Raman spectroscopy of microbial pigments
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
PubMed
24682303
PubMed Central
PMC4018853
DOI
10.1128/aem.00699-14
PII: AEM.00699-14
Knihovny.cz E-zdroje
- MeSH
- Archaea chemie MeSH
- Bacteria chemie MeSH
- biologické pigmenty analýza MeSH
- houby chemie MeSH
- Ramanova spektroskopie metody MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- biologické pigmenty MeSH
Raman spectroscopy is a rapid nondestructive technique providing spectroscopic and structural information on both organic and inorganic molecular compounds. Extensive applications for the method in the characterization of pigments have been found. Due to the high sensitivity of Raman spectroscopy for the detection of chlorophylls, carotenoids, scytonemin, and a range of other pigments found in the microbial world, it is an excellent technique to monitor the presence of such pigments, both in pure cultures and in environmental samples. Miniaturized portable handheld instruments are available; these instruments can be used to detect pigments in microbiological samples of different types and origins under field conditions.
Zobrazit více v PubMed
Stanier RY, Cohen-Bazire G. 1977. Phototrophic prokaryotes: the cyanobacteria. Annu. Rev. Microbiol. 31:225–274. 10.1146/annurev.mi.31.100177.001301 PubMed DOI
Oren A. 2002. Pigments of halophilic microorganisms, p 173–206 In Halophilic microorganisms and their environments: cellular origin, life in extreme habitats and astrobiology. Springer, Dordrecht, The Netherlands
Koyama Y. 1991. Structures and functions of carotenoids in photosynthetic systems. J. Photochem. Photobiol. B 9:265–280. 10.1016/1011-1344(91)80165-E DOI
Garcia-Pichel F, Castenholz RW. 1993. Occurrence of UV-absorbing mycosporine-like compounds among cyanobacterial isolates and an estimate of their screening capacity. Appl. Environ. Microbiol. 59:163–169 PubMed PMC
Edge R, McGarvey DJ, Truscott TG. 1997. The carotenoids as anti-oxidants—a review. Photochem. Photobiol. B Biol. 41:189–200. 10.1016/S1011-1344(97)00092-4 PubMed DOI
Frank HA, Chynwat V, Desamero RZB, Farhoosh R, Erickson J, Bautista J. 1997. On the photophysics and photochemical properties of carotenoids and their role as light-harvesting pigments in photosynthesis. Pure Appl. Chem. 69:2117–2124
Delhaye M, Dhamelincourt P. 1975. Raman microprobe and microscope with laser excitation. J. Raman Spectrosc. 3:33–43. 10.1002/jrs.1250030105 DOI
Puppels GJ, Demul FFM, Otto C, Greve J, Robert-Nicoud M, Arndt-Jovin DJ, Jovin TM. 1990. Studying single living cells and chromosomes by confocal Raman microspectroscopy. Nature 347:301–303. 10.1038/347301a0 PubMed DOI
Edwards HGM, Farwell DW, Seaward MRD. 1991. Raman spectra of oxalates in lichen encrustations on Renaissance frescoes. Spectrochim. Acta A 47:1531–1539. 10.1016/0584-8539(91)80247-G DOI
Kirschner C, Maquelin K, Pina P, Ngo Thi NA, Choo-Smith LP, Sockalingum GD, Sandt C, Ami D, Orsini F, Doglia SM, Allouch P, Mainfait M, Puppels GJ, Naumann D. 2001. Classification and identification of enterococci: a comparative phenotypic, genotypic, and vibrational spectroscopic study. J. Clin. Microbiol. 39:1763–1770. 10.1128/JCM.39.5.1763-1770.2001 PubMed DOI PMC
Maquelin K, Choo-Smith LP, Endtz HP, Bruining HA, Puppels GJ. 2002. Rapid identification of Candida species by confocal Raman microspectroscopy. J. Clin. Microbiol. 40:594–600. 10.1128/JCM.40.2.594-600.2002 PubMed DOI PMC
Chan J, Fore S, Wachsman-Hogiu S, Huser T. 2008. Raman spectroscopy and microscopy of individual cells and cellular components. Laser Photon. Rev. 2:325–349. 10.1002/lpor.200810012 DOI
Harz M, Rösch P, Popp J. 2009. Vibrational spectroscopy—a powerful tool for the rapid identification of microbial cells at the single-cell level. Cytometry A 75:104–113. 10.1002/cyto.a.20682 PubMed DOI
Maquelin K, Kirschner C, Choo-Smith LP, van den Braak N, Endtz HP, Naumann D, Puppels GJ. 2002. Identification of medically relevant microorganisms by vibrational spectroscopy. J. Microbiol. Methods 51:255–271. 10.1016/S0167-7012(02)00127-6 PubMed DOI
Petry R, Schmitt M, Popp J. 2003. Raman spectroscopy—a prospective tool in the life sciences. Chem. Phys. Chem. 4:14–30. 10.1002/cphc.200390004 PubMed DOI
Wagner M. 2009. Single-cell ecophysiology of microbes as revealed by Raman microspectroscopy or secondary ion mass spectrometry imaging. Annu. Rev. Microbiol. 60:411–429. 10.1146/annurev.micro.091208.073233 PubMed DOI
Rösch P, Schmitt M, Kiefer W, Popp J. 2003. The identification of microorganisms by micro-Raman spectroscopy. J. Mol. Struct. 661-662:363–369. 10.1016/j.molstruc.2003.06.004 DOI
Huang WE, Li M, Jarvis RM, Goodacre R, Banwart SA. 2010. Shining light on the microbial world: the application of Raman microspectroscopy. Adv. Appl. Microbiol. 70:153–186. 10.1016/S0065-2164(10)70005-8 PubMed DOI
Lu X, Al-Qadiri HM, Lin M, Rasco BA. 2011. Application of mid-infrared and Raman spectroscopy to the study of bacteria. Food Bioprocess Technol. 4:919–935. 10.1007/s11947-011-0516-8 DOI
Kneipp J, Kneipp H, Kneipp K. 2008. SERS—a single-molecule and nanoscale tool for bioanalytics. Chem. Soc. Rev. 37:1052–1060. 10.1039/b708459p PubMed DOI
Wachsmann-Hogiu S, Weeks T, Huser T. 2009. Chemical analysis in vivo and in vitro by Raman spectroscopy-from single cells to humans. Curr. Opin. Biotechnol. 20:63–73. 10.1016/j.copbio.2009.02.006 PubMed DOI PMC
Lombardi JR, Birke RL. 2009. A unified view of surface-enhanced Raman scattering. Acc. Chem. Res. 42:734–742. 10.1021/ar800249y PubMed DOI
Merlin JC. 1985. Resonance Raman spectroscopy of carotenoids and carotenoid-containing systems. Pure Appl. Chem. 57:785–792
Euler HV, Hellstrom H. 1932. Raman Spektren von Carotinoiden. Z. Phys. Chem. 15:342–346
Gill D, Kilponen RG, Rimai L. 1970. Resonance Raman scattering of laser radiation by vibrational modes of carotenoid pigment molecules in intact plant tissues. Nature 227:743–744. 10.1038/227743a0 PubMed DOI
Hayashi H, Hamaguchi H, Tasumi M. 1983. Resonance Raman spectra of light-harvesting bacteriochlorophyll a in pigment-protein complexes from purple photosynthetic bacteria. Chem. Lett. 12:1857–1860. 10.1246/cl.1983.1857 DOI
Wagner WD. 1986. Raman excitation profiles from pigments in vivo. J. Raman Spectrosc. 17:51–53. 10.1002/jrs.1250170111 DOI
Merlin JC. 1987. Resonance Raman analysis of astaxanthin-protein complexes. J. Raman Spectrosc. 18:519–523. 10.1002/jrs.1250180713 DOI
Duncan MD, Reintjes J, Manuccia TJ. 1982. Scanning coherent anti-Stokes Raman microscope. Opt. Lett. 7:350–352. 10.1364/OL.7.000350 PubMed DOI
Palonpon AF, Sodeoka M, Fujita K. 2013. Molecular imaging of live cells by Raman microscopy. Curr. Opin. Chem. Biol. 17:708–715. 10.1016/j.cbpa.2013.05.021 PubMed DOI
Stender AS, Marchuk K, Liu C, Sander S, Matthew W, Meyer MW, Smith EA, Neupane B, Wang G, Li J, Cheng JX, Huang B, Fang N. 2013. Single cell optical imaging and spectroscopy. Chem. Rev. 113:2469–2527. 10.1021/cr300336e PubMed DOI PMC
Andreeva A, Abarova S, Stoitchkova K, Picorel R, Velitchkova M. 2007. Selective photobleaching of chlorophylls and carotenoids in photosystem I. Particles under high-light treatment. Photochem. Photobiol. 83:1301–1307. 10.1111/j.1751-1097.2007.00136.x PubMed DOI
Dartnell LR, Page K, Jorge-Villar SE, Wright G, Munshi T, Scowen IJ, Ward JM, Edwards HGM. 2012. Destruction of Raman biosignatures by ionising radiation and the implications for life detection on Mars. Anal. Bioanal. Chem. 403:131–144. 10.1007/s00216-012-5829-6 PubMed DOI
Vítek P, Osterrothová K, Jehlička J. 2009. Beta-carotene—a possible biomarker in the Martian evaporitic environment: Raman micro-spectroscopic study. Planet. Space Sci. 57:454–459. 10.1016/j.pss.2008.06.001 DOI
Vítek P, Jehlička J, Edwards HGM, Osterrothová K. 2009. Identification of β-carotene in an evaporitic matrix—evaluation of Raman spectroscopic analysis for astrobiological research on Mars. Anal. Bioanal. Chem. 393:1967–1975. 10.1007/s00216-009-2677-0 PubMed DOI
Carey PR. 1982. Biochemical applications of Raman and resonance Raman spectroscopies. Academic Press, New York, NY
Withnall R, Chowdhry BZ, Silver J, Edwards HGM, de Oliveira LFC. 2003. Raman spectra of carotenoids in natural products. Spectrochim. Acta A 59:2207–2212. 10.1016/S1386-1425(03)00064-7 PubMed DOI
Maquelin K, Hoogenboezem T, Jachtenberg JW, Dumke R, Jacobs E, Puppels GJ, Hartwig NG, Vink C. 2009. Raman spectroscopic typing reveals the presence of carotenoids in Mycoplasma pneumoniae. Microbiology 155:2068–2077. 10.1099/mic.0.026724-0 PubMed DOI
Koyama Y. 1995. Resonance Raman spectroscopy, p 135–146 In Britton G, Liaaen-Jensen S, Pfander H. (ed), Carotenoids, vol 1B Spectroscopy. Birkhauser, Basel, Switzerland
Kniggendorf A-K, Gaul TW, Meinhardt-Wollweber M. 2011. Effects of ethanol, formaldehyde, and gentle heat fixation in confocal resonance Raman microscopy of purple nonsulfur bacteria. Microsc. Res. Tech. 74:177–183. 10.1002/jemt.20889 PubMed DOI
Paret ML, Sharma S, Green LM, Alvarez AM. 2010. Biochemical characterization of Gram-positive and Gram-negative plant-associated bacteria with micro-Raman spectroscopy. Appl. Spectrosc. 64:433–441 PubMed
de Oliveira VE, Castro HV, Edwards HGM, de Oliveira LFC. 2010. Carotenes and carotenoids in natural biological samples: a Raman spectroscopic analysis. J. Raman Spectrosc. 41:642–650
Liaaen-Jensen S. 1997. Stereochemical aspects of carotenoids. Pure Appl. Chem. 69:2027–2038
Barnard W, de Waal D. 2006. Raman investigation of pigmentary molecules in the molluscan biogenic matrix. J. Raman Spectrosc. 37:342–352. 10.1002/jrs.1461 DOI
Ruban AV, Pascal AA, Robert B, Horton P. 2001. Configuration and dynamics of xanthophylls in light-harvesting antennae of higher plants - spectroscopic analysis of isolated light-harvesting complex of photosystem II and thylakoid membranes. J. Biol. Chem. 276:24862–24870. 10.1074/jbc.M103263200 PubMed DOI
Andreeva A, Velitchkova M. 2005. Resonance Raman spectroscopy of carotenoids in photosystem I particles. Biophys. Chem. 114:129–135. 10.1016/j.bpc.2004.11.012 PubMed DOI
Gruszecki WI, Gospodarek M, Grudzinski W, Mazur R, Gieczewska K, Garstka M. 2009. Light-induced change of configuration of the LHCII-bound xanthophyll (tentatively assigned to violaxanthin): a resonance Raman study. J. Phys. Chem. B 113:2506–2512. 10.1021/jp8101755 PubMed DOI
Szalontai B, Vandeven M. 1981. Raman spectroscopic evidence for phycocyanin-carotenoid interaction in Anacystis nidulans. FEBS Lett. 131:155–157. 10.1016/0014-5793(81)80909-X DOI
Qian P, Saiki K, Mizoguchi T, Hara K, Sashima T, Fujii R, Koyama Y. 2001. Time-dependent changes in the carotenoid composition and preferential binding of spirilloxanthin to the reaction center and anhydrorhodovibrin to the LH1 antenna complex in Rhodobium marinum. Photochem. Photobiol. 74:444–452. 10.1562/0031-8655(2001)0740444TDCITC2.0.CO2 PubMed DOI
Kaczor A, Baranska M. 2011. Structural changes of carotenoid astaxanthin in a single algal cell monitored in situ by Raman spectroscopy. Anal. Chem. 83:7763–7770. 10.1021/ac201302f PubMed DOI
Marshall CP, Leuko S, Coyle CM, Walter MR, Burns BP, Neilan BA. 2007. Carotenoid analysis of halophilic Archaea by resonance Raman spectroscopy. Astrobiology 7:631–643. 10.1089/ast.2006.0097 PubMed DOI
Imperi F, Caneva G, Cancellieri L, Ricci MA, Sodo A, Vizca P. 2007. The bacterial aetiology of rosy discoloration of ancient wall paintings. Environ. Microbiol. 9:2894–2902. 10.1111/j.1462-2920.2007.01393.x PubMed DOI
Lutnaes BF, Oren A, Liaaen-Jensen S. 2002. New C40-carotenoid acyl glycoside as principal carotenoid of Salinibacter ruber, an extremely halophilic eubacterium. J. Nat. Prod. 65:1340–1343. 10.1021/np020125c PubMed DOI
Jehlička J, Oren A, Edwards HGM. 2013. Bacterioruberin and salinixanthin carotenoids of extremely halophilic Archaea and Bacteria: a Raman spectroscopic study. Spectrochim. Acta A 106:99–103. 10.1016/j.saa.2012.12.081 PubMed DOI
Achenbach H, Kohl W, Wachter W, Reichenbach H. 1978. New flexirubin-type pigments. Arch. Microbiol. 117:253–257. 10.1007/BF00738543 PubMed DOI
Oren A. 2011. Characterization of pigments of prokaryotes and their use in taxonomy and classification. Methods Microbiol. 38:262–283
Jehlička J, Osterrothová K, Oren A, Edwards HGM. 2013. Raman spectrometric discrimination of flexirubin pigments from two genera of Bacteroidetes. FEMS Microbiol. Lett. 348:97–102 PubMed
Lutz M. 1977. Antenna chlorophyll in photosynthetic membranes. A study by resonance Raman-spectroscopy. Biochim. Biophys. Acta 460:408–430. 10.1016/0005-2728(77)90081-0 PubMed DOI
Lutz M, Kleo J, Reisshusson F. 1976. Resonance Raman scattering of bacteriochlorophyll, bacteriopheophytin and spheroidene in reaction centers of Rhodopseudomonas speroides. Biochem. Biophys. Res. Commun. 69:711–717. 10.1016/0006-291X(76)90933-5 PubMed DOI
Koyama Y, Umemoto Y, Akamatsu A, Uehara K, Tanaka M. 1986. Raman spectra of chlorophyll forms. J. Mol. Struct. 146:273–287. 10.1016/0022-2860(86)80299-X DOI
Wynn-Williams DD, Edwards HGM. 2002. Environmental UV radiation: biological strategies for protection and avoidance, p 245–260 In Horneck G, Baumstark-Khan C. (ed), Astrobiology: the quest for the conditions of life. Springer-Verlag, Berlin, Germany
Edwards HGM, Hutchinson IB, Ingley R. 2013. Raman spectral signatures in the biogeological record: an astrobiological challenge, p 311–330 In de Vera JP, Seckbach J. (ed), Habitability of other planets and satellites. Cellular origin, life in extreme habitats and astrobiology series, vol 28 Springer, Dordrecht, The Netherlands
Edwards HGM, Hutchinson IB, Ingley R, Parnell J, Vítek P, Jehlička J. 2013. Raman spectroscopic analysis of geological and biogeological specimens of relevance to the ExoMars mission. Astrobiology 13:543–549. 10.1089/ast.2012.0872 PubMed DOI PMC
Okada K, Nishawa E, Fujimoto Y, Koyama Y, Muraishi S, Ozaki Y. 1992. Nondestructive structural analysis of photosynthetic pigments in living Rhodobacter sphaeroides mutants by near-infrared Fourier transform Raman spectroscopy. Appl. Spectrosc. 46:518–523. 10.1366/0003702924125267 DOI
Favre-Bonvin J, Arpin N, Brevard C. 1976. Structure de la mycosporine (P310). Can. J. Chem. 54:1105–1110. 10.1139/v76-158 DOI
Vernet M, Brody E, Holm-Hansen O, Mitchell BG. 1994. The response of antarctic phytoplankton to ultraviolet radiation: absorption, photosynthesis and taxonomic composition, p 143–158 In Weiler S, Penhale P. (ed), Ultraviolet radiation and biological research in Antarctica, vol 62 American Geophysical Union, Washington, DC
Castenholz RW, Garcia-Pichel F. 2000. Cyanobacterial responses to UV-radiation, p 591–611 In Whitton BA, Potts M. (ed), The ecology of cyanobacteria. Kluwer Academic Publishers, Dordrecht, The Netherlands
Edwards HGM, Vandenabeele P, Villar SEJ, Carter EA, Rull Perez F, Hargreaves MD. 2007. The Rio Tinto Mars Analogue site: an extremophilic Raman spectroscopic study. Spectrochim. Acta A 68:1133–1137. 10.1016/j.saa.2006.12.080 PubMed DOI
Vítek P, Edwards HGM, Jehlička J, Ascaso C, De los Ríos A, Valea S, Villar SEJ, Davila AF, Wierzchos J. 2010. Microbial colonization of halite from the hyper-arid Atacama Desert studied by Raman spectroscopy. Philos. Trans. R. Soc. A 368:3205–3221. 10.1098/rsta.2010.0059 PubMed DOI
Proteau PJ, Gerwick WH, Garcia-Pichel F, Castenholz R. 1993. The structure of scytonemin, an ultraviolet sunscreen pigment from the sheaths of cyanobacteria. Experientia 49:825–829. 10.1007/BF01923559 PubMed DOI
Garcia-Pichel F. 1998. Solar ultraviolet and the evolutionary history of cyanobacteria. Orig. Life Evol. Biosph. 28:321–347. 10.1023/A:1006545303412 PubMed DOI
Garcia-Pichel F, Castenholz RW. 1991. Characterization and biological implications of scytonemin, a cyanobacterial sheath pigment. J. Phycol. 27:395–409. 10.1111/j.0022-3646.1991.00395.x DOI
Garcia-Pichel F, Lopez Cortes A, Nübel U. 2001. Phylogenetic and morphological diversity of cyanobacteria in soil desert crusts from the Colorado Plateau. Appl. Environ. Microbiol. 67:1902–1910. 10.1128/AEM.67.4.1902-1910.2001 PubMed DOI PMC
Fulton JM, Arthur MA, Freeman KH. 2012. Subboreal aridity and scytonemin in the Holocene Black Sea. Org. Geochem. 49:47–55. 10.1016/j.orggeochem.2012.05.008 DOI
Edwards HGM, Garcia-Pichel F, Newton EM, Wynn-Williams DD. 2000. Vibrational Raman spectroscopic study of scytonemin, the UV-protective cyanobacterial pigment. Spectrochim. Acta A 56:193–200. 10.1016/S1386-1425(99)00218-8 PubMed DOI
Edwards HGM, Edwards KAE, Farwell DW, Lewis IR, Seaward MRD. 1994. An approach to stone and fresco lichen biodeterioration through Fourier transform Raman microscopic investigation of thallus-substratum encrustations. J. Raman Spectrosc. 25:99–103. 10.1002/jrs.1250250114 DOI
Edwards HGM, Russell NC, Seaward MRD, Slarke D. 1995. Lichen biodeterioration under different microclimates: an FT Raman spectroscopic study. Spectrochim. Acta A 51:2091–2100. 10.1016/0584-8539(95)01499-1 DOI
Edwards HGM, Farwell DW, Seaward MRD. 1997. FT-Raman spectroscopy of Dirina massiliensis f. sorediata encrustations growing on diverse substrata. Lichenologist 29:83–90. 10.1017/S002428299700011X DOI
Edwards HGM, Russell NC, Seaward MRD. 1997. Calcium oxalate in lichen biodeterioration studied using FT-Raman spectroscopy. Spectrochim. Acta A 53:99–105. 10.1016/S1386-1425(97)83013-2 DOI
Jorge Vilar SE, Edwards HGM. 2010. Lichen colonization of an active volcanic environment: a Raman spectroscopic study of extremophile biomolecular protective strategies. J. Raman Spectrosc. 41:63–67. 10.1002/jrs.2204 DOI
Holder JM, Wynn-Williams DD, Rull Perez F, Edwards HGM. 2000. Raman spectroscopy of pigments and oxalates in situ within epilithic lichens: Acarospora from the Antarctic and Mediterranean. New Phytol. 145:271–280. 10.1046/j.1469-8137.2000.00573.x DOI
Wynn-Williams DD, Edwards HGM, Garcia-Pichel F. 1999. Functional biomolecules of Antarctic stromatolitic and endolithic cyanobacterial communities. Eur. J. Phycol. 34:381–391. 10.1080/09670269910001736442 DOI
Edwards HGM, Villar SEJ, Parnell J, Cockell CS, Lee P. 2005. Raman spectroscopic analysis of cyanobacterial gypsum halotrophs and relevance for sulfate deposits on Mars. Analyst 130:917–923. 10.1039/b503533c PubMed DOI
Russell NC, Edwards HGM, Wynn-Williams DD. 1998. FT-Raman spectroscopic analysis of endolithic microbial communities from Beacon sandstone in Victoria Land, Antarctica. Antarct. Sci. 10:63–74
Villar SEJ, Edwards HGM, Benning LG. 2006. Raman spectroscopic and scanning electron microscopic analysis of a novel biological colonisation of volcanic rocks. Icarus 184:158–169. 10.1016/j.icarus.2006.04.009 DOI
Edwards HGM, Villar SEJ, Pullan D, Hargreaves MD, Hofmann BA, Westall F. 2007. Morphological biosignatures from relict fossilised sedimentary geological specimens: a Raman spectroscopic study. J. Raman Spectrosc. 38:1352–1361
Vítek P, Cámara-Gallego B, Edwards HGM, Jehlička J, Ascaso C, Wierzchos J. 2013. Phototrophic community in gypsum crust from the Atacama Desert studied by Raman spectroscopy and microscopic imaging. Geomicrobiol. J. 30:399–410. 10.1080/01490451.2012.697976 DOI
Reiser R, Tasch P. 1960. Investigations of the viability of osmophile bacteria of great geologic age. Trans. Kans. Acad. Sci. 63:31–34. 10.2307/3626919 PubMed DOI
Tasch P. 1963. Paleoecological considerations of growth and form of fossil protists. Ann. N. Y. Acad. Sci. 108:437–450 PubMed
Dombrowski H. 1963. Bacteria from Palaeozoic salt deposits. Ann. N. Y. Acad. Sci. 108:453–460 PubMed
Dombrowski H. 1966. Geological problems in the question of living bacteria in Palaeozoic salt deposits, p 215–220 In Rau JL. (ed), Second Symposium on Salt, vol 1 Geology, geochemistry, mining. Northern Ohio Geological Society, Cleveland, OH
Schubert BA, Lowenstein TK, Timofeeff MN. 2009. Microscopic identification of prokaryotes in modern and ancient halite, Saline Valley and Death Valley, California. Astrobiology 9:467–482. 10.1089/ast.2008.0282 PubMed DOI
Winters YD, Lowenstein TK, Timofeeff MN. 2013. Identification of carotenoids in ancient salt from Death Valley, Saline Valley, and Searles Lake, California using laser Raman spectroscopy. Astrobiology 13:1065–1080. 10.1089/ast.2012.0952 PubMed DOI
Conner AJ, Benison KC. 2013. Acidophilic halophilic microorganisms fluid inclusions in halite from Lake Magic, Western Australia. Astrobiology 13:850–860. 10.1089/ast.2012.0956 PubMed DOI PMC
Fendrihan S, Musso M, Stan-Lotter H. 2009. Raman spectroscopy as a potential method for the detection of extremely halophilic archaea embedded in halite in terrestrial and possibly extraterrestrial samples. J. Raman Spectrosc. 40:1996–2003. 10.1002/jrs.2357 PubMed DOI PMC
Heraud P, Beardall J, McNaughton D, Wood BR. 2007. In vivo prediction of the nutrient status of individual microalgal cells using Raman microspectroscopy. FEMS Microbiol. Lett. 275:24–30. 10.1111/j.1574-6968.2007.00861.x PubMed DOI
Sandt C, Smith-Palmer T, Pink J, Pink D. 2008. A confocal Raman microscopy study of the distribution of a carotene-containing yeast in a living Pseudomonas aeruginosa biofilm. Appl. Spectrosc. 62:975–983. 10.1366/000370208785793245 PubMed DOI
Huang YY, Beal CM, Cai WW, Ruoff RS, Terentjev EM. 2010. Micro-Raman spectroscopy of algae: composition analysis and fluorescence background behavior. Biotechnol. Bioeng. 105:889–898 PubMed
Abbas A, Josefson M, Abrahamsson K. 2011. Characterization and mapping of carotenoids in the algae Dunaliella and Phaeodactylum using Raman and target orthogonal partial least squares. Chemometr. Intell. Lab. Syst. 107:174–177. 10.1016/j.chemolab.2011.03.004 DOI
Collins AM, Jones HDT, Han D, Hu Q, Beechem TE, Timlin JA. 2011. Carotenoid distribution in living cells of Haematococcus pluvialis (Chlorophyceae). PLoS One 6:e24302. 10.1371/journal.pone.0024302 PubMed DOI PMC
Kaczor A, Turnaub K, Baranska M. 2011. In situ Raman imaging of astaxanthin in a single microalgal cell. Analyst 136:1109–1112. 10.1039/c0an00553c PubMed DOI
Ando M, Sugiura M, Hayashi H, Hamaguchi H-O. 2011. 1064 nm deep near-infrared (NIR) excited Raman microspectroscopy for studying photolabile organisms. Appl. Spectrosc. 65:488–492. 10.1366/10-06196 PubMed DOI
Li M, Canniffe DP, Jackson PJ, Davison PA, Fitzerald S, Dickman MJ, Burgess JG, Hunter CN, Huang WE. 2012. Rapid resonance Raman microspectroscopy to probe carbon dioxide fixation by single cells in microbial communities. ISME J. 6:875–885. 10.1038/ismej.2011.150 PubMed DOI PMC
Cannizzaro C, Rhiel M, Marison I, von Stockar U. 2003. On-line monitoring of Phaffia rhodozyma fed-batch process with in situ dispersive Raman spectroscopy. Biotechnol. Bioeng. 83:668–680. 10.1002/bit.10698 PubMed DOI
Li MQ, Xu J, Romero Gonzales M, Banwart SA, Huang WE. 2012. Single cell Raman spectroscopy for cell sorting and imaging. Curr. Opin. Biotechnol. 23:56–63. 10.1016/j.copbio.2011.11.019 PubMed DOI
Tao Z, Wang G, Xu X, Yuan Y, Wang X, Li Y. 2011. Monitoring and rapid quantification of total carotenoids in Rhodotorula glutinis cells using laser tweezers Raman spectroscopy. FEMS Microbiol. Lett. 314:42–48. 10.1111/j.1574-6968.2010.02139.x PubMed DOI
Brackmann C, Bengtsson A, Alminger ML, Svanbergb U, Enejdera A. 2011. Visualization of β-carotene and starch granules in plant cells using CARS and SHG microscopy. J. Raman Spectrosc. 42:586–592. 10.1002/jrs.2778 DOI
Chen JX, Volkmer A, Book LD, Xie XS. 2002. Multiplex coherent anti-stokes Raman scattering microspectroscopy and study of lipid vesicles. J. Phys. Chem. 106:8493–8498. 10.1021/jp025771z DOI
Dementjev A, Kostkeviciene J. 2013. Applying the method of Coherent Anti-stokes Raman microscopy for imaging of carotenoids in microalgae and cyanobacteria. J. Raman Spectrosc. 44:973–979. 10.1002/jrs.4321 DOI
Rösch P, Harz M, Schmitt M, Peschke K-D, Ronneberger O, Burkhardt H, Motzkus H-W, Lankers M, Hofer S, Thiele H, Popp J. 2005. Chemotaxonomic identification of single bacteria by micro-Raman spectroscopy: application to clean-room-relevant biological contaminations. Appl. Environ. Microbiol. 71:1626–1637. 10.1128/AEM.71.3.1626-1637.2005 PubMed DOI PMC
Böttger U, de Vera JP, Fritz J, Weber I, Hubers H-W, Schulze-Makuch D. 2012. Optimizing the detection of carotene in cyanobacteria in a martian regolith analogue with a Raman spectrometer for the ExoMars mission. Planet Space Sci. 60:356–362. 10.1016/j.pss.2011.10.017 DOI
Vítek P, Ali EMA, Edwards HGM, Jehlička J, Cox R, Page K. 2012. Evaluation of portable Raman spectrometer with 1064 nm excitation for geological and forensic applications. Spectrochim. Acta A 86:320–327. 10.1016/j.saa.2011.10.043 PubMed DOI
Dickensheets DL, Wynn-Williams DD, Edwards HGM, Schoen C, Crowder C, Newton EM. 2000. A novel miniature confocal microscope/Raman spectrometer system for biomolecular analysis on future Mars missions after Antarctic trials. J. Raman Spectrosc. 31:633–635. 10.1002/1097-4555(200007)31:7<633::AID-JRS620>3.0.CO;2-R DOI
Som SM, Foing BH. 2012. Thermal degradation of organic material by portable laser Raman spectrometry. Int. J. Astrobiol. 11:177–186. 10.1017/S1473550412000079 DOI
Miralles I, Jorge-Villar SE, Canton Y, Domingo F. 2012. Using a mini-Raman spectrometer to monitor the adaptive strategies of extremophile colonizers in arid deserts: relationships between signal strength, adaptive strategies, solar radiation, and humidity. Astrobiology 12:743–753. 10.1089/ast.2011.0763 PubMed DOI
Vítek P, Edwards HGM, Jehlička J, Hutchinson I, Ascaso C, Wierzchos J. 2012. The miniaturized Raman system and detection of traces of life in halite from the Atacama Desert: some considerations for the search for life signatures on Mars. Astrobiology 12:1095–1099. 10.1089/ast.2012.0879 PubMed DOI PMC
Jehlička J, Oren A. 2013. Use of a handheld Raman spectrometer for fast screening of microbial pigments in cultures of halophilic microorganisms and in microbial communities in hypersaline environments in nature. J. Raman Spectrosc. 44:1285–1291. 10.1002/jrs.4362 DOI
Parnell J, McMahona S, Blamey NJF, Hutchinson IB, Harrisa LV, Ingley R, Edwards HGM, Lynch E, Feely M. 25 October 2013. Detection of reduced carbon in a basalt analogue for martian nakhlite: a signpost to habitat on Mars. Int. J. Astrobiol. 10.1017/S1473550413000360 DOI
Colomban P. 2012. The on-site/remote Raman analysis with mobile instruments: a review of drawbacks and success in cultural heritage studies and other associated fields. J. Raman Spectrosc. 43:1529–1535. 10.1002/jrs.4042 DOI
Vandenabeele P, Edwards HGM, Jehlička J. 2014. The role of mobile instrumentation in novel applications of Raman spectroscopy: archaeometry, geosciences, and forensics. Chem. Soc. Rev. 43:2628–2649. 10.1039/c3cs60263j PubMed DOI
Sorak D, Herberholz L, Iwascek S, Altinpinar S, Pfeifer F, Siesler HW. 2012. New developments and applications of handheld Raman, mid-infrared, and near-infrared spectrometers. Appl. Spectrosc. Lett. 47:83–115. 10.1080/05704928.2011.625748 DOI
Marshall CP, Carter EA, Leuko S, Javaux EJ. 2006. Vibrational spectroscopy of extant and fossil microbes: relevance for the astrobiological exploration of Mars. Vibrat. Spectrosc. 41:182–189. 10.1016/j.vibspec.2006.01.008 DOI
Wood BR, Heraud P, Stojkovic S, Morrison D, Beardall J, McNaughton D. 2005. A portable Raman acoustic levitation spectroscopic system for the identification and environmental monitoring of algal cells. Anal. Chem. 77:4955–4961. 10.1021/ac050281z PubMed DOI
Edwards HGM, Currie KJ, Ali HRH, Villar SEJ, David AR, Denton J. 2007. Raman spectroscopy of natron: shedding light on ancient Egyptian mummification. Anal. Bioanal. Chem. 388:683–689. 10.1007/s00216-007-1249-4 PubMed DOI
Gall A, Ridge JP, Robert B, Cogdell RJ, Jones MR, Fyfe PK. 1999. Effects of mutagenesis on the detailed structure of spheroidenone in the Rhodobacter sphaeroides reaction centre examined by resonance Raman spectroscopy. Photosynth. Res. 59:223–230. 10.1023/A:1006168118363 DOI
Wang GH, Hao ZJ, Huang ZB, Chen LZ, Li XY, Hu CX, Liu YD. 2010. Raman spectroscopic analysis of a desert cyanobacterium Nostoc sp. in response to UVB radiation. Astrobiology 10:783–788. 10.1089/ast.2009.0407 PubMed DOI
Edwards HGM, Newton EM, Wynn-Williams DD, Lewis-Smith RI. 2003. Nondestructive analysis of pigments and other organic compounds in lichens using Fourier-transform Raman spectroscopy: a study of Antarctic epilithic lichens. Spectrochim. Acta A 59:2301–2309. 10.1016/S1386-1425(03)00073-8 PubMed DOI
Edwards HGM, Russell NC, Wynn-Williams DD. 1997. Fourier transform Raman spectroscopic and scanning electron microscopic study of cryptoendolithic lichens from Antarctica. J. Raman Spectrosc. 28:685–690. 10.1002/(SICI)1097-4555(199709)28:9<685::AID-JRS160>3.0.CO;2-X DOI
Microbial colonization of gypsum: from the fossil record to the present day