Comparison of Miniaturized Raman Spectrometers for Discrimination of Carotenoids of Halophilic Microorganisms
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
31191483
PubMed Central
PMC6548819
DOI
10.3389/fmicb.2019.01155
Knihovny.cz E-zdroje
- Klíčová slova
- Corynebacterium, Halobacterium, Halorubrum, Salinibacter, exobiology, halophiles, portable Raman spectrometers, portable sequentially shifted excitation Raman spectrometer,
- Publikační typ
- časopisecké články MeSH
We present a comparison of the performance of four miniature portable Raman spectrometers for the discrimination of carotenoids in samples of carotene-producing microorganisms. Two spectrometers using a green laser allowing to obtain Resonance Raman (or pre-Resonance Raman) signals, one instrument with a 785 nm laser, and a recently developed Portable Sequentially Shifted Excitation Raman spectrometer (PSSERS) were used for identifying major pigments of different halophilic (genera Halobacterium, Halorubrum, Haloarcula, Salinibacter, Ectothiorhodospira, Dunaliella) and non-halophilic microorganisms (Micrococcus luteus, Corynebacterium glutamicum). Using all the tested instruments including the PSSERS, strong carotenoids signals corresponding to the stretching vibrations in the polyene chain and in-plane rocking modes of the attached CH3 groups were found at the correct positions. Raman spectra of carotenoids can be obtained from different types of microbiological samples (wet pellets, lyophilized culture biomass and pigment extracts in organic solvents), and can be collected fast and without time-consuming procedures.
Zobrazit více v PubMed
Baranska M., Roman M., Dobrowolski J. C., Schulz H., Baranski R. (2013). Recent advances in Raman analysis of plants: alkaloids, carotenoids, and polyacetylenes. Curr. Anal. Chem. 9 108–127. 10.2174/157341113804486455 DOI
Bligh E. G., Dyer W. J. (1959). A rapid method for total lipid extraction and purification. Can. J. Biochem. Physiol. 37 911–917. 10.1139/o59-099 PubMed DOI
Culka A., Osterrothová K., Hutchinson I., Ingley R., McHugh M., Oren A., et al. (2014). Detection of pigments of halophilic endoliths from gypsum: Raman portable instrument and European Space Agency’s prototype analysis. Phil. Trans. Roy. Soc. A 372:20140203. 10.1098/rsta.2014.0203 PubMed DOI PMC
de Oliveira V. E., Castro H. V., Edwards H. G. M., de Oliveira L. F. C. (2010). Carotenes and carotenoids in natural biological samples: a Raman spectroscopic analysis. J. Raman Spectrosc. 41 642–650. 10.1002/jrs.2493 DOI
de Oliveira V. E., Neves Miranda M. A. C., Soares M. C. S., Edwards H. G. M., de Oliveira L. F. C. (2015). Study of carotenoids in cyanobacteria by Raman spectroscopy. Spectrochim. Acta A 150 373–380. 10.1016/j.saa.2015.05.044 PubMed DOI
Edwards H. G. M., Garcia-Pichel F., Newton E. M., Wynn-Williams D. D. (2000). Vibrational Raman spectroscopic study of scytonemin, the UV-protective cyanobacterial pigment. Spectrochim. Acta A 56 193–200. 10.1016/S1386-1425(99)00218-8 PubMed DOI
Edwards H. G. M., Russell N. C., Wynn-Williams D. D. (1997). Fourier transform Raman spectroscopic and scanning electron microscopic study of cryptoendolithic lichens from Antarctica. J. Raman Spectrosc. 28 685–690.
Fendrihan S., Musso M., Stan-Lotter H. (2009). Raman spectroscopy as a potential method for the detection of extremely halophilic archaea embedded in halite in terrestrial and possibly extraterrestrial samples. J. Raman Spectrosc. 40 1996–2003. 10.1002/jrs.2357 PubMed DOI PMC
Heraud P., Beardall J., McNaughton D., Wood B. R. (2007). In vivo prediction of the nutrient status of individual microalgal cells using Raman microspectroscopy. FEMS Microbiol. Lett. 275 24–30. 10.1111/j.1574-6968.2007.00861.x PubMed DOI
Holder J. M., Wynn-Williams D. D., Perez F. R., Edwards H. G. M. (2000). Raman spectroscopy of pigments and oxalates in situ within epilithic lichens: Acarospora from the Antarctic and Mediterranean. New Phytol. 145 271–280. 10.1046/j.1469-8137.2000.00573.x DOI
Jehlička J., Culka A., Košek F. (2017). Obtaining Raman spectra of minerals and carbonaceous matter using a portable sequentially shifted excitation Raman spectrometer – a few examples. J. Raman Spectrosc. 48 1583–1589. 10.1002/jrs.5105 DOI
Jehlička J., Edwards H. G. M., Němec I., Oren A. (2015). Raman spectroscopic study of the Chromobacterium violaceum pigment violacein using multiwavelength excitation and DFT calculations. Spectrochim. Acta A 151 459–467. 10.1016/j.saa.2015.06.051 PubMed DOI
Jehlička J., Edwards H. G. M., Osterrothová K., Novotná J., Nedbalová L., Kopecký J., et al. (2014a). Potential and limits of Raman spectroscopy for carotenoid detection in microorganisms: implications for astrobiology. Phil. Trans. Roy. Soc. A 372:20140199. 10.1098/rsta.2014.0199 PubMed DOI PMC
Jehlička J., Edwards H. G. M., Oren A. (2014b). Raman spectroscopy of microbial pigments. Appl. Environ. Microbiol. 80 3286–3295. 10.1128/AEM.00699-14 PubMed DOI PMC
Jehlička J., Němec I., Varnali T., Culka A., Svatoš A., Frank O., et al. (2016). The pink pigment prodigiosin: vibrational spectroscopy and DFT calculations. Dyes Pigm. 134 234–243. 10.1016/j.dyepig.2016.07.018 DOI
Jehlička J., Oren A. (2013). Raman spectroscopy in halophile research. Front. Microbiol. 4:380 10.3389/fmicb.2013.00380 PubMed DOI PMC
Jehlička J., Oren A., Edwards H. G. M. (2013). Bacterioruberin and salinixanthin carotenoids of extremely halophilic archaea and bacteria: a Raman spectroscopic study. Spectrochim. Acta A 106 99–103. 10.1016/j.saa.2012.12.081 PubMed DOI
Jorge-Villar S. E., Benning L. G., Edwards H. G. M. and AMASE Team. (2007). Raman and SEM analysis of a biocolonised hot spring travertine terrace in Svalbard, Norway. Geochem. Trans. 8:8. 10.1186/1467-4866-8-8 PubMed DOI PMC
Kumar B. N. V., Kampe B., Rösch P., Popp J. (2015). Characterization of carotenoids in soil bacteria and investigation of their photodegradation by UVA radiation via resonance Raman spectroscopy. Analyst 140 4584–4593. 10.1039/c5an00438a PubMed DOI
Malherbe C., Hutchinson I. B., McHugh M., Ingley R., Jehlička J., Edwards H. G. M. (2017). Accurate differentiation of carotenoid pigments using flight representative Raman spectrometers. Astrobiology 17 351–362. 10.1089/ast.2016.1547 PubMed DOI
Marshall C. P., Carter E. A., Leuko S., Javaux E. J. (2006). Vibrational spectroscopy of extant and fossil microbes: relevance for the astrobiological exploration of Mars. Vib. Spectrosc. 41 182–189. 10.1016/j.vibspec.2006.01.008 DOI
Marshall C. P., Leuko S., Coyle C. M., Walter M. R., Burns B. P., Neilan B. A. (2007). Carotenoid analysis of halophilic archaea by resonance Raman spectroscopy. Astrobiology 7 631–643. 10.1089/ast.2006.0097 PubMed DOI
Merlin J. C. (1985). Resonance Raman spectroscopy of carotenoids and carotenoid - containing systems. Pure Appl. Chem. 57 785–792. 10.1351/pac198557050785 PubMed DOI
Miralles I., Jorge-Villar S. E., Cantón Y., Domingo F. (2012). Using a mini-Raman spectrometer to monitor the adaptive strategies of extremophile colonizers in arid deserts: relationships between signal strength, adaptive strategies, solar radiation, and humidity. Astrobiology 12 743–753. 10.1089/ast.2011.0763 PubMed DOI
Oren A., Hirschberg J., Mann V., Jehlička J. (2018). Effects of nicotine on the biosynthesis of carotenoids in halophilic archaea (class Halobacteria): an HPLC and Raman spectroscopy study. Extremophiles 22 359–366. 10.1007/s00792-018-0995-x PubMed DOI
Osterrothová K., Culka A., Němečková K., Kaftan D., Nedbalová L., Procházková L., et al. (2019). Analyzing carotenoids of snow algae by Raman microspectroscopy and high-performance liquid chromatography. Spectrochim. Acta A 212 262–271. 10.1016/j.saa.2019.01.013 PubMed DOI
Ota S., Morita A., Ohnuki S., Hirata A., Sekida S., Okuda K., et al. (2018). Carotenoid dynamics and lipid droplet containing astaxanthin in response to light in the green alga Haematococcus pluvialis. Sci. Rep. 8:5617. 10.1038/s41598-018-23854-w PubMed DOI PMC
Pfennig N., Lippert K. D. (1966). Über das Vitamin B12-Bedürfnis phototropher Schwefelbakterien. Arch. Mikrobiol. 55 245–256. 10.1007/BF00410246 DOI
Stoeckel S., Stanca A. S., Helbig J., Rösch P., Popp J. (2015). Raman spectroscopic monitoring of the growth of pigmented and non-pigmented mycobacteria. Anal. Bioanal. Chem. 407 8919–8923. 10.1007/s00216-015-9031-5 PubMed DOI
Storme J. Y., Golubic S., Wilmotte A., Kleinteich J., Velazquez D., Javaux E. J. (2015). Raman characterization of the UV-protective pigment gloeocapsin and its role in the survival of cyanobacteria. Astrobiology 15 843–857. 10.1089/ast.2015.1292 PubMed DOI
Tauber J. P., Matthaus C., Lenz C., Hoffmeister D., Popp J. (2018). Analysis of basidiomycete pigments in situ by Raman spectroscopy. J. Biophoton. 11 1–12. 10.1002/jbio.201700369 PubMed DOI
Vandenabeele P., Edwards H. G. M., Jehlička J. (2014). The role of mobile instrumentation in novel applications of Raman spectroscopy: archaeometry, geosciences, and forensics. Chem. Soc. Rev. 43 2628–2649. 10.1039/c3cs60263j PubMed DOI
Venckus P., Paliulis S., Kostkevičiene J., Dementjev A. (2018). CARS microscopy of scytonemin in cyanobacteria Nostoc commune. J. Raman Spectrosc. 49 1333–1338. 10.1002/jrs.5388 DOI
Villar S. E. J., Edwards H. G. M., Seaward M. R. D. (2005). Raman spectroscopy of hot desert, high altitude epilithic lichens. Analyst 130 730–737. 10.1039/b501585e PubMed DOI
Vítek P., Edwards H. G. M., Jehlička J., Ascaso C., De los Ríos A., Valea S., et al. (2010). Microbial colonization of halite from the hyper-arid Atacama Desert studied by Raman spectroscopy. Phil. Trans. Roy. Soc. A 368 3205–3221. 10.1098/rsta.2010.0059 PubMed DOI
Vítek P., Jehlička J., Edwards H. G., Hutchinson I., Ascaso C., Wierzchos J. (2012). The miniaturized Raman system and detection of traces of life in halite from the Atacama Desert: some considerations for the search for life signatures on Mars. Astrobiology 12 1095–1099. 10.1089/ast.2012.0879 PubMed DOI PMC
Withnall R., Chowdhry B. Z., Silver J., Edwards H. G. M., de Oliveira L. F. C. (2003). Raman spectra of carotenoids in natural products. Spectrochim. Acta A 59 2207–2212. 10.1016/s1386-1425(03)00064-7 PubMed DOI