• This record comes from PubMed

Boosting the resolution of low-field 15 N relaxation experiments on intrinsically disordered proteins with triple-resonance NMR

. 2020 Mar ; 74 (2-3) : 139-145. [epub] 20200120

Language English Country Netherlands Media print-electronic

Document type Journal Article

Grant support
GA18-04197Y Grantová Agentura České Republiky
ANR-18-CE29-0003 Agence Nationale de la Recherche
CA15209 European Cooperation in Science and Technology

Links

PubMed 31960224
DOI 10.1007/s10858-019-00298-6
PII: 10.1007/s10858-019-00298-6
Knihovny.cz E-resources

Improving our understanding of nanosecond motions in disordered proteins requires the enhanced sampling of the spectral density function obtained from relaxation at low magnetic fields. High-resolution relaxometry and two-field NMR measurements of relaxation have, so far, only been based on the recording of one- or two-dimensional spectra, which provide insufficient resolution for challenging disordered proteins. Here, we introduce a 3D-HNCO-based two-field NMR experiment for measurements of protein backbone 15 N amide longitudinal relaxation rates. The experiment provides accurate longitudinal relaxation rates at low field (0.33 T in our case) preserving the resolution and sensitivity typical for high-field NMR spectroscopy. Radiofrequency pulses applied on six different radiofrequency channels are used to manipulate the spin system at both fields. The experiment was demonstrated on the C-terminal domain of δ subunit of RNA polymerase from Bacillus subtilis, a protein with highly repetitive amino-acid sequence and very low dispersion of backbone chemical shifts.

See more in PubMed

J Biomol NMR. 1993 Mar;3(2):185-204 PubMed

J Am Chem Soc. 2016 May 18;138(19):6240-51 PubMed

Methods Mol Biol. 2012;831:141-63 PubMed

Biophys J. 2015 Sep 1;109(5):988-99 PubMed

Chembiochem. 2013 Sep 23;14(14):1772-9 PubMed

J Biomol NMR. 2016 Aug;65(3-4):157-170 PubMed

J Biomol NMR. 2017 Jun;68(2):101-118 PubMed

Phys Rev Lett. 1992 Nov 23;69(21):3124-3127 PubMed

J Biomol NMR. 2017 Nov;69(3):133-146 PubMed

Methods Mol Biol. 2018;1688:169-203 PubMed

J Biomol NMR. 2012 Feb;52(2):159-77 PubMed

J Biomol NMR. 2016 Feb;64(2):165-73 PubMed

J Am Chem Soc. 2012 Nov 14;134(45):18619-30 PubMed

J Biomol NMR. 2017 Sep;69(1):1-12 PubMed

J Bacteriol. 2013 Jun;195(11):2603-11 PubMed

Phys Chem Chem Phys. 2016 Feb 17;18(8):5839-49 PubMed

Prog Nucl Magn Reson Spectrosc. 2014 Nov;83:21-41 PubMed

J Am Chem Soc. 2018 Oct 17;140(41):13456-13465 PubMed

Bioinformatics. 2015 Apr 15;31(8):1325-7 PubMed

J Biomol NMR. 2009 Sep;45(1-2):217-25 PubMed

Angew Chem Int Ed Engl. 2016 Aug 16;55(34):9886-9 PubMed

J Am Chem Soc. 2013 Dec 11;135(49):18665-72 PubMed

J Phys Chem Lett. 2019 Oct 3;10(19):5917-5922 PubMed

Prog Nucl Magn Reson Spectrosc. 2011 Oct;59(3):271-92 PubMed

J Magn Reson. 2008 May;192(1):123-30 PubMed

Phys Chem Chem Phys. 2016 Dec 7;18(48):33187-33194 PubMed

J Biomol NMR. 2014 Mar;58(3):193-207 PubMed

J Biomol NMR. 1995 Nov;6(3):277-93 PubMed

J Am Chem Soc. 2019 Oct 23;141(42):16817-16828 PubMed

J Mol Biol. 1995 Sep 15;252(2):189-202 PubMed

Proteins. 2010 May 15;78(7):1807-10 PubMed

Newest 20 citations...

See more in
Medvik | PubMed

Convergent views on disordered protein dynamics from NMR and computational approaches

. 2022 Oct 18 ; 121 (20) : 3785-3794. [epub] 20220921

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...