Boosting the resolution of low-field 15 N relaxation experiments on intrinsically disordered proteins with triple-resonance NMR
Language English Country Netherlands Media print-electronic
Document type Journal Article
Grant support
GA18-04197Y
Grantová Agentura České Republiky
ANR-18-CE29-0003
Agence Nationale de la Recherche
CA15209
European Cooperation in Science and Technology
PubMed
31960224
DOI
10.1007/s10858-019-00298-6
PII: 10.1007/s10858-019-00298-6
Knihovny.cz E-resources
- Keywords
- Dynamics, High-resolution relaxometry, Intrinsically disordered proteins, Non-uniform sampling, Nuclear magnetic resonance, Relaxation,
- MeSH
- Bacillus subtilis enzymology MeSH
- Bacterial Proteins chemistry MeSH
- DNA-Directed RNA Polymerases chemistry MeSH
- Nuclear Magnetic Resonance, Biomolecular * MeSH
- Recombinant Proteins chemistry MeSH
- Intrinsically Disordered Proteins chemistry MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Bacterial Proteins MeSH
- DNA-Directed RNA Polymerases MeSH
- Recombinant Proteins MeSH
- Intrinsically Disordered Proteins MeSH
Improving our understanding of nanosecond motions in disordered proteins requires the enhanced sampling of the spectral density function obtained from relaxation at low magnetic fields. High-resolution relaxometry and two-field NMR measurements of relaxation have, so far, only been based on the recording of one- or two-dimensional spectra, which provide insufficient resolution for challenging disordered proteins. Here, we introduce a 3D-HNCO-based two-field NMR experiment for measurements of protein backbone 15 N amide longitudinal relaxation rates. The experiment provides accurate longitudinal relaxation rates at low field (0.33 T in our case) preserving the resolution and sensitivity typical for high-field NMR spectroscopy. Radiofrequency pulses applied on six different radiofrequency channels are used to manipulate the spin system at both fields. The experiment was demonstrated on the C-terminal domain of δ subunit of RNA polymerase from Bacillus subtilis, a protein with highly repetitive amino-acid sequence and very low dispersion of backbone chemical shifts.
Bruker BioSpin 34 rue de l'Industrie BP 10002 67166 Wissembourg Cedex France
Bruker BioSpin GmbH Silberstreifen 4 76287 Rheinstetten Germany
Central European Institute of Technology Masaryk University Kamenice 5 625 00 Brno Czech Republic
See more in PubMed
J Biomol NMR. 1993 Mar;3(2):185-204 PubMed
J Am Chem Soc. 2016 May 18;138(19):6240-51 PubMed
Methods Mol Biol. 2012;831:141-63 PubMed
Biophys J. 2015 Sep 1;109(5):988-99 PubMed
Chembiochem. 2013 Sep 23;14(14):1772-9 PubMed
J Biomol NMR. 2016 Aug;65(3-4):157-170 PubMed
J Biomol NMR. 2017 Jun;68(2):101-118 PubMed
Phys Rev Lett. 1992 Nov 23;69(21):3124-3127 PubMed
J Biomol NMR. 2017 Nov;69(3):133-146 PubMed
Methods Mol Biol. 2018;1688:169-203 PubMed
J Biomol NMR. 2012 Feb;52(2):159-77 PubMed
J Biomol NMR. 2016 Feb;64(2):165-73 PubMed
J Am Chem Soc. 2012 Nov 14;134(45):18619-30 PubMed
J Biomol NMR. 2017 Sep;69(1):1-12 PubMed
J Bacteriol. 2013 Jun;195(11):2603-11 PubMed
Phys Chem Chem Phys. 2016 Feb 17;18(8):5839-49 PubMed
Prog Nucl Magn Reson Spectrosc. 2014 Nov;83:21-41 PubMed
J Am Chem Soc. 2018 Oct 17;140(41):13456-13465 PubMed
Bioinformatics. 2015 Apr 15;31(8):1325-7 PubMed
J Biomol NMR. 2009 Sep;45(1-2):217-25 PubMed
Angew Chem Int Ed Engl. 2016 Aug 16;55(34):9886-9 PubMed
J Am Chem Soc. 2013 Dec 11;135(49):18665-72 PubMed
J Phys Chem Lett. 2019 Oct 3;10(19):5917-5922 PubMed
Prog Nucl Magn Reson Spectrosc. 2011 Oct;59(3):271-92 PubMed
J Magn Reson. 2008 May;192(1):123-30 PubMed
Phys Chem Chem Phys. 2016 Dec 7;18(48):33187-33194 PubMed
J Biomol NMR. 2014 Mar;58(3):193-207 PubMed
J Biomol NMR. 1995 Nov;6(3):277-93 PubMed
J Am Chem Soc. 2019 Oct 23;141(42):16817-16828 PubMed
J Mol Biol. 1995 Sep 15;252(2):189-202 PubMed
Proteins. 2010 May 15;78(7):1807-10 PubMed
Convergent views on disordered protein dynamics from NMR and computational approaches