Flavonoids Targeting HIF-1: Implications on Cancer Metabolism
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
VEGA 1/0136/19
Scientific Grant Agency of the Ministry of Education of the Slovak Republic
NPRP 11S-1214-170101
National Priorities Research Program grant (awarded to Professor Dr. Dietrich Büsselberg, June 2019-Current) from the Qatar National Research Fund
PubMed
33401572
PubMed Central
PMC7794792
DOI
10.3390/cancers13010130
PII: cancers13010130
Knihovny.cz E-zdroje
- Klíčová slova
- HIF-1, Warburg effect, cancer, flavonoids,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Tumor hypoxia is described as an oxygen deprivation in malignant tissue. The hypoxic condition is a consequence of an imbalance between rapidly proliferating cells and a vascularization that leads to lower oxygen levels in tumors. Hypoxia-inducible factor 1 (HIF-1) is an essential transcription factor contributing to the regulation of hypoxia-associated genes. Some of these genes modulate molecular cascades associated with the Warburg effect and its accompanying pathways and, therefore, represent promising targets for cancer treatment. Current progress in the development of therapeutic approaches brings several promising inhibitors of HIF-1. Flavonoids, widely occurring in various plants, exert a broad spectrum of beneficial effects on human health, and are potentially powerful therapeutic tools against cancer. Recent evidences identified numerous natural flavonoids and their derivatives as inhibitors of HIF-1, associated with the regulation of critical glycolytic components in cancer cells, including pyruvate kinase M2(PKM2), lactate dehydrogenase (LDHA), glucose transporters (GLUTs), hexokinase II (HKII), phosphofructokinase-1 (PFK-1), and pyruvate dehydrogenase kinase (PDK). Here, we discuss the results of most recent studies evaluating the impact of flavonoids on HIF-1 accompanied by the regulation of critical enzymes contributing to the Warburg phenotype. Besides, flavonoid effects on glucose metabolism via regulation of HIF-1 activity represent a promising avenue in cancer-related research. At the same time, only more-in depth investigations can further elucidate the mechanistic and clinical connections between HIF-1 and cancer metabolism.
Department of Pathology St Elizabeth Cancer Institute Hospital 81250 Bratislava Slovakia
Sabanci University Nanotechnology Research and Application Center Tuzla 34956 Istanbul Turkey
Zobrazit více v PubMed
Biemar F., Foti M. Global Progress against Cancer—Challenges and Opportunities. Cancer Biol. Med. 2013;10:183–186. doi: 10.7497/j.issn.2095-3941.2013.04.001. PubMed DOI PMC
Bray F., Ferlay J., Soerjomataram I., Siegel R.L., Torre L.A., Jemal A. Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2018;68:394–424. doi: 10.3322/caac.21492. PubMed DOI
Gupta S.C., Kim J.H., Prasad S., Aggarwal B.B. Regulation of Survival, Proliferation, Invasion, Angiogenesis, and Metastasis of Tumor Cells Through Modulation of Inflammatory Pathways by Nutraceuticals. Cancer Metastasis Rev. 2010;29:405–434. doi: 10.1007/s10555-010-9235-2. PubMed DOI PMC
Deng X., Peng Y., Zhao J., Lei X., Zheng X., Xie Z., Tang G. Anticancer Activity of Natural Flavonoids: Inhibition of HIF-1α Signaling Pathway. Curr. Org. Chem. 2020;23:2945–2959. doi: 10.2174/1385272823666191203122030. DOI
Masoud G.N., Li W. HIF-1α Pathway: Role, Regulation and Intervention for Cancer Therapy. Acta Pharm. Sin. B. 2015;5:378–389. doi: 10.1016/j.apsb.2015.05.007. PubMed DOI PMC
Jögi A., Ehinger A., Hartman L., Alkner S. Expression of HIF-1α Is Related to a Poor Prognosis and Tamoxifen Resistance in Contralateral Breast Cancer. PLoS ONE. 2019;14:e0226150. doi: 10.1371/journal.pone.0226150. PubMed DOI PMC
Pezzuto A., Carico E. Role of HIF-1 in Cancer Progression: Novel Insights. [(accessed on 4 November 2020)]; Available online: https://www.eurekaselect.com/167204/article.
Nagao A., Kobayashi M., Koyasu S., Chow C.C.T., Harada H. HIF-1-Dependent Reprogramming of Glucose Metabolic Pathway of Cancer Cells and Its Therapeutic Significance. Int. J. Mol. Sci. 2019;20:238. doi: 10.3390/ijms20020238. PubMed DOI PMC
Al Tameemi W., Dale T.P., Al-Jumaily R.M.K., Forsyth N.R. Hypoxia-Modified Cancer Cell Metabolism. Front. Cell Dev. Biol. 2019;7 doi: 10.3389/fcell.2019.00004. PubMed DOI PMC
Kozłowska A., Szostak-Wegierek D. Flavonoids—Food Sources and Health Benefits. Rocz. Państwowego Zakładu Hig. 2014;65:79–85. PubMed
Samec M., Liskova A., Koklesova L., Samuel S.M., Zhai K., Buhrmann C., Varghese E., Abotaleb M., Qaradakhi T., Zulli A., et al. Flavonoids against the Warburg Phenotype—Concepts of Predictive, Preventive and Personalised Medicine to Cut the Gordian Knot of Cancer Cell Metabolism. EPMA J. 2020;11:377–398. doi: 10.1007/s13167-020-00217-y. PubMed DOI PMC
Liskova A., Koklesova L., Samec M., Smejkal K., Samuel S.M., Varghese E., Abotaleb M., Biringer K., Kudela E., Danko J., et al. Flavonoids in Cancer Metastasis. Cancers. 2020;12:1498. doi: 10.3390/cancers12061498. PubMed DOI PMC
Liskova A., Koklesova L., Samec M., Varghese E., Abotaleb M., Samuel S.M., Smejkal K., Biringer K., Petras M., Blahutova D., et al. Implications of Flavonoids as Potential Modulators of Cancer Neovascularity. J. Cancer Res. Clin. Oncol. 2020 doi: 10.1007/s00432-020-03383-8. PubMed DOI
Carnero A., Lleonart M. The Hypoxic Microenvironment: A Determinant of Cancer Stem Cell Evolution. Cell. 2016;1:96–105. doi: 10.1002/bies.201670911. PubMed DOI
Finger E.C., Giaccia A.J. Hypoxia, Inflammation, and the Tumor Microenvironment in Metastatic Disease. Cancer Metastasis Rev. 2010;29:285–293. doi: 10.1007/s10555-010-9224-5. PubMed DOI PMC
Lequeux A., Noman M.Z., Xiao M., Sauvage D., Van Moer K., Viry E., Bocci I., Hasmim M., Bosseler M., Berchem G., et al. Impact of Hypoxic Tumor Microenvironment and Tumor Cell Plasticity on the Expression of Immune Checkpoints. Cancer Lett. 2019;458:13–20. doi: 10.1016/j.canlet.2019.05.021. PubMed DOI
Rankin E.B., Nam J.-M., Giaccia A.J. Hypoxia: Signaling the Metastatic Cascade. Trends Cancer. 2016;2:295–304. doi: 10.1016/j.trecan.2016.05.006. PubMed DOI PMC
Balamurugan K. HIF-1 at the Crossroads of Hypoxia, Inflammation, and Cancer. Int. J. Cancer. 2016;138:1058–1066. doi: 10.1002/ijc.29519. PubMed DOI PMC
Burslem G.M., Kyle H.F., Nelson A., Edwards T.A., Wilson A.J. Hypoxia Inducible Factor (HIF) as a Model for Studying Inhibition of Protein-Protein Interactions. Chem. Sci. 2017;8:4188–4202. doi: 10.1039/C7SC00388A. PubMed DOI PMC
Courtnay R., Ngo D.C., Malik N., Ververis K., Tortorella S.M., Karagiannis T.C. Cancer Metabolism and the Warburg Effect: The Role of HIF-1 and PI3K. Mol. Biol. Rep. 2015;42:841–851. doi: 10.1007/s11033-015-3858-x. PubMed DOI
Feng Z., Zou X., Chen Y., Wang H., Duan Y., Bruick R.K. Modulation of HIF-2α PAS-B Domain Contributes to Physiological Responses. Proc. Natl. Acad. Sci. USA. 2018;115:13240–13245. doi: 10.1073/pnas.1810897115. PubMed DOI PMC
Ziello J.E., Jovin I.S., Huang Y. Hypoxia-Inducible Factor (HIF)-1 Regulatory Pathway and Its Potential for Therapeutic Intervention in Malignancy and Ischemia. Yale J. Biol. Med. 2007;80:51–60. PubMed PMC
Zhao L., Liu Z., Yang F., Zhang Y., Xue Y., Miao H., Liao X., Huang H., Li G. Intrabody against Prolyl Hydroxylase 2 Promotes Angiogenesis by Stabilizing Hypoxia-Inducible Factor-1α. Sci. Rep. 2019;9:11861. doi: 10.1038/s41598-019-47891-1. PubMed DOI PMC
Guo Y., Xiao Z., Yang L., Gao Y., Zhu Q., Hu L., Huang D., Xu Q. Hypoxia-Inducible Factors in Hepatocellular Carcinoma (Review) Oncol. Rep. 2020;43:3–15. doi: 10.3892/or.2019.7397. PubMed DOI PMC
Wu L.-Y., He Y.-L., Zhu L.-L. Possible Role of PHD Inhibitors as Hypoxia-Mimicking Agents in the Maintenance of Neural Stem Cells’ Self-Renewal Properties. Front. Cell Dev. Biol. 2018;6 doi: 10.3389/fcell.2018.00169. PubMed DOI PMC
Snell C.E., Turley H., McIntyre A., Li D., Masiero M., Schofield C.J., Gatter K.C., Harris A.L., Pezzella F. Proline-Hydroxylated Hypoxia-Inducible Factor 1α (HIF-1α) Upregulation in Human Tumours. PLoS ONE. 2014;9 doi: 10.1371/journal.pone.0088955. PubMed DOI PMC
Wang E., Zhang C., Polavaram N., Liu F., Wu G., Schroeder M.A., Lau J.S., Mukhopadhyay D., Jiang S.-W., O’Neill B.P., et al. The Role of Factor Inhibiting HIF (FIH-1) in Inhibiting HIF-1 Transcriptional Activity in Glioblastoma Multiforme. PLoS ONE. 2014;9 doi: 10.1371/journal.pone.0086102. PubMed DOI PMC
Nakayama K., Kataoka N. Regulation of Gene Expression under Hypoxic Conditions. Int. J. Mol. Sci. 2019;20:3278. doi: 10.3390/ijms20133278. PubMed DOI PMC
Iommarini L., Porcelli A.M., Gasparre G., Kurelac I. Non-Canonical Mechanisms Regulating Hypoxia-Inducible Factor 1 Alpha in Cancer. Front. Oncol. 2017;7 doi: 10.3389/fonc.2017.00286. PubMed DOI PMC
Liu Y.V., Hubbi M.E., Pan F., McDonald K.R., Mansharamani M., Cole R.N., Liu J.O., Semenza G.L. Calcineurin Promotes Hypoxia-Inducible Factor 1α Expression by Dephosphorylating RACK1 and Blocking RACK1 Dimerization. J. Biol. Chem. 2007;282:37064–37073. doi: 10.1074/jbc.M705015200. PubMed DOI PMC
Singh D., Arora R., Kaur P., Singh B., Mannan R., Arora S. Overexpression of Hypoxia-Inducible Factor and Metabolic Pathways: Possible Targets of Cancer. Cell Biosci. 2017;7 doi: 10.1186/s13578-017-0190-2. PubMed DOI PMC
Lu H., Tran L., Park Y., Chen I., Lan J., Xie Y., Semenza G.L. Reciprocal Regulation of DUSP9 and DUSP16 Expression by HIF1 Controls ERK and P38 MAP Kinase Activity and Mediates Chemotherapy-Induced Breast Cancer Stem Cell Enrichment. Cancer Res. 2018;78:4191–4202. doi: 10.1158/0008-5472.CAN-18-0270. PubMed DOI
Zhang Z., Yao L., Yang J., Wang Z., Du G. PI3K/Akt and HIF-1 Signaling Pathway in Hypoxia-Ischemia. Mol. Med. Rep. 2018;18:3547–3554. doi: 10.3892/mmr.2018.9375. PubMed DOI PMC
Robertson E.D., Semenchenko K., Wasylyk B. Crosstalk between Mdm2, P53 and HIF1-α: Distinct Responses to Oxygen Stress and Implications for Tumour Hypoxia. Subcell. Biochem. 2014;85:199–214. doi: 10.1007/978-94-017-9211-0_11. PubMed DOI
Kataria N., Kerr B., Zaiter S.S., McAlpine S., Cook K.M. C-Terminal HSP90 Inhibitors Block the HSP90:HIF-1α Interaction and Inhibit the Cellular Hypoxic Response. bioRxiv. 2019:521989. doi: 10.1101/521989. PubMed DOI
Luo W., Wang Y. Epigenetic Regulators: Multifunctional Proteins Modulating Hypoxia-Inducible Factor-α Protein Stability and Activity. Cell. Mol. Life Sci. 2018;75:1043–1056. doi: 10.1007/s00018-017-2684-9. PubMed DOI PMC
Batie M., Frost J., Frost M., Wilson J.W., Schofield P., Rocha S. Hypoxia Induces Rapid Changes to Histone Methylation and Reprograms Chromatin. Science. 2019;363:1222–1226. doi: 10.1126/science.aau5870. PubMed DOI
Kim Y., Nam H.J., Lee J., Park D.Y., Kim C., Yu Y.S., Kim D., Park S.W., Bhin J., Hwang D., et al. Methylation-Dependent Regulation of HIF-1α Stability Restricts Retinal and Tumour Angiogenesis. Nat. Commun. 2016;7:10347. doi: 10.1038/ncomms10347. PubMed DOI PMC
Choudhry H., Harris A.L. Advances in Hypoxia-Inducible Factor Biology. Cell Metab. 2018;27:281–298. doi: 10.1016/j.cmet.2017.10.005. PubMed DOI
Dengler V.L., Galbraith M., Espinosa J.M. Transcriptional Regulation by Hypoxia Inducible Factors. Crit. Rev. Biochem. Mol. Biol. 2014;49:1–15. doi: 10.3109/10409238.2013.838205. PubMed DOI PMC
Lafleur V.N., Richard S., Richard D.E. Transcriptional Repression of Hypoxia-Inducible Factor-1 (HIF-1) by the Protein Arginine Methyltransferase PRMT1. Mol. Biol. Cell. 2014;25:925–935. doi: 10.1091/mbc.e13-07-0423. PubMed DOI PMC
Qin Y., Hu Q., Xu J., Ji S., Dai W., Liu W., Xu W., Sun Q., Zhang Z., Ni Q., et al. PRMT5 Enhances Tumorigenicity and Glycolysis in Pancreatic Cancer via the FBW7/CMyc Axis. Cell Commun. Signal. 2019;17:30. doi: 10.1186/s12964-019-0344-4. PubMed DOI PMC
Schoepflin Z.R., Shapiro I.M., Risbud M.V. Class I and IIa HDACs Mediate HIF-1α Stability Through PHD2-Dependent Mechanism While HDAC6, a Class IIb Member, Promotes HIF-1α Transcriptional Activity in Nucleus Pulposus Cells of the Intervertebral Disc. J. Bone Miner. Res. 2016;31:1287–1299. doi: 10.1002/jbmr.2787. PubMed DOI PMC
Ramakrishnan S., Ku S., Ciamporcero E., Miles K.M., Attwood K., Chintala S., Shen L., Ellis L., Sotomayor P., Swetzig W., et al. HDAC 1 and 6 Modulate Cell Invasion and Migration in Clear Cell Renal Cell Carcinoma. BMC Cancer. 2016;16:617. doi: 10.1186/s12885-016-2604-7. PubMed DOI PMC
Geng H., Harvey C.T., Pittsenbarger J., Liu Q., Beer T.M., Xue C., Qian D.Z. HDAC4 Protein Regulates HIF1α Protein Lysine Acetylation and Cancer Cell Response to Hypoxia. J. Biol. Chem. 2011;286:38095–38102. doi: 10.1074/jbc.M111.257055. PubMed DOI PMC
Chen S., Sang N. Histone Deacetylase Inhibitors: The Epigenetic Therapeutics That Repress Hypoxia-Inducible Factors. [(accessed on 11 October 2020)]; Available online: https://www.hindawi.com/journals/bmri/2011/197946/ PubMed PMC
Robinson C.M., Lefebvre F., Poon B.P., Bousard A., Fan X., Lathrop M., Tost J., Kim W.Y., Riazalhosseini Y., Ohh M. Consequences of VHL Loss on Global DNA Methylome. Sci. Rep. 2018;8 doi: 10.1038/s41598-018-21524-5. PubMed DOI PMC
Schmitt A.M., Schmid S., Rudolph T., Anlauf M., Prinz C., Klöppel G., Moch H., Heitz P.U., Komminoth P., Perren A. VHL Inactivation Is an Important Pathway for the Development of Malignant Sporadic Pancreatic Endocrine Tumors. Endocr. Relat. Cancer. 2009;16:1219–1227. doi: 10.1677/ERC-08-0297. PubMed DOI
Holubekova V., Mendelova A., Jasek K., Mersakova S., Zubor P., Lasabova Z. Epigenetic Regulation by DNA Methylation and MiRNA Molecules in Cancer. Future Oncol. 2017;13:2217–2222. doi: 10.2217/fon-2017-0363. PubMed DOI
Zhou Y., Yang C., Wang K., Liu X., Liu Q. MicroRNA-33b Inhibits the Proliferation and Migration of Osteosarcoma Cells via Targeting Hypoxia-Inducible Factor-1α. Oncol. Res. 2017;25:397–405. doi: 10.3727/096504016X14743337535446. PubMed DOI PMC
Xu H., Zhao L., Fang Q., Sun J., Zhang S., Zhan C., Liu S., Zhang Y. MiR-338-3p Inhibits Hepatocarcinoma Cells and Sensitizes These Cells to Sorafenib by Targeting Hypoxia-Induced Factor 1α. PLoS ONE. 2014;9:e115565. doi: 10.1371/journal.pone.0115565. PubMed DOI PMC
Yeh Y.-M., Chuang C.-M., Chao K.-C., Wang L.-H. MicroRNA-138 Suppresses Ovarian Cancer Cell Invasion and Metastasis by Targeting SOX4 and HIF-1α. Int. J. Cancer. 2013;133:867–878. doi: 10.1002/ijc.28086. PubMed DOI
Hu Q., Liu F., Yan T., Wu M., Ye M., Shi G., Lv S., Zhu X. MicroRNA-576-3p Inhibits the Migration and Proangiogenic Abilities of Hypoxia-treated Glioma Cells Through Hypoxia-Inducible Factor-1α. Int. J. Mol. Med. 2019;43:2387–2397. doi: 10.3892/ijmm.2019.4157. PubMed DOI PMC
He M., Zhan M., Chen W., Xu S., Long M., Shen H., Shi Y., Liu Q., Mohan M., Wang J. MiR-143-5p Deficiency Triggers EMT and Metastasis by Targeting HIF-1α in Gallbladder Cancer. Cell. Physiol. Biochem. 2017;42:2078–2092. doi: 10.1159/000479903. PubMed DOI
Xue T.-M., Tao L., Zhang M., Zhang J., Liu X., Chen G.-F., Zhu Y.-J., Zhang P.-J. Clinicopathological Significance of MicroRNA-20b Expression in Hepatocellular Carcinoma and Regulation of HIF-1α and VEGF Effect on Cell Biological Behaviour. Dis. Markers. 2015;2015:325176. doi: 10.1155/2015/325176. PubMed DOI PMC
Cai Q., Wang Z., Wang S., Weng M., Zhou D., Li C., Wang J., Chen E., Quan Z. Long Non-Coding RNA LINC00152 Promotes Gallbladder Cancer Metastasis and Epithelial-Mesenchymal Transition by Regulating HIF-1α via MiR-138. Open Biol. 2017;7 doi: 10.1098/rsob.160247. PubMed DOI PMC
Hong Q., Li O., Zheng W., Xiao W.-Z., Zhang L., Wu D., Cai G.-Y., He J.C., Chen X.-M. LncRNA HOTAIR Regulates HIF-1α/AXL Signaling Through Inhibition of MiR-217 in Renal Cell Carcinoma. Cell Death Dis. 2017;8:e2772. doi: 10.1038/cddis.2017.181. PubMed DOI PMC
Tan H., Zhao L. LncRNA Nuclear-Enriched Abundant Transcript 1 Promotes Cell Proliferation and Invasion by Targeting MiR-186-5p/HIF-1α in Osteosarcoma. J. Cell. Biochem. 2019;120:6502–6514. doi: 10.1002/jcb.27941. PubMed DOI
Huang T., Liu H.W., Chen J.Q., Wang S.H., Hao L.Q., Liu M., Wang B. The Long Noncoding RNA PVT1 Functions as a Competing Endogenous RNA by Sponging MiR-186 in Gastric Cancer. Biomed. Pharmacother. 2017;88:302–308. doi: 10.1016/j.biopha.2017.01.049. PubMed DOI
Abdel-Haleem A.M., Lewis N.E., Jamshidi N., Mineta K., Gao X., Gojobori T. The Emerging Facets of Non-Cancerous Warburg Effect. Front. Endocrinol. 2017;8 doi: 10.3389/fendo.2017.00279. PubMed DOI PMC
Vaupel P., Schmidberger H., Mayer A. The Warburg Effect: Essential Part of Metabolic Reprogramming and Central Contributor to Cancer Progression. Int. J. Radiat. Biol. 2019;95:912–919. doi: 10.1080/09553002.2019.1589653. PubMed DOI
Liberti M.V., Locasale J.W. The Warburg Effect: How Does It Benefit Cancer Cells? Trends Biochem. Sci. 2016;41:211–218. doi: 10.1016/j.tibs.2015.12.001. PubMed DOI PMC
Diaz-Ruiz R., Rigoulet M., Devin A. The Warburg and Crabtree Effects: On the Origin of Cancer Cell Energy Metabolism and of Yeast Glucose Repression. Biochim. Biophys. Acta BBA Bioenerg. 2011;1807:568–576. doi: 10.1016/j.bbabio.2010.08.010. PubMed DOI
Goetzman E.S., Prochownik E.V. The Role for Myc in Coordinating Glycolysis, Oxidative Phosphorylation, Glutaminolysis, and Fatty Acid Metabolism in Normal and Neoplastic Tissues. Front. Endocrinol. 2018;9 doi: 10.3389/fendo.2018.00129. PubMed DOI PMC
Hoxhaj G., Manning B.D. The PI3K–AKT Network at the Interface of Oncogenic Signalling and Cancer Metabolism. Nat. Rev. Cancer. 2020;20:74–88. doi: 10.1038/s41568-019-0216-7. PubMed DOI PMC
Miranda-Gonçalves V., Lameirinhas A., Henrique R., Jerónimo C. Metabolism and Epigenetic Interplay in Cancer: Regulation and Putative Therapeutic Targets. Front. Genet. 2018;9 doi: 10.3389/fgene.2018.00427. PubMed DOI PMC
Wilkie M.D., Anaam E.A., Lau A.S., Rubbi C.P., Jones T.M., Boyd M.T., Vlatković N. TP53 Mutations in Head and Neck Cancer Cells Determine the Warburg Phenotypic Switch Creating Metabolic Vulnerabilities and Therapeutic Opportunities for Stratified Therapies. Cancer Lett. 2020;478:107–121. doi: 10.1016/j.canlet.2020.02.032. PubMed DOI PMC
Varghese E., Samuel S.M., Líšková A., Samec M., Kubatka P., Büsselberg D. Targeting Glucose Metabolism to Overcome Resistance to Anticancer Chemotherapy in Breast Cancer. Cancers. 2020;12:2252. doi: 10.3390/cancers12082252. PubMed DOI PMC
Dabral S., Muecke C., Valasarajan C., Schmoranzer M., Wietelmann A., Semenza G.L., Meister M., Muley T., Seeger-Nukpezah T., Samakovlis C., et al. A RASSF1A-HIF1α Loop Drives Warburg Effect in Cancer and Pulmonary Hypertension. Nat. Commun. 2019;10:2130. doi: 10.1038/s41467-019-10044-z. PubMed DOI PMC
Sadlecki P., Bodnar M., Grabiec M., Marszalek A., Walentowicz P., Sokup A., Zegarska J., Walentowicz-Sadlecka M. The Role of Hypoxia-Inducible Factor-1α, Glucose Transporter-1, (GLUT-1) and Carbon Anhydrase IX in Endometrial Cancer Patients. [(accessed on 13 October 2020)]; Available online: https://www.hindawi.com/journals/bmri/2014/616850/ PubMed PMC
Liu Y., Li Y., Tian R., Liu W., Fei Z., Long Q., Wang X., Zhang X. The Expression and Significance of HIF-1α and GLUT-3 in Glioma. Brain Res. 2009;1304:149–154. doi: 10.1016/j.brainres.2009.09.083. PubMed DOI
Fujino M., Aishima S., Shindo K., Oda Y., Morimatsu K., Tsutsumi K., Otsuka T., Tanaka M., Oda Y. Expression of Glucose Transporter-1 Is Correlated with Hypoxia-Inducible Factor 1 (Alpha) and Malignant Potential in Pancreatic Neuroendocrine Tumors. Oncol. Lett. 2016;12:3337–3344. doi: 10.3892/ol.2016.5092. PubMed DOI PMC
Demaria M., Poli V. PKM2, STAT3 and HIF-1α. JAK STAT. 2012;1:194–196. doi: 10.4161/jkst.20662. PubMed DOI PMC
Dong G., Mao Q., Xia W., Xu Y., Wang J., Xu L., Jiang F. PKM2 and Cancer: The Function of PKM2 beyond Glycolysis (Review) Oncol. Lett. 2016;11:1980–1986. doi: 10.3892/ol.2016.4168. PubMed DOI PMC
Palsson-McDermott E.M., Curtis A.M., Goel G., Lauterbach M.A., Sheedy F.J., Gleeson L.E., van den Bosch M.W., Quinn S.R., Domingo-Fernandez R., Johnson D.G., et al. Pyruvate Kinase M2 Regulates Hif-1α Activity and IL-1β Induction, and Is a Critical Determinant of the Warburg Effect in LPS-Activated Macrophages. Cell Metab. 2015;21:65–80. doi: 10.1016/j.cmet.2014.12.005. PubMed DOI PMC
Tan V.P., Miyamoto S. HK2/Hexokinase-II Integrates Glycolysis and Autophagy to Confer Cellular Protection. Autophagy. 2015;11:963–964. doi: 10.1080/15548627.2015.1042195. PubMed DOI PMC
Nakajima K., Kirito K., Kawashima I., Koshiishi M., Kumagai T., Mitsumori T. Aberrant Activation of NF-ΚB and Hypoxia Enhances Glycolytic Enzyme Hexokinase II Expression in B-Cell Lymphoma Through Activation of HIF-1. Blood. 2017;130:4025. doi: 10.1182/blood.V130.Suppl_1.4025.4025. DOI
Tarrado-Castellarnau M., Diaz-Moralli S., Polat I.H., Sanz-Pamplona R., Alenda C., Moreno V., Castells A., Cascante M. Glyceraldehyde-3-Phosphate Dehydrogenase Is Overexpressed in Colorectal Cancer Onset. Transl. Med. Commun. 2017;2:6. doi: 10.1186/s41231-017-0015-7. DOI
Liu K., Tang Z., Huang A., Chen P., Liu P., Yang J., Lu W., Liao J., Sun Y., Wen S., et al. Glyceraldehyde-3-Phosphate Dehydrogenase Promotes Cancer Growth and Metastasis Through Upregulation of SNAIL Expression. Int. J. Oncol. 2017;50:252–262. doi: 10.3892/ijo.2016.3774. PubMed DOI
Jadhav S., Krynetskaia N., Krynetskiy E. Cellular Response to Anticancer Drugs in Melanoma Cells: Inhibition of Glyceraldehyde 3-Phosphate Dehydrogenase Results in Cell Cycle Arrest and Increased Chemoresistance to Chemotherapeutic Agents. Cancer Res. 2007;67:3238.
Higashimura Y., Nakajima Y., Yamaji R., Harada N., Shibasaki F., Nakano Y., Inui H. Up-Regulation of Glyceraldehyde-3-Phosphate Dehydrogenase Gene Expression by HIF-1 Activity Depending on Sp1 in Hypoxic Breast Cancer Cells. Arch. Biochem. Biophys. 2011;509:1–8. doi: 10.1016/j.abb.2011.02.011. PubMed DOI
Li L., Liang Y., Kang L., Liu Y., Gao S., Chen S., Li Y., You W., Dong Q., Hong T., et al. Transcriptional Regulation of the Warburg Effect in Cancer by SIX1. Cancer Cell. 2018;33:368–385. doi: 10.1016/j.ccell.2018.01.010. PubMed DOI
Yu T., Tang B., Sun X. Development of Inhibitors Targeting Hypoxia-Inducible Factor 1 and 2 for Cancer Therapy. Yonsei Med. J. 2017;58:489–496. doi: 10.3349/ymj.2017.58.3.489. PubMed DOI PMC
Albadari N., Deng S., Li W. The Transcriptional Factors HIF-1 and HIF-2 and Their Novel Inhibitors in Cancer Therapy. Expert Opin. Drug Discov. 2019;14:667–682. doi: 10.1080/17460441.2019.1613370. PubMed DOI PMC
Jeong W., Rapisarda A., Park S.R., Kinders R.J., Chen A., Melillo G., Turkbey B., Steinberg S.M., Choyke P., Doroshow J.H., et al. Pilot Trial of EZN-2968, an Antisense Oligonucleotide Inhibitor of Hypoxia-Inducible Factor-1 Alpha (HIF-1α), in Patients with Refractory Solid Tumors. Cancer Chemother. Pharmacol. 2014;73:343–348. doi: 10.1007/s00280-013-2362-z. PubMed DOI PMC
Wigerup C., Påhlman S., Bexell D. Therapeutic Targeting of Hypoxia and Hypoxia-Inducible Factors in Cancer. Pharmacol. Ther. 2016;164:152–169. doi: 10.1016/j.pharmthera.2016.04.009. PubMed DOI
Beppu K., Nakamura K., Linehan W.M., Rapisarda A., Thiele C.J. Topotecan Blocks Hypoxia-Inducible Factor-1α and Vascular Endothelial Growth Factor Expression Induced by Insulin-like Growth Factor-I in Neuroblastoma Cells. Cancer Res. 2005;65:4775–4781. doi: 10.1158/0008-5472.CAN-04-3332. PubMed DOI
Aquino-Gálvez A., González-Ávila G., Delgado-Tello J., Castillejos-López M., Mendoza-Milla C., Zúñiga J., Checa M., Maldonado-Martínez H.A., Trinidad-López A., Cisneros J., et al. Effects of 2-Methoxyestradiol on Apoptosis and HIF-1α and HIF-2α Expression in Lung Cancer Cells under Normoxia and Hypoxia. Oncol. Rep. 2016;35:577–583. doi: 10.3892/or.2015.4399. PubMed DOI PMC
Narita T., Yin S., Gelin C.F., Moreno C.S., Yepes M., Nicolaou K.C., Van Meir E.G. Identification of a Novel Small Molecule HIF-1α Translation Inhibitor. Clin. Cancer Res. 2009;15:6128–6136. doi: 10.1158/1078-0432.CCR-08-3180. PubMed DOI PMC
Womeldorff M., Gillespie D., Jensen R.L. Hypoxia-Inducible Factor-1 and Associated Upstream and Downstream Proteins in the Pathophysiology and Management of Glioblastoma. Neurosurg. Focus. 2014;37:E8. doi: 10.3171/2014.9.FOCUS14496. PubMed DOI
Papale M., Ferretti E., Battaglia G., Bellavia D., Mai A., Tafani M. EZH2, HIF-1, and Their Inhibitors: An Overview on Pediatric Cancers. Front. Pediatr. 2018;6 doi: 10.3389/fped.2018.00328. PubMed DOI PMC
Fallah J., Rini B.I. HIF Inhibitors: Status of Current Clinical Development. Curr. Oncol. Rep. 2019;21:6. doi: 10.1007/s11912-019-0752-z. PubMed DOI
Ibrahim N.O., Hahn T., Franke C., Stiehl D.P., Wirthner R., Wenger R.H., Katschinski D.M. Induction of the Hypoxia-Inducible Factor System by Low Levels of Heat Shock Protein 90 Inhibitors. Cancer Res. 2005;65:11094–11100. doi: 10.1158/0008-5472.CAN-05-1877. PubMed DOI
Hutt D.M., Roth D.M., Vignaud H., Cullin C., Bouchecareilh M. The Histone Deacetylase Inhibitor, Vorinostat, Represses Hypoxia Inducible Factor 1 Alpha Expression Through Translational Inhibition. PLoS ONE. 2014;9 doi: 10.1371/journal.pone.0106224. PubMed DOI PMC
Miranda E., Nordgren I.K., Male A.L., Lawrence C.E., Hoakwie F., Cuda F., Court W., Fox K.R., Townsend P.A., Packham G.K., et al. A Cyclic Peptide Inhibitor of HIF-1 Heterodimerization That Inhibits Hypoxia Signaling in Cancer Cells. J. Am. Chem. Soc. 2013;135:10418–10425. doi: 10.1021/ja402993u. PubMed DOI PMC
Mangraviti A., Raghavan T., Volpin F., Skuli N., Gullotti D., Zhou J., Asnaghi L., Sankey E., Liu A., Wang Y., et al. HIF-1α- Targeting Acriflavine Provides Long Term Survival and Radiological Tumor Response in Brain Cancer Therapy. Sci. Rep. 2017;7:14978. doi: 10.1038/s41598-017-14990-w. PubMed DOI PMC
Lee K., Qian D.Z., Rey S., Wei H., Liu J.O., Semenza G.L. Anthracycline Chemotherapy Inhibits HIF-1 Transcriptional Activity and Tumor-Induced Mobilization of Circulating Angiogenic Cells. Proc. Natl. Acad. Sci. USA. 2009;106:2353–2358. doi: 10.1073/pnas.0812801106. PubMed DOI PMC
Viziteu E., Grandmougin C., Goldschmidt H., Seckinger A., Hose D., Klein B., Moreaux J. Chetomin, Targeting HIF-1α/P300 Complex, Exhibits Antitumour Activity in Multiple Myeloma. Br. J. Cancer. 2016;114:519–523. doi: 10.1038/bjc.2016.20. PubMed DOI PMC
Panche A.N., Diwan A.D., Chandra S.R. Flavonoids: An Overview. J. Nutr. Sci. 2016;5 doi: 10.1017/jns.2016.41. PubMed DOI PMC
Kumar S., Pandey A.K. Chemistry and Biological Activities of Flavonoids: An Overview. [(accessed on 25 October 2020)]; Available online: https://www.hindawi.com/journals/tswj/2013/162750/ PubMed PMC
Hernández-Rodríguez P., Baquero L.P., Larrota H.R. Chapter 14—Flavonoids: Potential Therapeutic Agents by Their Antioxidant Capacity. In: Campos M.R.S., editor. Bioactive Compounds. Woodhead Publishing; Sawston, UK: 2019. pp. 265–288.
Banjarnahor S.D.S., Artanti N. Antioxidant Properties of Flavonoids. Med. J. Indones. 2014;23:239–244. doi: 10.13181/mji.v23i4.1015. DOI
Maleki S.J., Crespo J.F., Cabanillas B. Anti-Inflammatory Effects of Flavonoids. Food Chem. 2019;299:125124. doi: 10.1016/j.foodchem.2019.125124. PubMed DOI
Farhadi F., Khameneh B., Iranshahi M., Iranshahy M. Antibacterial Activity of Flavonoids and Their Structure-Activity Relationship: An Update Review. Phytother. Res. 2019;33:13–40. doi: 10.1002/ptr.6208. PubMed DOI
Al Aboody M.S., Mickymaray S. Anti-Fungal Efficacy and Mechanisms of Flavonoids. Antibiotics. 2020;9:45. doi: 10.3390/antibiotics9020045. PubMed DOI PMC
Ninfali P., Antonelli A., Magnani M., Scarpa E.S. Antiviral Properties of Flavonoids and Delivery Strategies. Nutrients. 2020;12:2534. doi: 10.3390/nu12092534. PubMed DOI PMC
Rodríguez-García C., Sánchez-Quesada C., Gaforio J.J. Dietary Flavonoids as Cancer Chemopreventive Agents: An Updated Review of Human Studies. Antioxidants. 2019;8:137. doi: 10.3390/antiox8050137. PubMed DOI PMC
Moghaddam G., Ebrahimi S.A., Rahbar-Roshandel N., Foroumadi A. Antiproliferative Activity of Flavonoids: Influence of the Sequential Methoxylation State of the Flavonoid Structure. Phytother. Res. 2012;26:1023–1028. doi: 10.1002/ptr.3678. PubMed DOI
Russo G.L., Ungaro P. Chapter 9—Epigenetic Mechanisms of Quercetin and Other Flavonoids in Cancer Therapy and Prevention. In: Bishayee A., Bhatia D., editors. Epigenetics of Cancer Prevention. Volume 8. Academic Press; Cambridge, MA, USA: 2019. pp. 187–202. Translational Epigenetics.
Zimna A., Kurpisz M. Hypoxia-Inducible Factor-1 in Physiological and Pathophysiological Angiogenesis: Applications and Therapies. BioMed Res. Int. 2015;2015 doi: 10.1155/2015/549412. PubMed DOI PMC
Unwith S., Zhao H., Hennah L., Ma D. The Potential Role of HIF on Tumour Progression and Dissemination. Int. J. Cancer. 2015;136:2491–2503. doi: 10.1002/ijc.28889. PubMed DOI
Hubbi M.E., Semenza G.L. Regulation of Cell Proliferation by Hypoxia-Inducible Factors. Am. J. Physiol. Cell Physiol. 2015;309:C775–C782. doi: 10.1152/ajpcell.00279.2015. PubMed DOI PMC
Kilic M., Kasperczyk H., Fulda S., Debatin K.-M. Role of Hypoxia Inducible Factor-1 Alpha in Modulation of Apoptosis Resistance. Oncogene. 2007;26:2027–2038. doi: 10.1038/sj.onc.1210008. PubMed DOI
Barreca D., Gattuso G., Bellocco E., Calderaro A., Trombetta D., Smeriglio A., Laganà G., Daglia M., Meneghini S., Nabavi S.M. Flavanones: Citrus Phytochemical with Health-Promoting Properties. BioFactors. 2017;43:495–506. doi: 10.1002/biof.1363. PubMed DOI
Jiang N., Doseff A.I., Grotewold E. Flavones: From Biosynthesis to Health Benefits. Plants. 2016;5:27. doi: 10.3390/plants5020027. PubMed DOI PMC
Zhuang C., Zhang W., Sheng C., Zhang W., Xing C., Miao Z. Chalcone: A Privileged Structure in Medicinal Chemistry. Chem. Rev. 2017;117:7762–7810. doi: 10.1021/acs.chemrev.7b00020. PubMed DOI PMC
Kopustinskiene D.M., Jakstas V., Savickas A., Bernatoniene J. Flavonoids as Anticancer Agents. Nutrients. 2020;12:457. doi: 10.3390/nu12020457. PubMed DOI PMC
Salehi B., Machin L., Monzote L., Sharifi-Rad J., Ezzat S.M., Salem M.A., Merghany R.M., El Mahdy N.M., Kılıç C.S., Sytar O., et al. Therapeutic Potential of Quercetin: New Insights and Perspectives for Human Health. ACS Omega. 2020;5:11849–11872. doi: 10.1021/acsomega.0c01818. PubMed DOI PMC
Kim H.-S., Wannatung T., Lee S., Yang W.K., Chung S.H., Lim J.-S., Choe W., Kang I., Kim S.-S., Ha J. Quercetin Enhances Hypoxia-Mediated Apoptosis via Direct Inhibition of AMPK Activity in HCT116 Colon Cancer. Apoptosis. 2012;17:938–949. doi: 10.1007/s10495-012-0719-0. PubMed DOI
Lee D.-H., Lee Y.J. Quercetin Suppresses Hypoxia-Induced Accumulation of Hypoxia-Inducible Factor-1α (HIF-1α) Through Inhibiting Protein Synthesis. J. Cell. Biochem. 2008;105:546–553. doi: 10.1002/jcb.21851. PubMed DOI
Du G., Lin H., Wang M., Zhang S., Wu X., Lu L., Ji L., Yu L. Quercetin Greatly Improved Therapeutic Index of Doxorubicin against 4T1 Breast Cancer by Its Opposing Effects on HIF-1α in Tumor and Normal Cells. Cancer Chemother. Pharmacol. 2010;65:277–287. doi: 10.1007/s00280-009-1032-7. PubMed DOI
Granja A., Pinheiro M., Reis S. Epigallocatechin Gallate Nanodelivery Systems for Cancer Therapy. Nutrients. 2016;8:307. doi: 10.3390/nu8050307. PubMed DOI PMC
Zhu Z., Wang Y., Liu Z., Wang F., Zhao Q. Inhibitory Effects of Epigallocatechin-3-Gallate on Cell Proliferation and the Expression of HIF-1α and P-Gp in the Human Pancreatic Carcinoma Cell Line PANC-1. Oncol. Rep. 2012;27:1567–1572. doi: 10.3892/or.2012.1697. PubMed DOI
Zhang Q., Tang X., Lu Q., Zhang Z., Rao J., Le A.D. Green Tea Extract and (-)-Epigallocatechin-3-Gallate Inhibit Hypoxia- and Serum-Induced HIF-1α Protein Accumulation and VEGF Expression in Human Cervical Carcinoma and Hepatoma Cells. Mol. Cancer Ther. 2006;5:1227–1238. doi: 10.1158/1535-7163.MCT-05-0490. PubMed DOI
Jagadeeshan S., Prasad M.M., Nair S.A. Chapter 14—Role of Deguelin in Chemoresistance. In: Bharti A.C., Aggarwal B.B., editors. Role of Nutraceuticals in Cancer Chemosensitization. Volume 2. Academic Press; Cambridge, MA, USA: 2018. pp. 287–296. Cancer Sensitizing Agents for Chemotherapy.
Oh S.-H., Woo J.K., Jin Q., Kang H.-J., Jeong J.-W., Kim K.-W., Hong W.K., Lee H.-Y. Identification of Novel Antiangiogenic Anticancer Activities of Deguelin Targeting Hypoxia-Inducible Factor-1 Alpha. Int. J. Cancer. 2008;122:5–14. doi: 10.1002/ijc.23075. PubMed DOI
Oh S.H., Woo J.K., Yazici Y.D., Myers J.N., Kim W.-Y., Jin Q., Hong S.S., Park H.-J., Suh Y.-G., Kim K.-W., et al. Structural Basis for Depletion of Heat Shock Protein 90 Client Proteins by Deguelin. J. Natl. Cancer Inst. 2007;99:949–961. doi: 10.1093/jnci/djm007. PubMed DOI
Kim W.-Y., Oh S.H., Woo J.-K., Hong W.K., Lee H.-Y. Targeting Heat Shock Protein 90 Overrides the Resistance of Lung Cancer Cells by Blocking Radiation-Induced Stabilization of Hypoxia-Inducible Factor-1α. Cancer Res. 2009;69:1624–1632. doi: 10.1158/0008-5472.CAN-08-0505. PubMed DOI PMC
Chen Y.-J., Wu C.-S., Shieh J.-J., Wu J.-H., Chen H.-Y., Chung T.-W., Chen Y.-K., Lin C.-C. Baicalein Triggers Mitochondria-Mediated Apoptosis and Enhances the Antileukemic Effect of Vincristine in Childhood Acute Lymphoblastic Leukemia CCRF-CEM Cells. [(accessed on 27 October 2020)]; Available online: https://www.hindawi.com/journals/ecam/2013/124747/ PubMed PMC
Dou J., Wang Z., Ma L., Peng B., Mao K., Li C., Su M., Zhou C., Peng G. Baicalein and Baicalin Inhibit Colon Cancer Using Two Distinct Fashions of Apoptosis and Senescence. Oncotarget. 2018;9:20089–20102. doi: 10.18632/oncotarget.24015. PubMed DOI PMC
Zeng Q., Zhang Y., Zhang W., Guo Q. Baicalein Suppresses the Proliferation and Invasiveness of Colorectal Cancer Cells by Inhibiting Snail-Induced Epithelial-Mesenchymal Transition. Mol. Med. Rep. 2020;21:2544–2552. doi: 10.3892/mmr.2020.11051. PubMed DOI PMC
Huang L., Peng B., Nayak Y., Wang C., Si F., Liu X., Dou J., Xu H., Peng G. Baicalein and Baicalin Promote Melanoma Apoptosis and Senescence via Metabolic Inhibition. Front. Cell Dev. Biol. 2020;8 doi: 10.3389/fcell.2020.00836. PubMed DOI PMC
Wang F.-R., Jiang Y.-S. Effect of Treatment with Baicalein on the Intracerebral Tumor Growth and Survival of Orthotopic Glioma Models. J. Neurooncol. 2015;124:5–11. doi: 10.1007/s11060-015-1804-3. PubMed DOI
Chen J., Li Z., Chen A.Y., Ye X., Luo H., Rankin G.O., Chen Y.C. Inhibitory Effect of Baicalin and Baicalein on Ovarian Cancer Cells. Int. J. Mol. Sci. 2013;14:6012–6025. doi: 10.3390/ijms14036012. PubMed DOI PMC
Balam F.H., Ahmadi Z.S., Ghorbani A. Inhibitory Effect of Chrysin on Estrogen Biosynthesis by Suppression of Enzyme Aromatase (CYP19): A Systematic Review. Heliyon. 2020;6 doi: 10.1016/j.heliyon.2020.e03557. PubMed DOI PMC
Moghadam E.R., Ang H.L., Asnaf S.E., Zabolian A., Saleki H., Yavari M., Esmaeili H., Zarrabi A., Ashrafizadeh M., Kumar A.P. Broad-Spectrum Preclinical Antitumor Activity of Chrysin: Current Trends and Future Perspectives. Biomolecules. 2020;10:1374. doi: 10.3390/biom10101374. PubMed DOI PMC
Fu B., Xue J., Li Z., Shi X., Jiang B.-H., Fang J. Chrysin Inhibits Expression of Hypoxia-Inducible Factor-1α Through Reducing Hypoxia-Inducible Factor-1α Stability and Inhibiting Its Protein Synthesis. Mol. Cancer Ther. 2007;6:220–226. doi: 10.1158/1535-7163.MCT-06-0526. PubMed DOI
Fang B., Chen X., Wu M., Kong H., Chu G., Zhou Z., Zhang C., Chen B. Luteolin Inhibits Angiogenesis of the M2-like TAMs via the Downregulation of Hypoxia Inducible Factor-1α and the STAT3 Signalling Pathway under Hypoxia. Mol. Med. Rep. 2018 doi: 10.3892/mmr.2018.9250. PubMed DOI
Ren J., Lu Y., Qian Y., Chen B., Wu T., Ji G. Recent Progress Regarding Kaempferol for the Treatment of Various Diseases (Review) Exp. Ther. Med. 2019;18:2759–2776. doi: 10.3892/etm.2019.7886. PubMed DOI PMC
Mylonis I., Lakka A., Tsakalof A., Simos G. The Dietary Flavonoid Kaempferol Effectively Inhibits HIF-1 Activity and Hepatoma Cancer Cell Viability under Hypoxic Conditions. Biochem. Biophys. Res. Commun. 2010;398:74–78. doi: 10.1016/j.bbrc.2010.06.038. PubMed DOI
Triantafyllou A., Mylonis I., Simos G., Bonanou S., Tsakalof A. Flavonoids Induce HIF-1α but Impair Its Nuclear Accumulation and Activity. Free Radic. Biol. Med. 2008;44:657–670. doi: 10.1016/j.freeradbiomed.2007.10.050. PubMed DOI
Bach A., Bender-Sigel J., Schrenk D., Flügel D., Kietzmann T. The Antioxidant Quercetin Inhibits Cellular Proliferation via HIF-1-Dependent Induction of P21WAF. Antioxid. Redox Signal. 2010;13:437–448. doi: 10.1089/ars.2009.3000. PubMed DOI
Triantafyllou A., Liakos P., Tsakalof A., Chachami G., Paraskeva E., Molyvdas P.-A., Georgatsou E., Simos G., Bonanou S. The Flavonoid Quercetin Induces Hypoxia-Inducible Factor-1alpha (HIF-1α) and Inhibits Cell Proliferation by Depleting Intracellular Iron. Free Radic. Res. 2007;41:342–356. doi: 10.1080/10715760601055324. PubMed DOI
Park S.-S., Bae I., Lee Y.J. Flavonoids-Induced Accumulation of Hypoxia-Inducible Factor (HIF)-1α/2α Is Mediated Through Chelation of Iron. J. Cell. Biochem. 2008;103:1989–1998. doi: 10.1002/jcb.21588. PubMed DOI
Gao J.-L., Chen Y.-G. Natural Compounds Regulate Glycolysis in Hypoxic Tumor Microenvironment. [(accessed on 28 October 2020)]; Available online: https://www.hindawi.com/journals/bmri/2015/354143/ PubMed PMC
Wang M., Firrman J., Liu L., Yam K. A Review on Flavonoid Apigenin: Dietary Intake, ADME, Antimicrobial Effects, and Interactions with Human Gut Microbiota. BioMed Res. Int. 2019;2019 doi: 10.1155/2019/7010467. PubMed DOI PMC
Melstrom L.G., Salabat M.R., Ding X.-Z., Strouch M.J., Grippo P.J., Mirzoeva S., Pelling J.C., Bentrem D.J. Apigenin Down-Regulates the Hypoxia Response Genes: HIF-1α, GLUT-1, and VEGF in Human Pancreatic Cancer Cells. J. Surg. Res. 2011;167:173–181. doi: 10.1016/j.jss.2010.10.041. PubMed DOI
Chen F., Zhuang M., Zhong C., Peng J., Wang X., Li J., Chen Z., Huang Y. Baicalein Reverses Hypoxia-Induced 5-FU Resistance in Gastric Cancer AGS Cells Through Suppression of Glycolysis and the PTEN/Akt/HIF-1α Signaling Pathway. Oncol. Rep. 2015;33:457–463. doi: 10.3892/or.2014.3550. PubMed DOI
Nepal M., Choi H.J., Choi B.-Y., Kim S.L., Ryu J.-H., Kim D.H., Lee Y.-H., Soh Y. Anti-Angiogenic and Anti-Tumor Activity of Bavachinin by Targeting Hypoxia-Inducible Factor-1α. Eur. J. Pharmacol. 2012;691:28–37. doi: 10.1016/j.ejphar.2012.06.028. PubMed DOI
Wang Z., Wang D., Han S., Wang N., Mo F., Loo T.Y., Shen J., Huang H., Chen J. Bioactivity-Guided Identification and Cell Signaling Technology to Delineate the Lactate Dehydrogenase A Inhibition Effects of Spatholobus Suberectus on Breast Cancer. PLoS ONE. 2013;8:e56631. doi: 10.1371/journal.pone.0056631. PubMed DOI PMC
Liu Y., Veena C.K., Morgan J.B., Mohammed K.A., Jekabsons M.B., Nagle D.G., Zhou Y.-D. Methylalpinumisoflavone Inhibits Hypoxia-Inducible Factor-1 (HIF-1) Activation by Simultaneously Targeting Multiple Pathways. J. Biol. Chem. 2009;284:5859–5868. doi: 10.1074/jbc.M806744200. PubMed DOI PMC
Bacanlı M., Başaran A.A., Başaran N. Chapter 4—The Major Flavonoid of Grapefruit: Naringin. In: Watson R.R., Preedy V.R., Zibadi S., editors. Polyphenols: Prevention and Treatment of Human Disease (Second Edition) Academic Press; Cambridge, MA, USA: 2018. pp. 37–44.
Tajaldini M., Samadi F., Khosravi A., Ghasemnejad A., Asadi J. Protective and Anticancer Effects of Orange Peel Extract and Naringin in Doxorubicin Treated Esophageal Cancer Stem Cell Xenograft Tumor Mouse Model. Biomed. Pharmacother. 2020;121:109594. doi: 10.1016/j.biopha.2019.109594. PubMed DOI
Deenonpoe R., Prayong P., Thippamom N., Meephansan J., Na-Bangchang K. Anti-Inflammatory Effect of Naringin and Sericin Combination on Human Peripheral Blood Mononuclear Cells (HPBMCs) from Patient with Psoriasis. BMC Complement. Altern. Med. 2019;19 doi: 10.1186/s12906-019-2535-3. PubMed DOI PMC
Sharma M., Dwivedi P., Singh Rawat A.K., Dwivedi A.K. 3—Nutrition Nutraceuticals: A Proactive Approach for Healthcare. In: Grumezescu A.M., editor. Nutraceuticals. Academic Press; Cambridge, MA, USA: 2016. pp. 79–116. Nanotechnology in the Agri-Food Industry.
Guo B., Zhang Y., Hui Q., Wang H., Tao K. Naringin Suppresses the Metabolism of A375 Cells by Inhibiting the Phosphorylation of C-Src. Tumor Biol. 2016;37:3841–3850. doi: 10.1007/s13277-015-4235-z. PubMed DOI
Wei L., Zhou Y., Qiao C., Ni T., Li Z., You Q., Guo Q., Lu N. Oroxylin A Inhibits Glycolysis-Dependent Proliferation of Human Breast Cancer via Promoting SIRT3-Mediated SOD2 Transcription and HIF1α Destabilization. Cell Death Dis. 2015;6:e1714. doi: 10.1038/cddis.2015.86. PubMed DOI PMC
Suvarna V., Sarkar M., Chaubey P., Murahari M., Sangave P.C. 13—Role of Natural Products in Glaucoma Management. In: Preedy V.R., Watson R.R., editors. Handbook of Nutrition, Diet, and the Eye. 2nd ed. Academic Press; Cambridge, MA, USA: 2019. pp. 221–230.
Wang H., Zhao L., Zhu L.-T., Wang Y., Pan D., Yao J., You Q.-D., Guo Q.-L. Wogonin Reverses Hypoxia Resistance of Human Colon Cancer HCT116 Cells via Downregulation of HIF-1α and Glycolysis, by Inhibiting PI3K/Akt Signaling Pathway. Mol. Carcinog. 2014;53:E107–E118. doi: 10.1002/mc.22052. PubMed DOI
Jung K.-H., Lee J.H., Thien Quach C.H., Paik J.-Y., Oh H., Park J.W., Lee E.J., Moon S.-H., Lee K.-H. Resveratrol Suppresses Cancer Cell Glucose Uptake by Targeting Reactive Oxygen Species-Mediated Hypoxia-Inducible Factor-1α Activation. J. Nucl. Med. 2013;54:2161–2167. doi: 10.2967/jnumed.112.115436. PubMed DOI
Wu K.-H., Ho C.-T., Chen Z.-F., Chen L.-C., Whang-Peng J., Lin T.-N., Ho Y.-S. The Apple Polyphenol Phloretin Inhibits Breast Cancer Cell Migration and Proliferation via Inhibition of Signals by Type 2 Glucose Transporter. J. Food Drug Anal. 2018;26:221–231. doi: 10.1016/j.jfda.2017.03.009. PubMed DOI PMC
Zhao Y., Zhang L., Wu Y., Dai Q., Zhou Y., Li Z., Yang L., Guo Q., Lu N. Selective Anti-Tumor Activity of Wogonin Targeting the Warburg Effect through Stablizing P53. Pharmacol. Res. 2018;135:49–59. doi: 10.1016/j.phrs.2018.07.011. PubMed DOI
Ojelabi O.A., Lloyd K.P., De Zutter J.K., Carruthers A. Red Wine and Green Tea Flavonoids Are Cis-Allosteric Activators and Competitive Inhibitors of Glucose Transporter 1 (GLUT1)-Mediated Sugar Uptake. J. Biol. Chem. 2018;293:19823–19834. doi: 10.1074/jbc.RA118.002326. PubMed DOI PMC
Tian J., Guo F., Chen Y., Li Y., Yu B., Li Y. Nanoliposomal Formulation Encapsulating Celecoxib and Genistein Inhibiting COX-2 Pathway and Glut-1 Receptors to Prevent Prostate Cancer Cell Proliferation. Cancer Lett. 2019;448:1–10. doi: 10.1016/j.canlet.2019.01.002. PubMed DOI
Song Y.-Y., Yuan Y., Shi X., Che Y.-Y. Improved Drug Delivery and Anti-Tumor Efficacy of Combinatorial Liposomal Formulation of Genistein and Plumbagin by Targeting Glut1 and Akt3 Proteins in Mice Bearing Prostate Tumor. Colloids Surf. B Biointerfaces. 2020;190:110966. doi: 10.1016/j.colsurfb.2020.110966. PubMed DOI
Palombo R., Caporali S., Falconi M., Iacovelli F., Morozzo Della Rocca B., Lo Surdo A., Campione E., Candi E., Melino G., Bernardini S., et al. Luteolin-7-O-β-d-Glucoside Inhibits Cellular Energy Production Interacting with HEK2 in Keratinocytes. Int. J. Mol. Sci. 2019;20:2689. doi: 10.3390/ijms20112689. PubMed DOI PMC
Wu H., Pan L., Gao C., Xu H., Li Y., Zhang L., Ma L., Meng L., Sun X., Qin H. Quercetin Inhibits the Proliferation of Glycolysis-Addicted HCC Cells by Reducing Hexokinase 2 and Akt-MTOR Pathway. Molecules. 2019;24:1993. doi: 10.3390/molecules24101993. PubMed DOI PMC
Wu J., Zhang X., Wang Y., Sun Q., Chen M., Liu S., Zou X. Licochalcone A Suppresses Hexokinase 2-Mediated Tumor Glycolysis in Gastric Cancer via Downregulation of the Akt Signaling Pathway. Oncol. Rep. 2018;39:1181–1190. doi: 10.3892/or.2017.6155. PubMed DOI
Tao L., Wei L., Liu Y., Ding Y., Liu X., Zhang X., Wang X., Yao Y., Lu J., Wang Q., et al. Gen-27, a Newly Synthesized Flavonoid, Inhibits Glycolysis and Induces Cell Apoptosis via Suppression of Hexokinase II in Human Breast Cancer Cells. Biochem. Pharmacol. 2017;125:12–25. doi: 10.1016/j.bcp.2016.11.001. PubMed DOI
Guo Y., Wei L., Zhou Y., Lu N., Tang X., Li Z., Wang X. Flavonoid GL-V9 Induces Apoptosis and Inhibits Glycolysis of Breast Cancer via Disrupting GSK-3β-Modulated Mitochondrial Binding of HKII. Free Radic. Biol. Med. 2020;146:119–129. doi: 10.1016/j.freeradbiomed.2019.10.413. PubMed DOI
Aslan E., Guler C., Adem S. In Vitro Effects of Some Flavonoids and Phenolic Acids on Human Pyruvate Kinase Isoenzyme M2. J. Enzym. Inhib. Med. Chem. 2016;31:314–317. doi: 10.3109/14756366.2015.1022173. PubMed DOI
Hasan D., Gamen E., Abu Tarboush N., Ismail Y., Pak O., Azab B. PKM2 and HIF-1α Regulation in Prostate Cancer Cell Lines. PLoS ONE. 2018;13 doi: 10.1371/journal.pone.0203745. PubMed DOI PMC
Wei L., Dai Y., Zhou Y., He Z., Yao J., Zhao L., Guo Q., Yang L. Oroxylin A Activates PKM1/HNF4 Alpha to Induce Hepatoma Differentiation and Block Cancer Progression. Cell Death Dis. 2017;8:e2944. doi: 10.1038/cddis.2017.335. PubMed DOI PMC
Shan S., Shi J., Yang P., Jia B., Wu H., Zhang X., Li Z. Apigenin Restrains Colon Cancer Cell Proliferation via Targeted Blocking of Pyruvate Kinase M2-Dependent Glycolysis. J. Agric. Food Chem. 2017;65:8136–8144. doi: 10.1021/acs.jafc.7b02757. PubMed DOI
Feng Y., Xiong Y., Qiao T., Li X., Jia L., Han Y. Lactate Dehydrogenase A: A Key Player in Carcinogenesis and Potential Target in Cancer Therapy. Cancer Med. 2018;7:6124–6136. doi: 10.1002/cam4.1820. PubMed DOI PMC
Wang S.-J., Zhao J.-K., Ren S., Sun W.-W., Zhang W.-J., Zhang J.-N. Wogonin Affects Proliferation and the Energy Metabolism of SGC-7901 and A549 Cells. Exp. Ther. Med. 2019;17:911–918. doi: 10.3892/etm.2018.7023. PubMed DOI PMC
Yao Y.-F., Liu X., Li W.-J., Shi Z.-W., Yan Y.-X., Wang L.-F., Chen M., Xie M.-Y. (-)-Epigallocatechin-3-Gallate Alleviates Doxorubicin-Induced Cardiotoxicity in Sarcoma 180 Tumor-Bearing Mice. Life Sci. 2017;180:151–159. doi: 10.1016/j.lfs.2016.12.004. PubMed DOI
Gurunathan S., Jeyaraj M., Kang M.-H., Kim J.-H. Tangeretin-Assisted Platinum Nanoparticles Enhance the Apoptotic Properties of Doxorubicin: Combination Therapy for Osteosarcoma Treatment. Nanomaterials. 2019;9:1089. doi: 10.3390/nano9081089. PubMed DOI PMC
Li S., Wu L., Feng J., Li J., Liu T., Zhang R., Xu S., Cheng K., Zhou Y., Zhou S., et al. In Vitro and in Vivo Study of Epigallocatechin-3-Gallate-Induced Apoptosis in Aerobic Glycolytic Hepatocellular Carcinoma Cells Involving Inhibition of Phosphofructokinase Activity. Sci. Rep. 2016;6:28479. doi: 10.1038/srep28479. PubMed DOI PMC
Umar S.M., Kashyap A., Kahol S., Mathur S.R., Gogia A., Deo S.V.S., Prasad C.P. Prognostic and Therapeutic Relevance of Phosphofructokinase Platelet-Type (PFKP) in Breast Cancer. Exp. Cell Res. 2020;396:112282. doi: 10.1016/j.yexcr.2020.112282. PubMed DOI
Wei R., Hackman R.M., Wang Y., Mackenzie G.G. Targeting Glycolysis with Epigallocatechin-3-Gallate Enhances the Efficacy of Chemotherapeutics in Pancreatic Cancer Cells and Xenografts. Cancers. 2019;11:1496. doi: 10.3390/cancers11101496. PubMed DOI PMC
Dahiya R., Mohammad T., Roy S., Anwar S., Gupta P., Haque A., Khan P., Kazim S.N., Islam A., Ahmad F., et al. Investigation of Inhibitory Potential of Quercetin to the Pyruvate Dehydrogenase Kinase 3: Towards Implications in Anticancer Therapy. Int. J. Biol. Macromol. 2019;136:1076–1085. doi: 10.1016/j.ijbiomac.2019.06.158. PubMed DOI
Metabolic Anti-Cancer Effects of Melatonin: Clinically Relevant Prospects