Raman spectroscopy of microbial pigments

. 2014 Jun ; 80 (11) : 3286-95. [epub] 20140328

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid24682303

Raman spectroscopy is a rapid nondestructive technique providing spectroscopic and structural information on both organic and inorganic molecular compounds. Extensive applications for the method in the characterization of pigments have been found. Due to the high sensitivity of Raman spectroscopy for the detection of chlorophylls, carotenoids, scytonemin, and a range of other pigments found in the microbial world, it is an excellent technique to monitor the presence of such pigments, both in pure cultures and in environmental samples. Miniaturized portable handheld instruments are available; these instruments can be used to detect pigments in microbiological samples of different types and origins under field conditions.

Zobrazit více v PubMed

Stanier RY, Cohen-Bazire G. 1977. Phototrophic prokaryotes: the cyanobacteria. Annu. Rev. Microbiol. 31:225–274. 10.1146/annurev.mi.31.100177.001301 PubMed DOI

Oren A. 2002. Pigments of halophilic microorganisms, p 173–206 In Halophilic microorganisms and their environments: cellular origin, life in extreme habitats and astrobiology. Springer, Dordrecht, The Netherlands

Koyama Y. 1991. Structures and functions of carotenoids in photosynthetic systems. J. Photochem. Photobiol. B 9:265–280. 10.1016/1011-1344(91)80165-E DOI

Garcia-Pichel F, Castenholz RW. 1993. Occurrence of UV-absorbing mycosporine-like compounds among cyanobacterial isolates and an estimate of their screening capacity. Appl. Environ. Microbiol. 59:163–169 PubMed PMC

Edge R, McGarvey DJ, Truscott TG. 1997. The carotenoids as anti-oxidants—a review. Photochem. Photobiol. B Biol. 41:189–200. 10.1016/S1011-1344(97)00092-4 PubMed DOI

Frank HA, Chynwat V, Desamero RZB, Farhoosh R, Erickson J, Bautista J. 1997. On the photophysics and photochemical properties of carotenoids and their role as light-harvesting pigments in photosynthesis. Pure Appl. Chem. 69:2117–2124

Delhaye M, Dhamelincourt P. 1975. Raman microprobe and microscope with laser excitation. J. Raman Spectrosc. 3:33–43. 10.1002/jrs.1250030105 DOI

Puppels GJ, Demul FFM, Otto C, Greve J, Robert-Nicoud M, Arndt-Jovin DJ, Jovin TM. 1990. Studying single living cells and chromosomes by confocal Raman microspectroscopy. Nature 347:301–303. 10.1038/347301a0 PubMed DOI

Edwards HGM, Farwell DW, Seaward MRD. 1991. Raman spectra of oxalates in lichen encrustations on Renaissance frescoes. Spectrochim. Acta A 47:1531–1539. 10.1016/0584-8539(91)80247-G DOI

Kirschner C, Maquelin K, Pina P, Ngo Thi NA, Choo-Smith LP, Sockalingum GD, Sandt C, Ami D, Orsini F, Doglia SM, Allouch P, Mainfait M, Puppels GJ, Naumann D. 2001. Classification and identification of enterococci: a comparative phenotypic, genotypic, and vibrational spectroscopic study. J. Clin. Microbiol. 39:1763–1770. 10.1128/JCM.39.5.1763-1770.2001 PubMed DOI PMC

Maquelin K, Choo-Smith LP, Endtz HP, Bruining HA, Puppels GJ. 2002. Rapid identification of Candida species by confocal Raman microspectroscopy. J. Clin. Microbiol. 40:594–600. 10.1128/JCM.40.2.594-600.2002 PubMed DOI PMC

Chan J, Fore S, Wachsman-Hogiu S, Huser T. 2008. Raman spectroscopy and microscopy of individual cells and cellular components. Laser Photon. Rev. 2:325–349. 10.1002/lpor.200810012 DOI

Harz M, Rösch P, Popp J. 2009. Vibrational spectroscopy—a powerful tool for the rapid identification of microbial cells at the single-cell level. Cytometry A 75:104–113. 10.1002/cyto.a.20682 PubMed DOI

Maquelin K, Kirschner C, Choo-Smith LP, van den Braak N, Endtz HP, Naumann D, Puppels GJ. 2002. Identification of medically relevant microorganisms by vibrational spectroscopy. J. Microbiol. Methods 51:255–271. 10.1016/S0167-7012(02)00127-6 PubMed DOI

Petry R, Schmitt M, Popp J. 2003. Raman spectroscopy—a prospective tool in the life sciences. Chem. Phys. Chem. 4:14–30. 10.1002/cphc.200390004 PubMed DOI

Wagner M. 2009. Single-cell ecophysiology of microbes as revealed by Raman microspectroscopy or secondary ion mass spectrometry imaging. Annu. Rev. Microbiol. 60:411–429. 10.1146/annurev.micro.091208.073233 PubMed DOI

Rösch P, Schmitt M, Kiefer W, Popp J. 2003. The identification of microorganisms by micro-Raman spectroscopy. J. Mol. Struct. 661-662:363–369. 10.1016/j.molstruc.2003.06.004 DOI

Huang WE, Li M, Jarvis RM, Goodacre R, Banwart SA. 2010. Shining light on the microbial world: the application of Raman microspectroscopy. Adv. Appl. Microbiol. 70:153–186. 10.1016/S0065-2164(10)70005-8 PubMed DOI

Lu X, Al-Qadiri HM, Lin M, Rasco BA. 2011. Application of mid-infrared and Raman spectroscopy to the study of bacteria. Food Bioprocess Technol. 4:919–935. 10.1007/s11947-011-0516-8 DOI

Kneipp J, Kneipp H, Kneipp K. 2008. SERS—a single-molecule and nanoscale tool for bioanalytics. Chem. Soc. Rev. 37:1052–1060. 10.1039/b708459p PubMed DOI

Wachsmann-Hogiu S, Weeks T, Huser T. 2009. Chemical analysis in vivo and in vitro by Raman spectroscopy-from single cells to humans. Curr. Opin. Biotechnol. 20:63–73. 10.1016/j.copbio.2009.02.006 PubMed DOI PMC

Lombardi JR, Birke RL. 2009. A unified view of surface-enhanced Raman scattering. Acc. Chem. Res. 42:734–742. 10.1021/ar800249y PubMed DOI

Merlin JC. 1985. Resonance Raman spectroscopy of carotenoids and carotenoid-containing systems. Pure Appl. Chem. 57:785–792

Euler HV, Hellstrom H. 1932. Raman Spektren von Carotinoiden. Z. Phys. Chem. 15:342–346

Gill D, Kilponen RG, Rimai L. 1970. Resonance Raman scattering of laser radiation by vibrational modes of carotenoid pigment molecules in intact plant tissues. Nature 227:743–744. 10.1038/227743a0 PubMed DOI

Hayashi H, Hamaguchi H, Tasumi M. 1983. Resonance Raman spectra of light-harvesting bacteriochlorophyll a in pigment-protein complexes from purple photosynthetic bacteria. Chem. Lett. 12:1857–1860. 10.1246/cl.1983.1857 DOI

Wagner WD. 1986. Raman excitation profiles from pigments in vivo. J. Raman Spectrosc. 17:51–53. 10.1002/jrs.1250170111 DOI

Merlin JC. 1987. Resonance Raman analysis of astaxanthin-protein complexes. J. Raman Spectrosc. 18:519–523. 10.1002/jrs.1250180713 DOI

Duncan MD, Reintjes J, Manuccia TJ. 1982. Scanning coherent anti-Stokes Raman microscope. Opt. Lett. 7:350–352. 10.1364/OL.7.000350 PubMed DOI

Palonpon AF, Sodeoka M, Fujita K. 2013. Molecular imaging of live cells by Raman microscopy. Curr. Opin. Chem. Biol. 17:708–715. 10.1016/j.cbpa.2013.05.021 PubMed DOI

Stender AS, Marchuk K, Liu C, Sander S, Matthew W, Meyer MW, Smith EA, Neupane B, Wang G, Li J, Cheng JX, Huang B, Fang N. 2013. Single cell optical imaging and spectroscopy. Chem. Rev. 113:2469–2527. 10.1021/cr300336e PubMed DOI PMC

Andreeva A, Abarova S, Stoitchkova K, Picorel R, Velitchkova M. 2007. Selective photobleaching of chlorophylls and carotenoids in photosystem I. Particles under high-light treatment. Photochem. Photobiol. 83:1301–1307. 10.1111/j.1751-1097.2007.00136.x PubMed DOI

Dartnell LR, Page K, Jorge-Villar SE, Wright G, Munshi T, Scowen IJ, Ward JM, Edwards HGM. 2012. Destruction of Raman biosignatures by ionising radiation and the implications for life detection on Mars. Anal. Bioanal. Chem. 403:131–144. 10.1007/s00216-012-5829-6 PubMed DOI

Vítek P, Osterrothová K, Jehlička J. 2009. Beta-carotene—a possible biomarker in the Martian evaporitic environment: Raman micro-spectroscopic study. Planet. Space Sci. 57:454–459. 10.1016/j.pss.2008.06.001 DOI

Vítek P, Jehlička J, Edwards HGM, Osterrothová K. 2009. Identification of β-carotene in an evaporitic matrix—evaluation of Raman spectroscopic analysis for astrobiological research on Mars. Anal. Bioanal. Chem. 393:1967–1975. 10.1007/s00216-009-2677-0 PubMed DOI

Carey PR. 1982. Biochemical applications of Raman and resonance Raman spectroscopies. Academic Press, New York, NY

Withnall R, Chowdhry BZ, Silver J, Edwards HGM, de Oliveira LFC. 2003. Raman spectra of carotenoids in natural products. Spectrochim. Acta A 59:2207–2212. 10.1016/S1386-1425(03)00064-7 PubMed DOI

Maquelin K, Hoogenboezem T, Jachtenberg JW, Dumke R, Jacobs E, Puppels GJ, Hartwig NG, Vink C. 2009. Raman spectroscopic typing reveals the presence of carotenoids in Mycoplasma pneumoniae. Microbiology 155:2068–2077. 10.1099/mic.0.026724-0 PubMed DOI

Koyama Y. 1995. Resonance Raman spectroscopy, p 135–146 In Britton G, Liaaen-Jensen S, Pfander H. (ed), Carotenoids, vol 1B Spectroscopy. Birkhauser, Basel, Switzerland

Kniggendorf A-K, Gaul TW, Meinhardt-Wollweber M. 2011. Effects of ethanol, formaldehyde, and gentle heat fixation in confocal resonance Raman microscopy of purple nonsulfur bacteria. Microsc. Res. Tech. 74:177–183. 10.1002/jemt.20889 PubMed DOI

Paret ML, Sharma S, Green LM, Alvarez AM. 2010. Biochemical characterization of Gram-positive and Gram-negative plant-associated bacteria with micro-Raman spectroscopy. Appl. Spectrosc. 64:433–441 PubMed

de Oliveira VE, Castro HV, Edwards HGM, de Oliveira LFC. 2010. Carotenes and carotenoids in natural biological samples: a Raman spectroscopic analysis. J. Raman Spectrosc. 41:642–650

Liaaen-Jensen S. 1997. Stereochemical aspects of carotenoids. Pure Appl. Chem. 69:2027–2038

Barnard W, de Waal D. 2006. Raman investigation of pigmentary molecules in the molluscan biogenic matrix. J. Raman Spectrosc. 37:342–352. 10.1002/jrs.1461 DOI

Ruban AV, Pascal AA, Robert B, Horton P. 2001. Configuration and dynamics of xanthophylls in light-harvesting antennae of higher plants - spectroscopic analysis of isolated light-harvesting complex of photosystem II and thylakoid membranes. J. Biol. Chem. 276:24862–24870. 10.1074/jbc.M103263200 PubMed DOI

Andreeva A, Velitchkova M. 2005. Resonance Raman spectroscopy of carotenoids in photosystem I particles. Biophys. Chem. 114:129–135. 10.1016/j.bpc.2004.11.012 PubMed DOI

Gruszecki WI, Gospodarek M, Grudzinski W, Mazur R, Gieczewska K, Garstka M. 2009. Light-induced change of configuration of the LHCII-bound xanthophyll (tentatively assigned to violaxanthin): a resonance Raman study. J. Phys. Chem. B 113:2506–2512. 10.1021/jp8101755 PubMed DOI

Szalontai B, Vandeven M. 1981. Raman spectroscopic evidence for phycocyanin-carotenoid interaction in Anacystis nidulans. FEBS Lett. 131:155–157. 10.1016/0014-5793(81)80909-X DOI

Qian P, Saiki K, Mizoguchi T, Hara K, Sashima T, Fujii R, Koyama Y. 2001. Time-dependent changes in the carotenoid composition and preferential binding of spirilloxanthin to the reaction center and anhydrorhodovibrin to the LH1 antenna complex in Rhodobium marinum. Photochem. Photobiol. 74:444–452. 10.1562/0031-8655(2001)0740444TDCITC2.0.CO2 PubMed DOI

Kaczor A, Baranska M. 2011. Structural changes of carotenoid astaxanthin in a single algal cell monitored in situ by Raman spectroscopy. Anal. Chem. 83:7763–7770. 10.1021/ac201302f PubMed DOI

Marshall CP, Leuko S, Coyle CM, Walter MR, Burns BP, Neilan BA. 2007. Carotenoid analysis of halophilic Archaea by resonance Raman spectroscopy. Astrobiology 7:631–643. 10.1089/ast.2006.0097 PubMed DOI

Imperi F, Caneva G, Cancellieri L, Ricci MA, Sodo A, Vizca P. 2007. The bacterial aetiology of rosy discoloration of ancient wall paintings. Environ. Microbiol. 9:2894–2902. 10.1111/j.1462-2920.2007.01393.x PubMed DOI

Lutnaes BF, Oren A, Liaaen-Jensen S. 2002. New C40-carotenoid acyl glycoside as principal carotenoid of Salinibacter ruber, an extremely halophilic eubacterium. J. Nat. Prod. 65:1340–1343. 10.1021/np020125c PubMed DOI

Jehlička J, Oren A, Edwards HGM. 2013. Bacterioruberin and salinixanthin carotenoids of extremely halophilic Archaea and Bacteria: a Raman spectroscopic study. Spectrochim. Acta A 106:99–103. 10.1016/j.saa.2012.12.081 PubMed DOI

Achenbach H, Kohl W, Wachter W, Reichenbach H. 1978. New flexirubin-type pigments. Arch. Microbiol. 117:253–257. 10.1007/BF00738543 PubMed DOI

Oren A. 2011. Characterization of pigments of prokaryotes and their use in taxonomy and classification. Methods Microbiol. 38:262–283

Jehlička J, Osterrothová K, Oren A, Edwards HGM. 2013. Raman spectrometric discrimination of flexirubin pigments from two genera of Bacteroidetes. FEMS Microbiol. Lett. 348:97–102 PubMed

Lutz M. 1977. Antenna chlorophyll in photosynthetic membranes. A study by resonance Raman-spectroscopy. Biochim. Biophys. Acta 460:408–430. 10.1016/0005-2728(77)90081-0 PubMed DOI

Lutz M, Kleo J, Reisshusson F. 1976. Resonance Raman scattering of bacteriochlorophyll, bacteriopheophytin and spheroidene in reaction centers of Rhodopseudomonas speroides. Biochem. Biophys. Res. Commun. 69:711–717. 10.1016/0006-291X(76)90933-5 PubMed DOI

Koyama Y, Umemoto Y, Akamatsu A, Uehara K, Tanaka M. 1986. Raman spectra of chlorophyll forms. J. Mol. Struct. 146:273–287. 10.1016/0022-2860(86)80299-X DOI

Wynn-Williams DD, Edwards HGM. 2002. Environmental UV radiation: biological strategies for protection and avoidance, p 245–260 In Horneck G, Baumstark-Khan C. (ed), Astrobiology: the quest for the conditions of life. Springer-Verlag, Berlin, Germany

Edwards HGM, Hutchinson IB, Ingley R. 2013. Raman spectral signatures in the biogeological record: an astrobiological challenge, p 311–330 In de Vera JP, Seckbach J. (ed), Habitability of other planets and satellites. Cellular origin, life in extreme habitats and astrobiology series, vol 28 Springer, Dordrecht, The Netherlands

Edwards HGM, Hutchinson IB, Ingley R, Parnell J, Vítek P, Jehlička J. 2013. Raman spectroscopic analysis of geological and biogeological specimens of relevance to the ExoMars mission. Astrobiology 13:543–549. 10.1089/ast.2012.0872 PubMed DOI PMC

Okada K, Nishawa E, Fujimoto Y, Koyama Y, Muraishi S, Ozaki Y. 1992. Nondestructive structural analysis of photosynthetic pigments in living Rhodobacter sphaeroides mutants by near-infrared Fourier transform Raman spectroscopy. Appl. Spectrosc. 46:518–523. 10.1366/0003702924125267 DOI

Favre-Bonvin J, Arpin N, Brevard C. 1976. Structure de la mycosporine (P310). Can. J. Chem. 54:1105–1110. 10.1139/v76-158 DOI

Vernet M, Brody E, Holm-Hansen O, Mitchell BG. 1994. The response of antarctic phytoplankton to ultraviolet radiation: absorption, photosynthesis and taxonomic composition, p 143–158 In Weiler S, Penhale P. (ed), Ultraviolet radiation and biological research in Antarctica, vol 62 American Geophysical Union, Washington, DC

Castenholz RW, Garcia-Pichel F. 2000. Cyanobacterial responses to UV-radiation, p 591–611 In Whitton BA, Potts M. (ed), The ecology of cyanobacteria. Kluwer Academic Publishers, Dordrecht, The Netherlands

Edwards HGM, Vandenabeele P, Villar SEJ, Carter EA, Rull Perez F, Hargreaves MD. 2007. The Rio Tinto Mars Analogue site: an extremophilic Raman spectroscopic study. Spectrochim. Acta A 68:1133–1137. 10.1016/j.saa.2006.12.080 PubMed DOI

Vítek P, Edwards HGM, Jehlička J, Ascaso C, De los Ríos A, Valea S, Villar SEJ, Davila AF, Wierzchos J. 2010. Microbial colonization of halite from the hyper-arid Atacama Desert studied by Raman spectroscopy. Philos. Trans. R. Soc. A 368:3205–3221. 10.1098/rsta.2010.0059 PubMed DOI

Proteau PJ, Gerwick WH, Garcia-Pichel F, Castenholz R. 1993. The structure of scytonemin, an ultraviolet sunscreen pigment from the sheaths of cyanobacteria. Experientia 49:825–829. 10.1007/BF01923559 PubMed DOI

Garcia-Pichel F. 1998. Solar ultraviolet and the evolutionary history of cyanobacteria. Orig. Life Evol. Biosph. 28:321–347. 10.1023/A:1006545303412 PubMed DOI

Garcia-Pichel F, Castenholz RW. 1991. Characterization and biological implications of scytonemin, a cyanobacterial sheath pigment. J. Phycol. 27:395–409. 10.1111/j.0022-3646.1991.00395.x DOI

Garcia-Pichel F, Lopez Cortes A, Nübel U. 2001. Phylogenetic and morphological diversity of cyanobacteria in soil desert crusts from the Colorado Plateau. Appl. Environ. Microbiol. 67:1902–1910. 10.1128/AEM.67.4.1902-1910.2001 PubMed DOI PMC

Fulton JM, Arthur MA, Freeman KH. 2012. Subboreal aridity and scytonemin in the Holocene Black Sea. Org. Geochem. 49:47–55. 10.1016/j.orggeochem.2012.05.008 DOI

Edwards HGM, Garcia-Pichel F, Newton EM, Wynn-Williams DD. 2000. Vibrational Raman spectroscopic study of scytonemin, the UV-protective cyanobacterial pigment. Spectrochim. Acta A 56:193–200. 10.1016/S1386-1425(99)00218-8 PubMed DOI

Edwards HGM, Edwards KAE, Farwell DW, Lewis IR, Seaward MRD. 1994. An approach to stone and fresco lichen biodeterioration through Fourier transform Raman microscopic investigation of thallus-substratum encrustations. J. Raman Spectrosc. 25:99–103. 10.1002/jrs.1250250114 DOI

Edwards HGM, Russell NC, Seaward MRD, Slarke D. 1995. Lichen biodeterioration under different microclimates: an FT Raman spectroscopic study. Spectrochim. Acta A 51:2091–2100. 10.1016/0584-8539(95)01499-1 DOI

Edwards HGM, Farwell DW, Seaward MRD. 1997. FT-Raman spectroscopy of Dirina massiliensis f. sorediata encrustations growing on diverse substrata. Lichenologist 29:83–90. 10.1017/S002428299700011X DOI

Edwards HGM, Russell NC, Seaward MRD. 1997. Calcium oxalate in lichen biodeterioration studied using FT-Raman spectroscopy. Spectrochim. Acta A 53:99–105. 10.1016/S1386-1425(97)83013-2 DOI

Jorge Vilar SE, Edwards HGM. 2010. Lichen colonization of an active volcanic environment: a Raman spectroscopic study of extremophile biomolecular protective strategies. J. Raman Spectrosc. 41:63–67. 10.1002/jrs.2204 DOI

Holder JM, Wynn-Williams DD, Rull Perez F, Edwards HGM. 2000. Raman spectroscopy of pigments and oxalates in situ within epilithic lichens: Acarospora from the Antarctic and Mediterranean. New Phytol. 145:271–280. 10.1046/j.1469-8137.2000.00573.x DOI

Wynn-Williams DD, Edwards HGM, Garcia-Pichel F. 1999. Functional biomolecules of Antarctic stromatolitic and endolithic cyanobacterial communities. Eur. J. Phycol. 34:381–391. 10.1080/09670269910001736442 DOI

Edwards HGM, Villar SEJ, Parnell J, Cockell CS, Lee P. 2005. Raman spectroscopic analysis of cyanobacterial gypsum halotrophs and relevance for sulfate deposits on Mars. Analyst 130:917–923. 10.1039/b503533c PubMed DOI

Russell NC, Edwards HGM, Wynn-Williams DD. 1998. FT-Raman spectroscopic analysis of endolithic microbial communities from Beacon sandstone in Victoria Land, Antarctica. Antarct. Sci. 10:63–74

Villar SEJ, Edwards HGM, Benning LG. 2006. Raman spectroscopic and scanning electron microscopic analysis of a novel biological colonisation of volcanic rocks. Icarus 184:158–169. 10.1016/j.icarus.2006.04.009 DOI

Edwards HGM, Villar SEJ, Pullan D, Hargreaves MD, Hofmann BA, Westall F. 2007. Morphological biosignatures from relict fossilised sedimentary geological specimens: a Raman spectroscopic study. J. Raman Spectrosc. 38:1352–1361

Vítek P, Cámara-Gallego B, Edwards HGM, Jehlička J, Ascaso C, Wierzchos J. 2013. Phototrophic community in gypsum crust from the Atacama Desert studied by Raman spectroscopy and microscopic imaging. Geomicrobiol. J. 30:399–410. 10.1080/01490451.2012.697976 DOI

Reiser R, Tasch P. 1960. Investigations of the viability of osmophile bacteria of great geologic age. Trans. Kans. Acad. Sci. 63:31–34. 10.2307/3626919 PubMed DOI

Tasch P. 1963. Paleoecological considerations of growth and form of fossil protists. Ann. N. Y. Acad. Sci. 108:437–450 PubMed

Dombrowski H. 1963. Bacteria from Palaeozoic salt deposits. Ann. N. Y. Acad. Sci. 108:453–460 PubMed

Dombrowski H. 1966. Geological problems in the question of living bacteria in Palaeozoic salt deposits, p 215–220 In Rau JL. (ed), Second Symposium on Salt, vol 1 Geology, geochemistry, mining. Northern Ohio Geological Society, Cleveland, OH

Schubert BA, Lowenstein TK, Timofeeff MN. 2009. Microscopic identification of prokaryotes in modern and ancient halite, Saline Valley and Death Valley, California. Astrobiology 9:467–482. 10.1089/ast.2008.0282 PubMed DOI

Winters YD, Lowenstein TK, Timofeeff MN. 2013. Identification of carotenoids in ancient salt from Death Valley, Saline Valley, and Searles Lake, California using laser Raman spectroscopy. Astrobiology 13:1065–1080. 10.1089/ast.2012.0952 PubMed DOI

Conner AJ, Benison KC. 2013. Acidophilic halophilic microorganisms fluid inclusions in halite from Lake Magic, Western Australia. Astrobiology 13:850–860. 10.1089/ast.2012.0956 PubMed DOI PMC

Fendrihan S, Musso M, Stan-Lotter H. 2009. Raman spectroscopy as a potential method for the detection of extremely halophilic archaea embedded in halite in terrestrial and possibly extraterrestrial samples. J. Raman Spectrosc. 40:1996–2003. 10.1002/jrs.2357 PubMed DOI PMC

Heraud P, Beardall J, McNaughton D, Wood BR. 2007. In vivo prediction of the nutrient status of individual microalgal cells using Raman microspectroscopy. FEMS Microbiol. Lett. 275:24–30. 10.1111/j.1574-6968.2007.00861.x PubMed DOI

Sandt C, Smith-Palmer T, Pink J, Pink D. 2008. A confocal Raman microscopy study of the distribution of a carotene-containing yeast in a living Pseudomonas aeruginosa biofilm. Appl. Spectrosc. 62:975–983. 10.1366/000370208785793245 PubMed DOI

Huang YY, Beal CM, Cai WW, Ruoff RS, Terentjev EM. 2010. Micro-Raman spectroscopy of algae: composition analysis and fluorescence background behavior. Biotechnol. Bioeng. 105:889–898 PubMed

Abbas A, Josefson M, Abrahamsson K. 2011. Characterization and mapping of carotenoids in the algae Dunaliella and Phaeodactylum using Raman and target orthogonal partial least squares. Chemometr. Intell. Lab. Syst. 107:174–177. 10.1016/j.chemolab.2011.03.004 DOI

Collins AM, Jones HDT, Han D, Hu Q, Beechem TE, Timlin JA. 2011. Carotenoid distribution in living cells of Haematococcus pluvialis (Chlorophyceae). PLoS One 6:e24302. 10.1371/journal.pone.0024302 PubMed DOI PMC

Kaczor A, Turnaub K, Baranska M. 2011. In situ Raman imaging of astaxanthin in a single microalgal cell. Analyst 136:1109–1112. 10.1039/c0an00553c PubMed DOI

Ando M, Sugiura M, Hayashi H, Hamaguchi H-O. 2011. 1064 nm deep near-infrared (NIR) excited Raman microspectroscopy for studying photolabile organisms. Appl. Spectrosc. 65:488–492. 10.1366/10-06196 PubMed DOI

Li M, Canniffe DP, Jackson PJ, Davison PA, Fitzerald S, Dickman MJ, Burgess JG, Hunter CN, Huang WE. 2012. Rapid resonance Raman microspectroscopy to probe carbon dioxide fixation by single cells in microbial communities. ISME J. 6:875–885. 10.1038/ismej.2011.150 PubMed DOI PMC

Cannizzaro C, Rhiel M, Marison I, von Stockar U. 2003. On-line monitoring of Phaffia rhodozyma fed-batch process with in situ dispersive Raman spectroscopy. Biotechnol. Bioeng. 83:668–680. 10.1002/bit.10698 PubMed DOI

Li MQ, Xu J, Romero Gonzales M, Banwart SA, Huang WE. 2012. Single cell Raman spectroscopy for cell sorting and imaging. Curr. Opin. Biotechnol. 23:56–63. 10.1016/j.copbio.2011.11.019 PubMed DOI

Tao Z, Wang G, Xu X, Yuan Y, Wang X, Li Y. 2011. Monitoring and rapid quantification of total carotenoids in Rhodotorula glutinis cells using laser tweezers Raman spectroscopy. FEMS Microbiol. Lett. 314:42–48. 10.1111/j.1574-6968.2010.02139.x PubMed DOI

Brackmann C, Bengtsson A, Alminger ML, Svanbergb U, Enejdera A. 2011. Visualization of β-carotene and starch granules in plant cells using CARS and SHG microscopy. J. Raman Spectrosc. 42:586–592. 10.1002/jrs.2778 DOI

Chen JX, Volkmer A, Book LD, Xie XS. 2002. Multiplex coherent anti-stokes Raman scattering microspectroscopy and study of lipid vesicles. J. Phys. Chem. 106:8493–8498. 10.1021/jp025771z DOI

Dementjev A, Kostkeviciene J. 2013. Applying the method of Coherent Anti-stokes Raman microscopy for imaging of carotenoids in microalgae and cyanobacteria. J. Raman Spectrosc. 44:973–979. 10.1002/jrs.4321 DOI

Rösch P, Harz M, Schmitt M, Peschke K-D, Ronneberger O, Burkhardt H, Motzkus H-W, Lankers M, Hofer S, Thiele H, Popp J. 2005. Chemotaxonomic identification of single bacteria by micro-Raman spectroscopy: application to clean-room-relevant biological contaminations. Appl. Environ. Microbiol. 71:1626–1637. 10.1128/AEM.71.3.1626-1637.2005 PubMed DOI PMC

Böttger U, de Vera JP, Fritz J, Weber I, Hubers H-W, Schulze-Makuch D. 2012. Optimizing the detection of carotene in cyanobacteria in a martian regolith analogue with a Raman spectrometer for the ExoMars mission. Planet Space Sci. 60:356–362. 10.1016/j.pss.2011.10.017 DOI

Vítek P, Ali EMA, Edwards HGM, Jehlička J, Cox R, Page K. 2012. Evaluation of portable Raman spectrometer with 1064 nm excitation for geological and forensic applications. Spectrochim. Acta A 86:320–327. 10.1016/j.saa.2011.10.043 PubMed DOI

Dickensheets DL, Wynn-Williams DD, Edwards HGM, Schoen C, Crowder C, Newton EM. 2000. A novel miniature confocal microscope/Raman spectrometer system for biomolecular analysis on future Mars missions after Antarctic trials. J. Raman Spectrosc. 31:633–635. 10.1002/1097-4555(200007)31:7<633::AID-JRS620>3.0.CO;2-R DOI

Som SM, Foing BH. 2012. Thermal degradation of organic material by portable laser Raman spectrometry. Int. J. Astrobiol. 11:177–186. 10.1017/S1473550412000079 DOI

Miralles I, Jorge-Villar SE, Canton Y, Domingo F. 2012. Using a mini-Raman spectrometer to monitor the adaptive strategies of extremophile colonizers in arid deserts: relationships between signal strength, adaptive strategies, solar radiation, and humidity. Astrobiology 12:743–753. 10.1089/ast.2011.0763 PubMed DOI

Vítek P, Edwards HGM, Jehlička J, Hutchinson I, Ascaso C, Wierzchos J. 2012. The miniaturized Raman system and detection of traces of life in halite from the Atacama Desert: some considerations for the search for life signatures on Mars. Astrobiology 12:1095–1099. 10.1089/ast.2012.0879 PubMed DOI PMC

Jehlička J, Oren A. 2013. Use of a handheld Raman spectrometer for fast screening of microbial pigments in cultures of halophilic microorganisms and in microbial communities in hypersaline environments in nature. J. Raman Spectrosc. 44:1285–1291. 10.1002/jrs.4362 DOI

Parnell J, McMahona S, Blamey NJF, Hutchinson IB, Harrisa LV, Ingley R, Edwards HGM, Lynch E, Feely M. 25 October 2013. Detection of reduced carbon in a basalt analogue for martian nakhlite: a signpost to habitat on Mars. Int. J. Astrobiol. 10.1017/S1473550413000360 DOI

Colomban P. 2012. The on-site/remote Raman analysis with mobile instruments: a review of drawbacks and success in cultural heritage studies and other associated fields. J. Raman Spectrosc. 43:1529–1535. 10.1002/jrs.4042 DOI

Vandenabeele P, Edwards HGM, Jehlička J. 2014. The role of mobile instrumentation in novel applications of Raman spectroscopy: archaeometry, geosciences, and forensics. Chem. Soc. Rev. 43:2628–2649. 10.1039/c3cs60263j PubMed DOI

Sorak D, Herberholz L, Iwascek S, Altinpinar S, Pfeifer F, Siesler HW. 2012. New developments and applications of handheld Raman, mid-infrared, and near-infrared spectrometers. Appl. Spectrosc. Lett. 47:83–115. 10.1080/05704928.2011.625748 DOI

Marshall CP, Carter EA, Leuko S, Javaux EJ. 2006. Vibrational spectroscopy of extant and fossil microbes: relevance for the astrobiological exploration of Mars. Vibrat. Spectrosc. 41:182–189. 10.1016/j.vibspec.2006.01.008 DOI

Wood BR, Heraud P, Stojkovic S, Morrison D, Beardall J, McNaughton D. 2005. A portable Raman acoustic levitation spectroscopic system for the identification and environmental monitoring of algal cells. Anal. Chem. 77:4955–4961. 10.1021/ac050281z PubMed DOI

Edwards HGM, Currie KJ, Ali HRH, Villar SEJ, David AR, Denton J. 2007. Raman spectroscopy of natron: shedding light on ancient Egyptian mummification. Anal. Bioanal. Chem. 388:683–689. 10.1007/s00216-007-1249-4 PubMed DOI

Gall A, Ridge JP, Robert B, Cogdell RJ, Jones MR, Fyfe PK. 1999. Effects of mutagenesis on the detailed structure of spheroidenone in the Rhodobacter sphaeroides reaction centre examined by resonance Raman spectroscopy. Photosynth. Res. 59:223–230. 10.1023/A:1006168118363 DOI

Wang GH, Hao ZJ, Huang ZB, Chen LZ, Li XY, Hu CX, Liu YD. 2010. Raman spectroscopic analysis of a desert cyanobacterium Nostoc sp. in response to UVB radiation. Astrobiology 10:783–788. 10.1089/ast.2009.0407 PubMed DOI

Edwards HGM, Newton EM, Wynn-Williams DD, Lewis-Smith RI. 2003. Nondestructive analysis of pigments and other organic compounds in lichens using Fourier-transform Raman spectroscopy: a study of Antarctic epilithic lichens. Spectrochim. Acta A 59:2301–2309. 10.1016/S1386-1425(03)00073-8 PubMed DOI

Edwards HGM, Russell NC, Wynn-Williams DD. 1997. Fourier transform Raman spectroscopic and scanning electron microscopic study of cryptoendolithic lichens from Antarctica. J. Raman Spectrosc. 28:685–690. 10.1002/(SICI)1097-4555(199709)28:9<685::AID-JRS160>3.0.CO;2-X DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Carotenoids dispersed in gypsum rock as a result of algae adaptation to the extreme conditions of the Atacama Desert

. 2024 Oct 13 ; 14 (1) : 23939. [epub] 20241013

Microbial colonization of gypsum: from the fossil record to the present day

. 2024 ; 15 () : 1397437. [epub] 20240820

Unlocking the potential of biofilm-forming plant growth-promoting rhizobacteria for growth and yield enhancement in wheat (Triticum aestivum L.)

. 2024 Jul 05 ; 14 (1) : 15546. [epub] 20240705

Raman spectroscopy online monitoring of biomass production, intracellular metabolites and carbon substrates during submerged fermentation of oleaginous and carotenogenic microorganisms

. 2023 Dec 18 ; 22 (1) : 261. [epub] 20231218

Gypsum endolithic phototrophs under moderate climate (Southern Sicily): their diversity and pigment composition

. 2023 ; 14 () : 1175066. [epub] 20230706

Assessment of Biotechnologically Important Filamentous Fungal Biomass by Fourier Transform Raman Spectroscopy

. 2021 Jun 23 ; 22 (13) : . [epub] 20210623

Comparing Biochemical and Raman Microscopy Analyses of Starch, Lipids, Polyphosphate, and Guanine Pools during the Cell Cycle of Desmodesmus quadricauda

. 2021 Jan 03 ; 10 (1) : . [epub] 20210103

Comparison of Miniaturized Raman Spectrometers for Discrimination of Carotenoids of Halophilic Microorganisms

. 2019 ; 10 () : 1155. [epub] 20190529

Effects of nicotine on the biosynthesis of carotenoids in halophilic Archaea (class Halobacteria): an HPLC and Raman spectroscopy study

. 2018 May ; 22 (3) : 359-366. [epub] 20180115

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...