Diagnostics in Waldenström's macroglobulinemia: a consensus statement of the European Consortium for Waldenström's Macroglobulinemia

. 2023 Feb ; 37 (2) : 388-395. [epub] 20221126

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36435884
Odkazy

PubMed 36435884
PubMed Central PMC9898035
DOI 10.1038/s41375-022-01762-3
PII: 10.1038/s41375-022-01762-3
Knihovny.cz E-zdroje

The diagnosis of Waldenström's macroglobulinemia (WM), an IgM-associated lymphoplasmacytic lymphoma, can be challenging due to the different forms of disease presentation. Furthermore, in recent years, WM has witnessed remarkable progress on the diagnostic front, as well as a deeper understanding of the disease biology, which has affected clinical practice. This, together with the increasing variety of tools and techniques available, makes it necessary to have a practical guidance for clinicians to perform the initial evaluation of patients with WM. In this paper, we present the consensus recommendations and laboratory requirements for the diagnosis of WM developed by the European Consortium of Waldenström's Macroglobulinemia (ECWM), for both clinical practice as well as the research/academical setting. We provide the procedures for multiparametric flow cytometry, fluorescence in situ hybridization and molecular tests, and with this offer guidance for a standardized diagnostic work-up and methodological workflow of patients with IgM monoclonal gammopathy of uncertain significance, asymptomatic and symptomatic WM.

ASST Grande Ospedale Metropolitano Niguarda Hospital Milan Italy

Canberra Health Services College of Medicine Biology and Environment Australian National University Canberra ACT Australia

Centre for Waldenströms Macroglobulinaemia and Related Conditions University College London Hospitals National Health Service Foundation Trust London UK

Clinical Research Development and Phase 1 Unit ASST Spedali Civili di Brescia Brescia Italy

Département d'Hématologie Hôpital Pitié Salpêtrière APHP UPMC Université Paris Paris France

Department of Clinical Therapeutics School of Medicine National and Kapodistrian University of Athens Athens Greece

Department of Haematology and Oncology Internal Medicine 5 Innsbruck University Hospital and Syndena GmbH Connect to Cure Innsbruck Austria

Department of Haematooncology University Hospital Ostrava and Faculty of Medicine University of Ostrava Ostrava Czech Republic

Department of Hematology Amsterdam UMC Location University of Amsterdam Cancer Center Amsterdam and LYMMCARE Amsterdam The Netherlands

Division of Hematology Fondazione IRCCS Policlinico San Matteo Pavia Italy

Hematology Department University Hospital of Salamanca Research Biomedical Institute of Salamanca Salamanca Spain

Hematology Division 1U AOU Città della Salute e della Scienza di Torino Torino Italy

Institute of Experimental Cancer Research Comprehensive Cancer Center Ulm University Hospital of Ulm Ulm Germany

Institute of Pathology and Comprehensive Cancer Centre Eberhard Karls University University Hospital Tübingen Tübingen Germany

Laboratory of Hematology Biology and Pathology Center CHU of Lille INSERM UMR S 1277 Team 4 Oncolille Lille France

Maria Sklodowska Curie National Research Institute of Oncology Krakow Poland

National and Kapodistrian University of Athens School of Medicine Athens Greece

Service d'Hematologie Clinique et Therapie Cellulaire Centre Hospitalier Universitaire d'Amiens Picardie Amiens France

The Leeds Teaching Hospitals National Health Service Trust Leeds UK

Unit of Hematology Department of Biotechnology and Health Sciences University of Torino Torino Italy

Zobrazit více v PubMed

Owen RG, Treon SP, Al-Katib A, Fonseca R, Greipp PR, McMaster ML, et al. Clinicopathological definition of Waldenström’s macroglobulinemia: consensus panel recommendations from the Second International Workshop on Waldenstrom’s Macroglobulinemia. Semin Oncol. 2003;30:110–5. PubMed

Swerdlow SH, Campo E, Pileri SA, Harris NL, Stein H, Siebert R, et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood. 2016;127:2375–90. PubMed PMC

Alaggio R, Amador C, Anagnostopoulos I, Attygalle AD, Araujo IB, de O, et al. The 5th edition of the World Health Organization Classification of haematolymphoid tumours: lymphoid neoplasms. Leukemia. 2022;36:1720–48. PubMed PMC

Campo E, Jaffe ES, Cook JR, Quintanilla-Martinez L, Swerdlow SH, Anderson KC, et al. The International Consensus Classification of mature lymphoid neoplasms: a report from the Clinical Advisory Committee. Blood. 2022;140:1229–53. PubMed PMC

Castillo JJ, Garcia-Sanz R, Hatjiharissi E, Kyle RA, Leleu X, McMaster M, et al. Recommendations for the diagnosis and initial evaluation of patients with Waldenström Macroglobulinaemia: a Task Force from the 8th International Workshop on Waldenström Macroglobulinaemia. Br J Haematol. 2016;175:77–86. PubMed PMC

Pratt G, El-Sharkawi D, Kothari J, D’Sa S, Auer R, McCarthy H, et al. Guidelines on the diagnosis and management of Waldenström macroglobulinaemia—a British Society for Haematology guideline. Br J Haematol. 2022;197:171–87. PubMed

Morice WG, Chen D, Kurtin PJ, Hanson CA, McPhail ED. Novel immunophenotypic features of marrow lymphoplasmacytic lymphoma and correlation with Waldenström’s macroglobulinemia. Mod Pathol. 2009;22:807–16. PubMed

Paiva B, Montes MC, García-Sanz R, Ocio EM, Alonso J, de las Heras N, et al. Multiparameter flow cytometry for the identification of the Waldenström’s clone in IgM-MGUS and Waldenström’s Macroglobulinemia: new criteria for differential diagnosis and risk stratification. Leukemia. 2014;28:166–73. PubMed

García-Sanz R, Jimenez C, Puig N, Paiva B, Gutierrez NC, Rodríguez-Otero P, et al. Origin of Waldenstrom’s macroglobulinaemia. Best Pr Res Clin Haematol. 2016;29:136–47. PubMed

Treon SP, Xu L, Yang G, Zhou Y, Liu X, Cao Y, et al. MYD88 L265P somatic mutation in Waldenström’s macroglobulinemia. N Engl J Med. 2012;367:826–33. PubMed

Xu L, Hunter ZR, Yang G, Zhou Y, Cao Y, Liu X, et al. MYD88 L265P in Waldenstrom’s macroglobulinemia, IgM monoclonal gammopathy, and other B-cell lymphoproliferative disorders using conventional and quantitative allele-specific PCR. Blood. 2013;121:2051–8. PubMed PMC

Varettoni M, Arcaini L, Zibellini S, Boveri E, Rattotti S, Riboni R, et al. Prevalence and clinical significance of the MYD88 (L265P) somatic mutation in Waldenström’s macroglobulinemia and related lymphoid neoplasms. Blood. 2013;88:2522–8. PubMed

Jiménez C, Sebastián E, Chillón MC, Giraldo P, Mariano Hernández J, Escalante F, et al. MYD88 L265P is a marker highly characteristic of, but not restricted to, waldenström’s macroglobulinemia. Leukemia. 2013;27:1722–8. PubMed

Poulain S, Roumier C, Decambron A, Renneville A, Herbaux C, Bertrand E, et al. MYD88 L265P mutation in Waldenstrom macroglobulinemia. Blood. 2013;121:4504–11. PubMed

Willenbacher W, Willenbacher E, Brunner A, Manzl C. Improved accuracy of discrimination between IgM multiple myeloma and Waldenström macroglobulinaemia by testing for MYD88 L265P mutations. Br J Haematol. 2013;161:902–4. PubMed

Martínez-Trillos A, Pinyol M, Navarro A, Aymerich M, Jares P, Juan M, et al. Mutations in TLR/MYD88 pathway identify a subset of young chronic lymphocytic leukemia patients with favorable outcome. Blood. 2014;123:3790–6. PubMed

Gachard N, Parrens M, Soubeyran I, Petit B, Marfak A, Rizzo D, et al. IGHV gene features and MYD88 L265P mutation separate the three marginal zone lymphoma entities and Waldenström macroglobulinemia/lymphoplasmacytic lymphomas. Leukemia. 2013;27:183–9. PubMed

Hunter ZR, Xu L, Yang G, Zhou Y, Liu X, Cao Y, et al. The genomic landscape of Waldenström macroglobulinemia is characterized by highly recurring MYD88 and WHIM-like CXCR4 mutations, and small somatic deletions associated with B-cell lymphomagenesis. Blood. 2014;123:1637–46. PubMed

Jiménez C, Prieto-Conde MI, García-Álvarez M, Alcoceba M, Escalante F, Chillón MDC, et al. Unraveling the heterogeneity of IgM monoclonal gammopathies: a gene mutational and gene expression study. Ann Hematol. 2018;97:475–84. PubMed

Roccaro AM, Sacco A, Jimenez C, Maiso P, Moschetta M, Mishima Y, et al. C1013G/CXCR4 acts as a driver mutation of tumor progression and modulator of drug resistance in lymphoplasmacytic lymphoma. Blood. 2014;123:4120–31. PubMed

Cao Y, Hunter ZR, Liu X, Xu L, Yang G, Chen J, et al. The WHIM-like CXCR4 S338X somatic mutation activates AKT and ERK, and promotes resistance to ibrutinib and other agents used in the treatment of Waldenstrom’s macroglobulinemia. Leukemia. 2015;29:169–76. PubMed

Castillo JJ, Sarosiek SR, Gustine JN, Flynn CA, Leventoff CR, White TP, et al. Response and survival predictors in a cohort of 319 patients with Waldenström macroglobulinemia treated with ibrutinib monotherapy. Blood Adv. 2022;6:1015–24. PubMed PMC

Treon SP, Gustine J, Xu L, Manning RJ, Tsakmaklis N, Demos M, et al. MYD88 wild-type Waldenstrom macroglobulinaemia: differential diagnosis, risk of histological transformation, and overall survival. Br J Haematol. 2018;180:374–80. PubMed

Braggio E, Keats JJ, Leleu X, Van Wier S, Jimenez-Zepeda VH, Valdez R, et al. Identification of copy number abnormalities and inactivating mutations in two negative regulators of nuclear factor-kB signaling pathways in Waldenström’s macroglobulinemia. Cancer Res. 2009;69:3579–88. PubMed PMC

Schop RFJ, Kuehl WM, Van Wier SA, Ahmann GJ, Price-Troska T, Bailey RJ, et al. Waldenström macroglobulinemia neoplastic cells lack immunoglobulin heavy chain locus translocations but have frequent 6q deletions. Blood. 2002;100:2996–3001. PubMed

García-Sanz R, Dogliotti I, Zaccaria GM, Ocio EM, Rubio A, Murillo I, et al. 6q deletion in Waldenström macroglobulinaemia negatively affects time to transformation and survival. Br J Haematol. 2021;192:843–52. PubMed

Krzisch D, Guedes N, Boccon-Gibod C, Baron M, Bravetti C, Davi F, et al. Cytogenetic and molecular abnormalities in Waldenström’s macroglobulinemia patients: correlations and prognostic impact. Am J Hematol. 2021;96:1569–79. PubMed

Gustine JN, Tsakmaklis N, Demos MG, Kofides A, Chen JG, Liu X, et al. TP53 mutations are associated with mutated MYD88 and CXCR4, and confer an adverse outcome in Waldenström macroglobulinaemia. Br J Haematol. 2019;184:242–5. PubMed

Poulain S, Roumier C, Bertrand E, Renneville A, Caillault-Venet A, Doye E, et al. TP53 mutation and its prognostic significance in Waldenstrom’s macroglobulinemia. Clin Cancer Res. 2017;23:6325–36. PubMed

Varettoni M, Zibellini S, Defrancesco I, Ferretti VV, Rizzo E, Malcovati L, et al. Pattern of somatic mutations in patients with Waldenström macroglobulinemia or IgM monoclonal gammopathy of undetermined significance. Haematologica. 2017;102:2077–85. PubMed PMC

Kyle RA, Larson DR, Therneau TM, Dispenzieri A, Kumar S, Cerhan JR, et al. Long-term follow-up of monoclonal gammopathy of undetermined significance. N Engl J Med. 2018;378:241–9. PubMed PMC

Khwaja J, D’Sa S, Minnema MC, Kersten MJ, Wechalekar A, Vos JM. IgM monoclonal gammopathies of clinical significance: diagnosis and management. Haematologica. 2022;107:2037–50. PubMed PMC

Puig N, Ocio EM, Jiménez C, Paiva B, Miguel JFS, García-Sanz R. Waldenström’s macroglobulinemia immunophenotype. In: Leblond V, Treon S, Dimoploulos M, editors. Waldenström’s Macroglobulinemia. Springer, Cham; 2017. p. 21–34.

Varettoni M, Arcaini L, Rattotti S, Ferretti V, Cazzola M. Bone marrow assessment in asymptomatic immunoglobulin M monoclonal gammopathies. Br J Haematol. 2015;168:301–2. PubMed

Maqbool MG, Tam CS, Morison IM, Simpson D, Mollee P, Schneider H, et al. A practical guide to laboratory investigations at diagnosis and follow up in Waldenström macroglobulinaemia: recommendations from the Medical and Scientific Advisory Group, Myeloma Australia, the Pathology Sub-committee of the Lymphoma and Related Disease. Pathology. 2020;52:167–78. PubMed

Kalina T, Flores-Montero J, Van Der Velden VHJ, Martin-Ayuso M, Böttcher S, Ritgen M, et al. EuroFlow standardization of flow cytometer instrument settings and immunophenotyping protocols. Leukemia. 2012;26:1986–2010. PubMed PMC

Amaador K, Vos JMI, Pals ST, Kraan W, Dobber JA, Minnema MC, et al. Discriminating between Waldenström macroglobulinemia and marginal zone lymphoma using logistic LASSO regression. Leuk Lymphoma. 2022;63:1070–9. PubMed

Schmidt J, Federmann B, Schindler N, Steinhilber J, Bonzheim I, Fend F, et al. MYD88 L265P and CXCR4 mutations in lymphoplasmacytic lymphoma identify cases with high disease activity. Br J Haematol. 2015;169:795–803. PubMed

Zanwar S, Abeykoon JP, Ansell SM, Gertz MA, Dispenzieri A, Muchtar E, et al. Primary systemic amyloidosis in patients with Waldenström macroglobulinemia. Leukemia. 2019;33:790–4. PubMed

Xu L, Hunter ZR, Yang G, Cao Y, Liu X, Manning R, et al. Detection of MYD88 L265P in peripheral blood of patients with Waldenström’s macroglobulinemia and IgM monoclonal gammopathy of undetermined significance. Leukemia. 2014;28:1698–704. PubMed

Minnema MC, Kimby E, D’Sa S, Fornecker LM, Poulain S, Snijders TJ, et al. Guideline for the diagnosis, treatment and response criteria for Bing-Neel syndrome. Haematologica. 2017;102:43–51. PubMed PMC

Poulain S, Boyle EM, Roumier C, Demarquette H, Wemeau M, Geffroy S, et al. MYD88 L265P mutation contributes to the diagnosis of Bing Neel syndrome. Br J Haematol. 2014;167:506–13. PubMed

Muñiz C, Martín-Martín L, López A, Sánchez-González B, Salar A, Almeida J, et al. Contribution of cerebrospinal fluid sCD19 levels to the detection of CNS lymphoma and its impact on disease outcome. Blood. 2014;123:1864–9. PubMed

Drandi D, Genuardi E, Dogliotti I, Ferrante M, Jiménez C, Guerrini F, et al. Highly sensitive MYD88L265P mutation detection by droplet digital polymerase chain reaction in Waldenström macroglobulinemia. Haematologica. 2018;103:1029–37. PubMed PMC

Hiemcke-Jiwa LS, Minnema MC, Radersma-van Loon JH, Jiwa NM, de Boer M, Leguit RJ, et al. The use of droplet digital PCR in liquid biopsies: a highly sensitive technique for MYD88 p.(L265P) detection in cerebrospinal fluid. Hematol Oncol. 2018;36:429–35. PubMed

Paiva B, Corchete LA, Vidriales M-B, Garcia-Sanz R, Perez JJ, Aires-Mejia I, et al. The cellular origin and malignant transformation of Waldenstrom macroglobulinemia. Blood. 2015;125:2370–80. PubMed

Loken MR, Chu SC, Fritschle W, Kalnoski M, Wells DA. Normalization of bone marrow aspirates for hemodilution in flow cytometric analyses. Cytom Part B Clin Cytom. 2009;76:27–36. PubMed

D’Angelo G, Hotz AM, Monti M. Lymphoplasmacytic non-Hodgkin lymphoma/Waldenström’s macroglobulinemia with CD5+, CD23+, and CD10- Blood Res. 2013;48:300–3. PubMed PMC

El-Ayoubi A, Wang JQ, Hein N, Talaulikar D. Role of plasma cells in Waldenström macroglobulinaemia. Pathology. 2017;49:337–45. PubMed

Wang CZ, Lin J, Qian J, Shao R, Xue D, Qian W, et al. Development of high-resolution melting analysis for the detection of the MYD88 L265P mutation. Clin Biochem. 2013;46:385–7. PubMed

Jiménez C, Chillón MC, Balanzategui A, Puig N, Sebastián E, Alcoceba M, et al. Detection of MYD88 L265P mutation by real-time allele-specific oligonucleotide polymerase chain reaction. Appl Immunohistochem Mol Morphol. 2014;22:768–73. PubMed

Poulain S, Roumier C, Galiègue-Zouitina S, Daudignon A, Herbaux C, Aiijou R, et al. Genome wide SNP array identified multiple mechanisms of genetic changes in Waldenstrom macroglobulinemia. Am J Hematol. 2013;88:948–54. PubMed

Bagratuni T, Ntanasis-Stathopoulos I, Gavriatopoulou M, Mavrianou-Koutsoukou N, Liacos C, Patseas D, et al. Detection of MYD88 and CXCR4 mutations in cell-free DNA of patients with IgM monoclonal gammopathies. Leukemia. 2018;32:2617–25. PubMed PMC

Willenbacher E, Willenbacher W, Wolf DG, Zelger B, Peschel I, Manzl C, et al. Digital PCR in bone marrow trephine biopsies is highly sensitive for MYD88 L265P detection in lymphomas with plasmacytic/plasmacytoid differentiation. Br J Haematol. 2019;186:189–91. PubMed

Treon SP, Xu L, Hunter Z. MYD88 mutations and response to ibrutinib in Waldenström’s macroglobulinemia. N Engl J Med. 2015;373:584–6. PubMed

Malecka A, Trøen G, Tierens A, Østlie I, Malecki J, Randen U, et al. Immunoglobulin heavy and light chain gene features are correlated with primary cold agglutinin disease onset and activity. Haematologica. 2016;101:e361–4. PubMed PMC

Poulain S, Roumier C, Venet-Caillault A, Figeac M, Herbaux C, Marot G, et al. Genomic landscape of CXCR4 mutations in Waldenström macroglobulinemia. Clin Cancer Res. 2016;22:1480–8. PubMed

Dogliotti I, Drandi D, Genuardi E, Ferrero S. New molecular technologies for minimal residual disease evaluation in B-cell lymphoid malignancies. J Clin Med. 2018;7:288. PubMed PMC

Ferrante M, Furlan D, Zibellini S, Borriero M, Candido C, Sahnane N, et al. MYD88 L265P detection in IgM monoclonal gammopathies: methodological considerations for routine implementation. Diagnostics. 2021;11:779. PubMed PMC

Bagratuni T, Markou A, Patseas D, Mavrianou-Koutsoukou N, Aktypi F, Liacos CI, et al. Determination of MYD88L265P mutation fraction in IgM monoclonal gammopathies. Blood Adv. 2022;6:189–99. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...