. , Caputo, S. M. , Castera, L. , Gendrot, M. , Briaux, A. , Breault, M. , … Rouleau, E. (2017). Assessment of the functional impact of germline BRCA1/2 variants located in non‐coding regions in families with breast and/or ovarian cancer predisposition. Breast Cancer Research and Treatment, 10.1007/s10549-017-4602-0 PubMed DOI
Saunus, J. M. , French, J. D. , Edwards, S. L. , Beveridge, D. J. , Hatchell, E. C. , Wagner, S. A. , … Brown, M. A. (2008). Posttranscriptional regulation of the breast cancer susceptibility gene BRCA1 by the RNA binding protein HuR. Cancer Research, 68(22), 9469–9478. 10.1158/0008-5472.CAN-08-1159 PubMed DOI
Sawyer, S. , Mitchell, G. , McKinley, J. , Chenevix‐Trench, G. , Beesley, J. , Chen, X. Q. , … James, P. A. (2012). A role for common genomic variants in the assessment of familial breast cancer. Journal of Clinical Oncology, 30(35), 4330–4336. 10.1200/JCO.2012.41.7469 PubMed DOI
Shimelis, H. , Mesman, R. L. S. , Von Nicolai, C. , Ehlen, A. , Guidugli, L. , & Martin, C. , … for, N. C . (2017). BRCA2 hypomorphic missense variants confer moderate risks of breast cancer. Cancer Research, 77(11), 2789–2799. 10.1158/0008-5472.CAN-16-2568 PubMed DOI PMC
Skol, A. D. , Sasaki, M. M. , & Onel, K. (2016). The genetics of breast cancer risk in the post‐genome era: Thoughts on study design to move past BRCA and towards clinical relevance. Breast Cancer Research, 18(1), 99 10.1186/s13058-016-0759-4 PubMed DOI PMC
Soukupova, J. , Zemankova, P. , Kleiblova, P. , Janatova, M. , & Kleibl, Z. (2016). [CZECANCA: CZEch CAncer paNel for clinical application— Design and optimization of the targeted sequencing panel for the identification of cancer susceptibility in high‐risk individuals from the Czech Republic]. Klinická Onkologie, 29, (Suppl 1), S46–54. 10.14735/amko2016S46 PubMed DOI
Spurdle, A. B. , Whiley, P. J. , Thompson, B. , Feng, B. , Healey, S. , Brown, M. A. , … Consortium, E. (2012). BRCA1 R1699Q variant displaying ambiguous functional abrogation confers intermediate breast and ovarian cancer risk. Journal of Medical Genetics, 49(8), 525–532. 10.1136/jmedgenet-2012-101037 PubMed DOI PMC
Stranger, B. E. , Forrest, M. S. , Clark, A. G. , Minichiello, M. J. , Deutsch, S. , Lyle, R. , … Dermitzakis, E. T. (2005). Genome‐wide associations of gene expression variation in humans. PLoS Genetics, 1(6), e78 10.1371/journal.pgen.0010078 PubMed DOI PMC
Stranger, B. E. , Nica, A. C. , Forrest, M. S. , Dimas, A. , Bird, C. P. , Beazley, C. , … Dermitzakis, E. T. (2007). Population genomics of human gene expression. Nature Genetics, 39(10), 1217–1224. 10.1038/ng2142 PubMed DOI PMC
Suen, T. C. , & Goss, P. E. (1999). Transcription of BRCA1 is dependent on the formation of a specific protein‐DNA complex on the minimal BRCA1 Bi‐directional promoter. Journal of Biological Chemistry, 274(44), 31297–31304. PubMed
Tan‐Wong, S. M. , French, J. D. , Proudfoot, N. J. , & Brown, M. A. (2008). Dynamic interactions between the promoter and terminator regions of the mammalian BRCA1 gene. Proceedings of the National Academy of Sciences of the United States of America, 105(13), 5160–5165. 10.1073/pnas.0801048105 PubMed DOI PMC
Thakur, S. , & Croce, C. M. (1999). Positive regulation of the BRCA1 promoter. Journal of Biological Chemistry, 274(13), 8837–8843. PubMed
Tran, D. H. , Shishido, Y. , Chung, S. P. , Trinh, H. T. , Yorita, K. , Sakai, T. , & Fukui, K. (2015). Identification of two promoters for human D‐amino acid oxidase gene: Implication for the differential promoter regulation mediated by PAX5/PAX2. Journal of Biochemistry, 157(5), 377–387. 10.1093/jb/mvu084 PubMed DOI
Vallee, M. P. , Di Sera, T. L. , Nix, D. A. , Paquette, A. M. , Parsons, M. T. , Bell, R. , … Tavtigian, S. V. (2016). Adding In Silico Assessment of Potential Splice Aberration to the Integrated Evaluation of BRCA Gene Unclassified Variants. Hum Mutat, 37(7), 627–639. 10.1002/humu.22973 PubMed DOI PMC
Walsh, T. , Casadei, S. , Coats, K. H. , Swisher, E. , Stray, S. M. , Higgins, J. , … King, M. C. (2006). Spectrum of mutations in BRCA1, BRCA2, CHEK2, and TP53 in families at high risk of breast cancer. JAMA, 295(12), 1379–1388. 10.1001/jama.295.12.1379 PubMed DOI
Wardrop, S. L. , Brown, M. A. , & kConFab, I. (2005). Identification of two evolutionarily conserved and functional regulatory elements in intron 2 of the human BRCA1 gene. Genomics, 86(3), 316–328. 10.1016/j.ygeno.2005.05.006 PubMed DOI
Wiedemeyer, W. R. , Beach, J. A. , & Karlan, B. Y. (2014). Reversing platinum resistance in high‐grade serous ovarian carcinoma: Targeting BRCA and the homologous recombination system. Frontiers in Oncology, 4, 34 10.3389/fonc.2014.00034 PubMed DOI PMC
Xu, C. F. , Chambers, J. A. , & Solomon, E. (1997). Complex regulation of the BRCA1 gene. Journal of Biological Chemistry, 272(34), 20994–20997. 10.1074/jbc.272.34.20994 PubMed DOI
Zhu, X. , Wang, Y. , Pi, W. , Liu, H. , Wickrema, A. , & Tuan, D. (2012). NF‐Y recruits both transcription activator and repressor to modulate tissue‐ and developmental stage‐specific expression of human gamma‐globin gene. PLoS One, 7(10), e47175 10.1371/journal.pone.0047175 PubMed DOI PMC