Non-covalent control of spin-state in metal-organic complex by positioning on N-doped graphene

. 2018 Jul 19 ; 9 (1) : 2831. [epub] 20180719

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid30026582
Odkazy

PubMed 30026582
PubMed Central PMC6053383
DOI 10.1038/s41467-018-05163-y
PII: 10.1038/s41467-018-05163-y
Knihovny.cz E-zdroje

Nitrogen doping of graphene significantly affects its chemical properties, which is particularly important in molecular sensing and electrocatalysis applications. However, detailed insight into interaction between N-dopant and molecules at the atomic scale is currently lacking. Here we demonstrate control over the spin state of a single iron(II) phthalocyanine molecule by its positioning on N-doped graphene. The spin transition was driven by weak intermixing between orbitals with z-component of N-dopant (pz of N-dopant) and molecule (dxz, dyz, dz2) with subsequent reordering of the Fe d-orbitals. The transition was accompanied by an electron density redistribution within the molecule, sensed by atomic force microscopy with CO-functionalized tip. This demonstrates the unique capability of the high-resolution imaging technique to discriminate between different spin states of single molecules. Moreover, we present a method for triggering spin state transitions and tuning the electronic properties of molecules through weak non-covalent interaction with suitably functionalized graphene.

Zobrazit více v PubMed

Castro Neto AH, Guinea F, Peres NMR, Novoselov KS, Geim AK. The electronic properties of graphene. Rev. Mod. Phys. 2009;81:109–162. doi: 10.1103/RevModPhys.81.109. DOI

Novoselov KS, et al. Electric field effect in atomically thin carbon films. Science. 2004;306:666–669. doi: 10.1126/science.1102896. PubMed DOI

Novoselov KS, et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature. 2005;438:197–200. doi: 10.1038/nature04233. PubMed DOI

Kane CL, Mele EJ. Quantum spin Hall effect in graphene. Phys. Rev. Lett. 2005;95:226801. doi: 10.1103/PhysRevLett.95.226801. PubMed DOI

Nair RR, et al. Fine structure constant defines visual transparency of graphene. Science. 2008;320:1308. doi: 10.1126/science.1156965. PubMed DOI

Geim AK, Novoselov KS. The rise of graphene. Nat. Mater. 2007;6:183–191. doi: 10.1038/nmat1849. PubMed DOI

Georgakilas V, et al. Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. Chem. Rev. 2012;112:6156–6214. doi: 10.1021/cr3000412. PubMed DOI

Georgakilas V, et al. Noncovalent functionalization of graphene and graphene oxide for energy materials, biosensing, catalytic, and biomedical applications. Chem. Rev. 2016;116:5464–5519. doi: 10.1021/acs.chemrev.5b00620. PubMed DOI

Yang Z, et al. Recent advancement of nanostructured carbon for energy applications. Chem. Rev. 2015;115:5159–5223. doi: 10.1021/cr5006217. PubMed DOI

Boukhvalov DW, Katsnelson MI. Chemical functionalization of graphene with defects. Nano. Lett. 2008;8:4373–4379. doi: 10.1021/nl802234n. PubMed DOI

Han W, Kawakami RK, Gmitra M, Fabian J. Graphene spintronics. Nat. Nanotechnol. 2014;9:794–807. doi: 10.1038/nnano.2014.214. PubMed DOI

Wang X, et al. N-doping of graphene through electrothermal reactions with ammonia. Science. 2009;324:768–771. doi: 10.1126/science.1170335. PubMed DOI

Błoński P, et al. Doping with graphitic nitrogen triggers ferromagnetism in graphene. J. Am. Chem. Soc. 2017;139:3171–3180. doi: 10.1021/jacs.6b12934. PubMed DOI PMC

Sheng ZH, et al. Electrochemical sensor based on nitrogen doped graphene: simultaneous determination of ascorbic acid, dopamine and uric acid. Biosens. Bioelectron. 2012;34:125–131. doi: 10.1016/j.bios.2012.01.030. PubMed DOI

Lv R, et al. Nitrogen-doped graphene: beyond single substitution and enhanced molecular sensing. Sci. Rep. 2012;2:586. doi: 10.1038/srep00586. PubMed DOI PMC

Wang H, Maiyalagan T, Wang X. Review on recent progress in nitrogen-doped graphene: synthesis, characterization, and its potential applications. ACS Catal. 2012;2:781–794. doi: 10.1021/cs200652y. DOI

Pumera M. Graphene-based nanomaterials and their electrochemistry. Chem. Soc. Rev. 2010;39:4146–4157. doi: 10.1039/c002690p. PubMed DOI

Chen D, Tang L, Li J. Graphene-based materials in electrochemistry. Chem. Soc. Rev. 2010;39:3157–3180. doi: 10.1039/b923596e. PubMed DOI

Liu Y, Dong X, Chen P. Biological and chemical sensors based on graphene materials. Chem. Soc. Rev. 2012;41:2283–2307. doi: 10.1039/C1CS15270J. PubMed DOI

Schedin F, et al. Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 2007;6:652. doi: 10.1038/nmat1967. PubMed DOI

Wu KH, Wang DW, Su DS, Gentle IR. A discussion on the activity origin in metal-free nitrogen-doped carbons for oxygen reduction reaction and their mechanisms. ChemSusChem. 2015;8:2772–2788. doi: 10.1002/cssc.201500373. PubMed DOI

Pham VD, et al. Electronic interaction between nitrogen-doped graphene and porphyrin molecules. ACS Nano. 2014;8:9403–9409. doi: 10.1021/nn503753e. PubMed DOI

Gross L, Mohn F, Moll N, Liljeroth P, Meyer G. The chemical structure of a molecule resolved by atomic force microscopy. Science. 2009;325:1110–1114. doi: 10.1126/science.1176210. PubMed DOI

Temirov R, Soubatch S, Neucheva O, Lassise AC, Tautz FS. A novel method achieving ultra-high geometrical resolution in scanning tunnelling microscopy. New J. Phys. 2008;10:053012. doi: 10.1088/1367-2630/10/5/053012. DOI

Chiang Cl, Xu C, Han Z, Ho W. Real-space imaging of molecular structure and chemical bonding by single-molecule inelastic tunneling probe. Science. 2014;344:885–888. doi: 10.1126/science.1253405. PubMed DOI

Emmrich M, et al. Subatomic resolution force microscopy reveals internal structure and adsorption sites of small iron clusters. Science. 2015;348:308–311. doi: 10.1126/science.aaa5329. PubMed DOI

Gross L, et al. Bond-order discrimination by atomic force microscopy. Science. 2012;337:1326–1329. doi: 10.1126/science.1225621. PubMed DOI

Hapala P, et al. Mapping the electrostatic force field of single molecules from high-resolution scanning probe images. Nat. Commun. 2016;7:11560. doi: 10.1038/ncomms11560. PubMed DOI PMC

de Oteyza DG, et al. Direct imaging of covalent bond structure in single-molecule chemical reactions. Science. 2013;340:1434–1437. doi: 10.1126/science.1238187. PubMed DOI

Telychko M, et al. Electronic and chemical properties of donor, acceptor centers in graphene. ACS Nano. 2015;9:9180–9187. doi: 10.1021/acsnano.5b03690. PubMed DOI

Åhlund J, et al. The adsorption of iron phthalocyanine on graphite: a scanning tunnelling microscopy study. Surf. Sci. 2007;601:3661–3667. doi: 10.1016/j.susc.2007.06.008. DOI

Yang K, et al. Molecule–substrate coupling between metal phthalocyanines and epitaxial graphene grown on Ru(0001) and Pt(111) J. Phys. Chem. C. 2012;116:14052–14056. doi: 10.1021/jp304068a. DOI

Zhao L, et al. Visualizing individual nitrogen dopants in monolayer graphene. Science. 2011;333:999–1003. doi: 10.1126/science.1208759. PubMed DOI

Martín-Recio A, Romero-Muñiz C, Pou P, Pérez R, Gómez-Rodríguez JM. Purely substitutional nitrogen on graphene/Pt(111) unveiled by STM and first principles calculations. Nanoscale. 2016;8:17686–17693. doi: 10.1039/C6NR04978H. PubMed DOI

Münnich G, et al. Probing individual weakly-coupled π-conjugated molecules on semiconductor surfaces. J. Appl. Phys. 2012;112:034312. doi: 10.1063/1.4742977. DOI

Repp J, Meyer G, Stojković SM, Gourdon A, Joachim Ch. Molecules on insulating films: scanning-tunneling microscopy imaging of individual molecular orbitals. Phys. Rev. Lett. 2005;94:026803. doi: 10.1103/PhysRevLett.94.026803. PubMed DOI

Schulz F, et al. Many-body transitions in a single molecule visualized by scanning tunnelling microscopy. Nat. Phys. 2015;11:229–234. doi: 10.1038/nphys3212. DOI

Yu P, Kocić N, Repp J, Siegert B, Donarini A. Apparent reversal of molecular orbitals reveals entanglement. Phys. Rev. Lett. 2017;119:056801. doi: 10.1103/PhysRevLett.119.056801. PubMed DOI

Sforzini J, et al. Structural and electronic properties of nitrogen-doped graphene. Phys. Rev. Lett. 2016;116:126805. doi: 10.1103/PhysRevLett.116.126805. PubMed DOI

de la Torre B, et al. Submolecular resolution by variation of the inelastic electron tunneling spectroscopy amplitude and its relation to the AFM/STM signal. Phys. Rev. Lett. 2017;119:166001. doi: 10.1103/PhysRevLett.119.166001. PubMed DOI

Hapala P, et al. Mechanism of high-resolution STM/AFM imaging with functionalized tips. Phys. Rev. B. 2014;90:085421. doi: 10.1103/PhysRevB.90.085421. PubMed DOI

Jelínek P. High resolution SPM imaging of organic molecules with functionalized tips. J. Phys. Condens. Matter. 2017;29:343002. doi: 10.1088/1361-648X/aa76c7. PubMed DOI

Moll N, Gross L, Mohn F, Curioni A, Meyer G. The mechanisms underlying the enhanced resolution of atomic force microscopy with functionalized tips. New J. Phys. 2010;12:125020. doi: 10.1088/1367-2630/12/12/125020. DOI

Tsukahara N, et al. Adsorption-induced switching of magnetic anisotropy in a single iron(II) phthalocyanine molecule on an oxidized Cu(110) surface. Phys. Rev. Lett. 2009;102:167203. doi: 10.1103/PhysRevLett.102.167203. PubMed DOI

Tsukahara N, et al. Evolution of Kondo resonance from a single impurity molecule to the two-dimensional lattice. Phys. Rev. Lett. 2011;106:187201. doi: 10.1103/PhysRevLett.106.187201. PubMed DOI

Cheng ZH, et al. High resolution scanning-tunneling-microscopy imaging of individual molecular orbitals by eliminating the effect of surface charge. Surf. Sci. 2011;605:415–418. doi: 10.1016/j.susc.2010.11.010. DOI

Sedona F, et al. Tuning the catalytic activity of Ag(110)-supported Fe phthalocyanine in the oxygen reduction reaction. Nat. Mater. 2012;11:970–977. doi: 10.1038/nmat3453. PubMed DOI

Bartolomé J, et al. Highly unquenched orbital moment in textured Fe-phthalocyanine thin films. Phys. Rev. B. 2010;81:195405. doi: 10.1103/PhysRevB.81.195405. DOI

Mugarza A, et al. Electronic and magnetic properties of molecule-metal interfaces: transition-metal phthalocyanines adsorbed on Ag(100) Phys. Rev. B. 2012;85:155437. doi: 10.1103/PhysRevB.85.155437. DOI

Gopakumar TG, et al. Coverage-driven electronic decoupling of Fe-phthalocyanine from a Ag(111) substrate. J. Phys. Chem. C. 2011;115:12173–12179. doi: 10.1021/jp2038619. DOI

Heinrich AJ, Gupta JA, Lutz CP, Eigler DM. Single-atom spin-flip spectroscopy. Science. 2004;306:466. doi: 10.1126/science.1101077. PubMed DOI

Li J, et al. Survival of spin state in magnetic porphyrins contacted by graphene nanoribbons. Sci. Adv. 2018;4:eaaq0582. doi: 10.1126/sciadv.aaq0582. PubMed DOI PMC

Tsukahara N, Minamitani E, Kim Y, Kawai M, Takagi N. Controlling orbital-selective Kondo effects in a single molecule through coordination chemistry. J. Chem. Phys. 2014;141:054702. doi: 10.1063/1.4890654. PubMed DOI

Isvoranu C, et al. Comparison of the carbonyl and nitrosyl complexes formed by adsorption of CO and NO on monolayers of iron phthalocyanine on Au(111) J. Phys. Chem. C. 2011;115:24718–24727. doi: 10.1021/jp204461k. DOI

Redondo J, et al. Simple device for the growth of micrometer-sized monocrystalline single-layer graphene on SiC(0001) J. Vac. Sci. Technol. A. 2018;36:031401. doi: 10.1116/1.5008977. DOI

Horcas I, et al. WSXM: a software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 2007;78:013705. doi: 10.1063/1.2432410. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...