Convergent views on disordered protein dynamics from NMR and computational approaches

. 2022 Oct 18 ; 121 (20) : 3785-3794. [epub] 20220921

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36131545
Odkazy

PubMed 36131545
PubMed Central PMC9674986
DOI 10.1016/j.bpj.2022.09.016
PII: S0006-3495(22)00766-4
Knihovny.cz E-zdroje

Intrinsically disordered proteins (IDPs) or intrinsically disordered regions (IDRs) is a class of biologically important proteins exhibiting specific biophysical characteristics. They lack a hydrophobic core, and their conformational behavior is strongly influenced by electrostatic interactions. IDPs and IDRs are highly dynamic, and a characterization of the motions of IDPs and IDRs is essential for their physically correct description. NMR together with molecular dynamics simulations are the methods best suited to such a task because they provide information about dynamics of proteins with atomistic resolution. Here, we present a study of motions of a disordered C-terminal domain of the delta subunit of RNA polymerase from Bacillus subtilis. Positively and negatively charged residues in the studied domain form transient electrostatic contacts critical for the biological function. Our study is focused on investigation of ps-ns dynamics of backbone of the delta subunit based on analysis of amide 15N NMR relaxation data and molecular dynamics simulations. In order to extend an informational content of NMR data to lower frequencies, which are more sensitive to slower motions, we combined standard (high-field) NMR relaxation experiments with high-resolution relaxometry. Altogether, we collected data reporting the relaxation at 12 different magnetic fields, resulting in an unprecedented data set. Our results document that the analysis of such data provides a consistent description of dynamics and confirms the validity of so far used protocols of the analysis of dynamics of IDPs also for a partially folded protein. In addition, the potential to access detailed description of motions at the timescale of tens of ns with the help of relaxometry data is discussed. Interestingly, in our case, it appears to be mostly relevant for a region involved in the formation of temporary contacts within the disordered region, which was previously proven to be biologically important.

Zobrazit více v PubMed

Henzler-Wildman K., Kern D. Dynamic personalities of proteins. Nature. 2007;450:964–972. PubMed

Dyson H.J., Wright P.E. Intrinsically unstructured proteins and their functions. Nat. Rev. Mol. Cell Biol. 2005;6:197–208. PubMed

Jensen M.R., Zweckstetter M., et al. Blackledge M. Exploring free-energy landscapes of intrinsically disordered proteins at atomic resolution using NMR spectroscopy. Chem. Rev. 2014;114:6632–6660. PubMed

Kadeřávek P., Zapletal V., et al. Žídek L. Spectral density mapping protocols for analysis of molecular motions in disordered proteins. J. Biomol. NMR. 2014;58:193–207. PubMed

Khan S.N., Charlier C., et al. Ferrage F. Distribution of pico- and nanosecond motions in disordered proteins from nuclear spin relaxation. Biophys. J. 2015;109:988–999. PubMed PMC

Piana S., Donchev A.G., et al. Shaw D.E. Water dispersion interactions strongly influence simulated structural properties of disordered protein states. J. Phys. Chem. B. 2015;119:5113–5123. PubMed

Gill M.L., Byrd R.A., Palmer A.G., III Dynamics of GCN4 facilitate DNA interaction: a model-free analysis of an intrinsically disordered region. Phys. Chem. Chem. Phys. 2016;18:5839–5849. PubMed PMC

Salvi N., Abyzov A., Blackledge M. Multi-timescale dynamics in intrinsically disordered proteins from NMR relaxation and molecular simulation. J. Phys. Chem. Lett. 2016;7:2483–2489. PubMed

Salvi N., Abyzov A., Blackledge M. Analytical description of NMR relaxation highlights correlated dynamics in intrinsically disordered proteins. Angew. Chem., Int. Ed. Engl. 2017;56:14020–14024. PubMed

Robustelli P., Piana S., Shaw D.E. Developing a molecular dynamics force field for both folded and disordered protein states. Proc. Natl. Acad. Sci. USA. 2018;115:E4758–E4766. PubMed PMC

Thomasen F.E., Pesce F., et al. Lindorff-Larsen K. Improving martini 3 for disordered and multidomain proteins. J. Chem. Theor. Comput. 2022;18:2033–2041. PubMed

Abyzov A., Salvi N., et al. Blackledge M. Identification of dynamic modes in an intrinsically disordered protein using temperature-dependent NMR relaxation. J. Am. Chem. Soc. 2016;138:6240–6251. PubMed

Adamski W., Salvi N., et al. Blackledge M. A unified description of intrinsically disordered protein dynamics under physiological conditions using NMR spectroscopy. J. Am. Chem. Soc. 2019;141:17817–17829. PubMed

Clore G.M., Szabo A., et al. Gronenborn A.M. Deviations from the simple two-parameter model-free approach to the interpretation of nitrogen-15 nuclear magnetic relaxation of proteins. J. Am. Chem. Soc. 1990;112:4989–4991.

Buevich A.V., Baum J. Dynamics of unfolded proteins: incorporation of distributions of correlation times in the model free analysis of NMR relaxation data. J. Am. Chem. Soc. 1999;121:8671–8672.

Hsu A., Ferrage F., Palmer A.G. Analysis of NMR spin-relaxation data using an inverse Gaussian distribution function. Biophys. J. 2018;115:2301–2309. PubMed PMC

Bloembergen N., Purcell E.M., Pound R.V. Relaxation effects in nuclear magnetic resonance absorption. Phys. Rev. 1948;73:679–712.

Wangsness R.K., Bloch F. The dynamical theory of nuclear induction. Phys. Rev. 1953;89:728–739.

Solomon I. Relaxation processes in a system of two spins. Phys. Rev. 1955;99:559–565.

Redfield A.G. On the theory of relaxation processes. IBM J. Res. Dev. 1957;1:19–31.

Abragam A. Clarendon Press; 1961. The Principles of Nuclear Magnetism.

Smith A.A., Ernst M., Meier B.H. Because the light is better here: correlation-time analysis by NMR spectroscopy. Angew. Chem., Int. Ed. Engl. 2017;56:13590–13595. PubMed

Parigi G., Rezaei-Ghaleh N., et al. Luchinat C. Long-range correlated dynamics in intrinsically disordered proteins. J. Am. Chem. Soc. 2014;136:16201–16209. PubMed

Clarkson M.W., Lei M., et al. Kern D. Mesodynamics in the SARS nucleocapsid measured by NMR field cycling. J. Biomol. NMR. 2009;45:217–225. PubMed PMC

Charlier C., Khan S.N., et al. Ferrage F. Nanosecond time scale motions in proteins revealed by high-resolution NMR relaxometry. J. Am. Chem. Soc. 2013;135:18665–18672. PubMed PMC

Cousin S.F., Kadeřávek P., et al. Ferrage F. Time-resolved protein side-chain motions unraveled by high-resolution relaxometry and molecular dynamics simulations. J. Am. Chem. Soc. 2018;140:13456–13465. PubMed

Smith A.A., Bolik-Coulon N., et al. Ferrage F. How wide is the window opened by high-resolution relaxometry on the internal dynamics of proteins in solution? J. Biomol. NMR. 2021;75:119–131. PubMed PMC

Prompers J.J., Brüschweiler R. General framework for studying the dynamics of folded and nonfolded proteins by NMR relaxation spectroscopy and MD simulation. J. Am. Chem. Soc. 2002;124:4522–4534. PubMed

Salvi N., Abyzov A., Blackledge M. Solvent-dependent segmental dynamics in intrinsically disordered proteins. Sci. Adv. 2019;5:eaax2348. PubMed PMC

Seepersaud R., Needham R.H.V., et al. Jones A.L. Abundance of the δ subunit of RNA polymerase is linked to the virulence of Streptococcus agalactiae. J. Bacteriol. 2006;188:2096–2105. PubMed PMC

Rabatinová A., Šanderová H., et al. Krásný L. The δ subunit of RNA polymerase is required for rapid changes in gene expression and competitive fitness of the cell. J. Bacteriol. 2013;195:2603–2611. PubMed PMC

Papoušková V., Kadeřávek P., et al. Žídek L. Structural study of the partially disordered full-length δ subunit of RNA polymerase from Bacillus subtilis. Chembiochem. 2013;14:1772–1779. PubMed

López de Saro F.J., Woody A.Y., Helmann J.D. Structural analysis of the Bacillus subtilis delta factor: a protein polyanion which displaces RNA from RNA polymerase. J. Mol. Biol. 1995;252:189–202. PubMed

Cousin S.F., Kadeřávek P., et al. Ferrage F. Recovering invisible signals by two-field NMR spectroscopy. Angew. Chem., Int. Ed. Engl. 2016;55:9886–9889. PubMed

Cousin S.F., Charlier C., et al. Ferrage F. High-resolution two-field nuclear magnetic resonance spectroscopy. Phys. Chem. Chem. Phys. 2016;18:33187–33194. PubMed

Kadeřávek P., Bolik-Coulon N., et al. Ferrage F. Protein dynamics from accurate low-field site-specific longitudinal and transverse nuclear spin relaxation. J. Phys. Chem. Lett. 2019;10:5917–5922. PubMed

Jaseňáková Z., Zapletal V., et al. Kadeřávek P. Boosting the resolution of low-field $$ˆ{15}\hbox {N}$$ relaxation experiments on intrinsically disordered proteins with triple-resonance NMR. J. Biomol. NMR. 2020;74:139–145. PubMed

Kazimierczuk K., Zawadzka A., Koźmiński W. Optimization of random time domain sampling in multidimensional NMR. J. Magn. Reson. 2008;192:123–130. PubMed

Lopez J., Ahuja P., et al. Lippens G. H/D exchange of a 15N labelled Tau fragment as measured by a simple Relax-EXSY experiment. J. Magn. Reson. 2014;249:32–37. PubMed

Srb P., Nováček J., et al. Žídek L. Triple resonance 15Ν NMR relaxation experiments for studies of intrinsically disordered proteins. J. Biomol. NMR. 2017;69:133–146. PubMed

Ferrage F., Cowburn D., Ghose R. Accurate sampling of high-frequency motions in proteins by steady-state 15N−{1H} nuclear overhauser effect measurements in the presence of cross-correlated relaxation. J. Am. Chem. Soc. 2009;131:6048–6049. PubMed PMC

Delaglio F., Grzesiek S., et al. Bax A. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR. 1995;6:277–293. PubMed

Ying J., Delaglio F., et al. Bax A. Sparse multidimensional iterative lineshape-enhanced (SMILE) reconstruction of both non-uniformly sampled and conventional NMR data. J. Biomol. NMR. 2017;68:101–118. PubMed PMC

Lee W., Tonelli M., Markley J.L. NMRFAM-SPARKY: enhanced software for biomolecular NMR spectroscopy. Bioinformatics. 2015;31:1325–1327. PubMed PMC

Eaton J.W., Bateman D., Hauberg S. CreateSpace Independent Publishing Platform; 2009. GNU Octave Version 3.0.1 Manual: A High-Level Interactive Language for Numerical Computations.

Tibshirani R. Variance stabilization and the Bootstrap. Biometrika. 1988;75:433–444.

Hall P. Theoretical comparison of Bootstrap confidence intervals. Ann. Stat. 1988;16:927–953.

Bolik-Coulon N., Kadeřávek P., et al. Cousin S.F. Theoretical and computational framework for the analysis of the relaxation properties of arbitrary spin systems. Application to high-resolution relaxometry. J. Magn. Reson. 2020;313:106718. PubMed

Wolfram Research, Inc . Champaign Illinois; 2015. Mathematica. 10.1.

Loth K., Pelupessy P., Bodenhausen G. Chemical shift anisotropy tensors of carbonyl, nitrogen, and amide proton nuclei in proteins through cross-correlated relaxation in NMR spectroscopy. J. Am. Chem. Soc. 2005;127:6062–6068. PubMed

Abraham M.J., Murtola T., et al. Lindahl E. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015;1–2:19–25.

Lindorff-Larsen K., Piana S., et al. Shaw D.E. Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins. 2010;78:1950–1958. PubMed PMC

Zapletal V., Mládek A., et al. Hritz J. Choice of force field for proteins containing structured and intrinsically disordered regions. Biophys. J. 2020;118:1621–1633. PubMed PMC

Tollinger M., Forman-Kay J.D., Kay L.E. Measurement of side-chain carboxyl pK(a) values of glutamate and aspartate residues in an unfolded protein by multinuclear NMR spectroscopy. J. Am. Chem. Soc. 2002;124:5714–5717. PubMed

Kubáň V., Srb P., et al. Žídek L. Quantitative conformational analysis of functionally important electrostatic interactions in the intrinsically disordered region of delta subunit of bacterial RNA polymerase. J. Am. Chem. Soc. 2019;141:16817–16828. PubMed

García de la Torre J., Huertas M.L., Carrasco B. HYDRONMR: prediction of NMR relaxation of globular proteins from atomic-level structures and hydrodynamic calculations. J. Magn. Reson. 2000;147:138–146. PubMed

García De La Torre J., Huertas M.L., Carrasco B. Calculation of hydrodynamic properties of globular proteins from their atomic-level structure. Biophys. J. 2000;78:719–730. PubMed PMC

Kadeřávek P., Diehl C., et al. Akke M. Complementation of 3D structure of delta subunit of RNA polymerase from Bacillus subtilis with description of internal motions in terms of reduced spectral density mapping. Mater. Struct. 2011;18:3–5.

Zimm B.H. Dynamics of polymer molecules in dilute solution: viscoelasticity, flow birefringence and dielectric loss. J. Chem. Phys. 1956;24:269–278.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...