Second Primary Cancers After Liver, Gallbladder and Bile Duct Cancers, and These Cancers as Second Primary Cancers

. 2021 ; 13 () : 683-691. [epub] 20210804

Status PubMed-not-MEDLINE Jazyk angličtina Země Nový Zéland Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34377034

BACKGROUND: Second primary cancers (SPCs) are important clinically as they may negatively influence patient survival and they may tell about therapeutic side effects and general causes of cancer. Population-based literature concerning SPCs after hepatobiliary cancers is limited and here we assess risks of SPCs after hepatocellular cancer (HCC), and cancers of the gallbladder, bile ducts and ampulla of Vater. In reverse order, we consider the risk of hepatobiliary cancers as SPCs after any cancer. METHODS: We used standardized incidence ratios (SIRs) to estimate bidirectional relative risks of subsequent cancers associated with hepatobiliary cancers. Cancer diagnoses were obtained from the Swedish Cancer Registry from years 1990 through 2015. RESULTS: We identified 9997 primary HCCs, 1365 gallbladder cancers and 4721 bile duct cancers. After HCC, risks of four SPCs were increased: gallbladder (SIR = 4.38; 95% confidence interval 1.87-8.67), thyroid (4.13; 1.30-9.70), kidney (2.92; 1.66-4.47) and squamous cell skin (1.55; 1.02-2.26) cancers. In reverse order, HCC as SPC, in addition to the above cancers, associations included upper aerodigestive tract, esophageal, small intestinal and bladder cancers and non-Hodgkin lymphoma. For gallbladder and bile duct cancers, associations were found with small intestinal and pancreatic cancers. CONCLUSION: The results suggested that HCC is associated with two types of SPC, one related to shared environmental risk factors, such as alcohol, exemplified by upper aerodigestive tract and esophageal cancer, and the other related to immune dysfunction, exemplified by squamous cell skin cancer. SPCs associated with gallbladder and bile duct cancers suggest predisposition to mutations in the mismatch repair gene MLH1.

Zobrazit více v PubMed

Hamilton S, Aaltonen L, editors. Tumours of the Digestive System. Lyon: IARC; 2000.

Villanueva A, Longo DL. Hepatocellular carcinoma. N Engl J Med. 2019;380(15):1450–1462. doi:10.1056/NEJMra1713263 PubMed DOI

IARC. GLOBOCAN 2000. Cancer Incidence, Mortality and Prevalence Worldwide. Lyon: IARC Press; 2001.

Yang JD, Hainaut P, Gores GJ, Amadou A, Plymoth A, Roberts LR. A global view of hepatocellular carcinoma: trends, risk, prevention and management. Nat Rev Gastroenterol Hepatol. 2019;16(10):589–604. doi:10.1038/s41575-019-0186-y PubMed DOI PMC

Takakura K, Oikawa T, Nakano M, et al. Recent insights into the multiple pathways driving non-alcoholic steatohepatitis-derived hepatocellular carcinoma. Front Oncol. 2019;9:762. doi:10.3389/fonc.2019.00762 PubMed DOI PMC

Åberg F, Färkkilä M, Männistö V. Interaction between alcohol use and metabolic risk factors for liver disease: a critical review of epidemiological studies. Alcohol Clin Exp Res. 2020;44(2):384–403. doi:10.1111/acer.14271 PubMed DOI

Thylur RP, Roy SK, Shrivastava A, LaVeist TA, Shankar S, Srivastava RK. Assessment of risk factors, and racial and ethnic differences in hepatocellular carcinoma. JGH Open. 2020;4(3):351–359. doi:10.1002/jgh3.12336 PubMed DOI PMC

Rawla P, Sunkara T, Thandra KC, Barsouk A. Epidemiology of gallbladder cancer. Clin Exp Hepatol. 2019;5(2):93–102. doi:10.5114/ceh.2019.85166 PubMed DOI PMC

Bal MM, Ramadwar M, Deodhar K, Shrikhande S. Pathology of gallbladder carcinoma: current understanding and new perspectives. Pathol Oncol Res. 2015;21(3):509–525. doi:10.1007/s12253-014-9886-3 PubMed DOI

Arnold M, Pandeya N, Byrnes G, et al. Global burden of cancer attributable to high body-mass index in 2012: a population-based study. Lancet Oncol. 2015;16(1):36–46. doi:10.1016/S1470-2045(14)71123-4 PubMed DOI PMC

Hemminki K, Li X. Familial liver and gall bladder cancer: a nationwide epidemiological study from Sweden. Gut. 2003;52:592–596. doi:10.1136/gut.52.4.592 PubMed DOI PMC

Yu MW, Chang HC, Liaw YF, et al. Familial risk of hepatocellular carcinoma among chronic hepatitis B carriers and their relatives. J Natl Cancer Inst. 2000;92(14):1159–1164. doi:10.1093/jnci/92.14.1159 PubMed DOI

Petersen G. Familial aggregation: sorting susceptibility from shared environment. J Natl Cancer Inst. 2000;92:1114–1115. doi:10.1093/jnci/92.14.1114 PubMed DOI

Castro FA, Liu X, Försti A, et al. Increased risk of hepatobiliary cancers after hospitalization for autoimmune disease. Clin Gastroenterol Hepatol. 2014;12(6):1038–1045.e7. doi:10.1016/j.cgh.2013.11.007 PubMed DOI

McGee EE, Castro FA, Engels EA, et al. Associations between autoimmune conditions and hepatobiliary cancer risk among elderly US adults. Int J Cancer. 2019;144(4):707–717. doi:10.1002/ijc.31835 PubMed DOI PMC

Møller P, Seppälä TT, Bernstein I, et al. Cancer risk and survival in path_MMR carriers by gene and gender up to 75 years of age: a report from the prospective lynch syndrome database. Gut. 2018;67(7):1306–1316. doi:10.1136/gutjnl-2017-314057 PubMed DOI PMC

Mousavi SM, Hemminki K. Cancer incidence, trends, and survival among immigrants to Sweden: a population-based study. Eur J Cancer Prev. 2015;24(Suppl 1):S1–S63. doi:10.1097/CEJ.0000000000000106 PubMed DOI

Ferlay J, Parkin DM, Steliarova-Foucher E. Estimates of cancer incidence and mortality in Europe in 2008. Eur J Cancer. 2010;46(4):765–781. doi:10.1016/j.ejca.2009.12.014 PubMed DOI

Travis LB, Demark Wahnefried W, Allan JM, Wood ME, Ng AK. Aetiology, genetics and prevention of secondary neoplasms in adult cancer survivors. Nat Rev Clin Oncol. 2013;10(5):289–301. doi:10.1038/nrclinonc.2013.41 PubMed DOI

Chen T, Fallah M, Jansen L, et al. Distribution and risk of the second discordant primary cancers combined after a specific first primary cancer in German and Swedish cancer registries. Cancer Lett. 2015;369(1):152–166. doi:10.1016/j.canlet.2015.08.014 PubMed DOI

Wu WC, Chen YT, Hwang CY, et al. Second primary cancers in patients with hepatocellular carcinoma: a nationwide cohort study in Taiwan. Liver Int. 2013;33(4):616–623. doi:10.1111/liv.12103 PubMed DOI

Zheng G, Sundquist K, Sundquist J, Försti A, Hemminki A, Hemminki K. Rate differences between first and second primary cancers may outline immune dysfunction as a key risk factor. Cancer Med. 2020;9(21):8258–8265. PubMed PMC

Zheng G, Sundquist K, Sundquist J, Försti A, Hemminki A, Hemminki K. Incidence differences between first primary cancers and second primary cancers following skin squamous cell carcinoma as etiological clues. Clin Epidemiol. 2020;12:857–864. doi:10.2147/CLEP.S256662 PubMed DOI PMC

Greenland S, Senn SJ, Rothman KJ, et al. Statistical tests, P values, confidence intervals, and power: a guide to misinterpretations. Eur J Epidemiol. 2016;31(4):337–350. doi:10.1007/s10654-016-0149-3 PubMed DOI PMC

Henriksson M, Björnsson B, Sternby Eilard M, et al. Treatment patterns and survival in patients with hepatocellular carcinoma in the Swedish national registry SweLiv. BJS Open. 2020;4(1):109–117. doi:10.1002/bjs5.50226 PubMed DOI PMC

Ji J, Sundquist K, Sundquist J, Hemminki K. Comparability of cancer identification among death registry, cancer registry and hospital discharge registry. Int J Cancer. 2012;131:2085–2093. doi:10.1002/ijc.27462 PubMed DOI

Thomsen H, Li X, Sundquist K, Sundquist J, Försti A, Hemminki K. Familial associations between autoimmune hepatitis and primary biliary cholangitis and other autoimmune diseases. PLoS One. 2020;15(10):e0240794. doi:10.1371/journal.pone.0240794 PubMed DOI PMC

Birkeland S, Storm H, Lamm L, et al. Cancer risk after renal transplantation in the Nordic countries, 1964–1986. Int J Cancer. 1995;60:183–189. doi:10.1002/ijc.2910600209 PubMed DOI

Hortlund M, Arroyo Muhr LS, Storm H, Engholm G, Dillner J, Bzhalava D. Cancer risks after solid organ transplantation and after long-term dialysis. Int J Cancer. 2017;140(5):1091–1101. doi:10.1002/ijc.30531 PubMed DOI

Rama I, Grinyo JM. Malignancy after renal transplantation: the role of immunosuppression. Nat Rev Nephrol. 2010;6(9):511–519. doi:10.1038/nrneph.2010.102 PubMed DOI

Pukkala E, Engholm G, Hojsgaard Schmidt LK, et al. Nordic Cancer Registries - an overview of their procedures and data comparability. Acta Oncol. 2018;57:440–455. doi:10.1080/0284186X.2017.1407039 PubMed DOI

Bernstein C, Bernstein H. Epigenetic reduction of DNA repair in progression to gastrointestinal cancer. World J Gastrointest Oncol. 2015;7(5):30–46. doi:10.4251/wjgo.v7.i5.30 PubMed DOI PMC

Marongiu F, Laconi E. Cell competition in liver carcinogenesis. World J Hepatol. 2020;12(8):475–484. doi:10.4254/wjh.v12.i8.475 PubMed DOI PMC

van Doeveren T, van de Werken HJG, van Riet J, et al. Synchronous and metachronous urothelial carcinoma of the upper urinary tract and the bladder: are they clonally related? A systematic review. Urol Oncol. 2020;38:590–598. doi:10.1016/j.urolonc.2020.01.008 PubMed DOI

Fridman WH, Zitvogel L, Sautes-Fridman C, Kroemer G. The immune contexture in cancer prognosis and treatment. Nat Rev Clin Oncol. 2017;14(12):717–734. doi:10.1038/nrclinonc.2017.101 PubMed DOI

Shalapour S, Karin M. Pas de Deux: control of anti-tumor immunity by cancer-associated inflammation. Immunity. 2019;51(1):15–26. doi:10.1016/j.immuni.2019.06.021 PubMed DOI PMC

Galluzzi L, Vitale I, Warren S, et al. Consensus guidelines for the definition, detection and interpretation of immunogenic cell death. J Immunother Cancer. 2020;8(1):e000337. doi:10.1136/jitc-2019-000337 PubMed DOI PMC

Mondino A, Manzo T. To remember or to forget: the role of good and bad memories in adoptive T cell therapy for tumors. Front Immunol. 2020;11:1915. doi:10.3389/fimmu.2020.01915 PubMed DOI PMC

Liu X, Hemminki K, Forsti A, Sundquist K, Sundquist J, Ji J. Cancer risk in patients with type 2 diabetes mellitus and their relatives. Int J Cancer. 2015;137:903–910. doi:10.1002/ijc.29440 PubMed DOI

Thomsen H, Li X, Sundquist K, Sundquist J, Försti A, Hemminki K. Familial risks between Graves disease and Hashimoto thyroiditis and other autoimmune diseases in the population of Sweden. J Transl Autoimmun. 2020;3:100058. doi:10.1016/j.jtauto.2020.100058 PubMed DOI PMC

Chen YK, Lin CL, Chang YJ, et al. Cancer risk in patients with Graves’ disease: a nationwide cohort study. Thyroid. 2013;23(7):879–884. doi:10.1089/thy.2012.0568 PubMed DOI PMC

Dias Lopes NM, Mendonça Lens HH, Armani A, Marinello PC, Cecchini AL. Thyroid cancer and thyroid autoimmune disease: a review of molecular aspects and clinical outcomes. Pathol Res Pract. 2020;216(9):153098. doi:10.1016/j.prp.2020.153098 PubMed DOI

Hińcza K, Kowalik A, Kowalska A. Current knowledge of germline genetic risk factors for the development of non-medullary thyroid cancer. Genes. 2019;10(7):482. doi:10.3390/genes10070482 PubMed DOI PMC

Hemminki K, Eng C, Chen B. Familial risks for nonmedullary thyroid cancer. J Clin Endocrinol Metab. 2005;90:5747–5753. doi:10.1210/jc.2005-0935 PubMed DOI

Ertel AE, Bentrem D, Abbott DE. Gall bladder cancer. Cancer Treat Res. 2016;168:101–120. PubMed

Mellemkjaer L, Friis S, Olsen JH, et al. Risk of second cancer among women with breast cancer. Int J Cancer. 2006;118:2285–2292. doi:10.1002/ijc.21651 PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Familial Risks for Liver, Gallbladder and Bile Duct Cancers and for Their Risk Factors in Sweden, a Low-Incidence Country

. 2022 Apr 12 ; 14 (8) : . [epub] 20220412

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...