Molecular Mechanisms of Flavonoids against Tumor Gamma-Herpesviruses and Their Correlated Cancers-A Focus on EBV and KSHV Life Cycles and Carcinogenesis

. 2022 Dec 23 ; 24 (1) : . [epub] 20221223

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid36613688

Epstein-Barr virus (EBV) and Kaposi sarcoma-associated herpesvirus (KSHV) are cancer-causing viruses that belong to human gamma-herpesviruses. They are DNA viruses known to establish lifelong infections in humans, with the ability to develop various types of cancer. Drug resistance remains the main barrier to achieving effective therapies for viral infections and cancer. Thus, new medications with dual antiviral and anticancer actions are highly needed. Flavonoids are secondary metabolites biosynthesized by plants with diverse therapeutic effects on human health. In this review, we feature the potential role of flavonoids (flavones, protoflavones, isoflavones, flavanones, flavonols, dihydroflavonols, catechins, chalcones, anthocyanins, and other flavonoid-type compounds) in controlling gamma-herpesvirus-associated cancers by blocking EBV and KSHV infections and inhibiting the formation and growth of the correlated tumors, such as nasopharyngeal carcinoma, Burkitt's lymphoma, gastric cancer, extranodal NK/T-cell lymphoma, squamous cell carcinoma, Kaposi sarcoma, and primary effusion lymphoma. The underlying mechanisms via targeting EBV and KSHV life cycles and carcinogenesis are highlighted. Moreover, the effective concentrations or doses are emphasized.

Zobrazit více v PubMed

Münz C. The Role of Lytic Infection for Lymphomagenesis of Human γ-Herpesviruses. Front. Cell. Infect. Microbiol. 2021;11:605258. doi: 10.3389/fcimb.2021.605258. PubMed DOI PMC

Wen K.W., Wang L., Menke J.R., Damania B. Cancers associated with human gammaherpesviruses. FEBS J. 2021 doi: 10.1111/febs.16206. PubMed DOI PMC

Šudomová M., Berchová-Bímová K., Marzocco S., Liskova A., Kubatka P., Hassan S.T. Berberine in Human Oncogenic Herpesvirus Infections and Their Linked Cancers. Viruses. 2021;13:1014. doi: 10.3390/v13061014. PubMed DOI PMC

Soldan S.S., Lieberman P.M. Epstein-Barr virus infection in the development of neurological disorders. Drug Discov. Today Dis. Model. 2020;32:35–52. doi: 10.1016/j.ddmod.2020.01.001. PubMed DOI PMC

Bharucha T., Houlihan C.F., Breuer J. Herpesvirus Infections of the Central Nervous System. Semin. Neurol. 2019;39:369–382. doi: 10.1055/s-0039-1687837. PubMed DOI

Adler B., Sattler C., Adler H. Herpesviruses and Their Host Cells: A Successful Liaison. Trends Microbiol. 2017;25:229–241. doi: 10.1016/j.tim.2016.11.009. PubMed DOI

Ackermann M. Pathogenesis of gammaherpesvirus infections. Vet. Microbiol. 2006;113:211–222. doi: 10.1016/j.vetmic.2005.11.008. PubMed DOI

Azab W., Osterrieder K. Initial Contact: The First Steps in Herpesvirus Entry. Adv. Anat. Embryol. Cell. Biol. 2017;223:1–27. doi: 10.1007/978-3-319-53168-7_1. PubMed DOI

Connolly S.A., Jardetzky T.S., Longnecker R. The structural basis of herpesvirus entry. Nat. Rev. Microbiol. 2021;19:110–121. doi: 10.1038/s41579-020-00448-w. PubMed DOI PMC

Jarosinski K.W. Interindividual Spread of Herpesviruses. Adv. Anat. Embryol. Cell. Biol. 2017;223:195–224. doi: 10.1007/978-3-319-53168-7_9. PubMed DOI

Cohen J.I. Herpesvirus latency. J. Clin. Investig. 2020;130:3361–3369. doi: 10.1172/JCI136225. PubMed DOI PMC

Speck S.H., Ganem D. Viral Latency and Its Regulation: Lessons from the γ-Herpesviruses. Cell Host Microbe. 2010;8:100–115. doi: 10.1016/j.chom.2010.06.014. PubMed DOI PMC

McKenzie J., El-Guindy A. Epstein-Barr Virus Lytic Cycle Reactivation. Curr. Top. Microbiol. Immunol. 2015;391:237–261. doi: 10.1007/978-3-319-22834-1_8. PubMed DOI

Broussard G., Damania B. Regulation of KSHV Latency and Lytic Reactivation. Viruses. 2020;12:1034. doi: 10.3390/v12091034. PubMed DOI PMC

Jondle C.N., Tarakanova V.L. Innate immunity and alpha/gammaherpesviruses: First impressions last a lifetime. Curr. Opin. Virol. 2020;44:81–89. doi: 10.1016/j.coviro.2020.07.002. PubMed DOI PMC

Lange P.T., White M.C., Damania B. Activation and Evasion of Innate Immunity by Gammaherpesviruses. J. Mol. Biol. 2021;434:167214. doi: 10.1016/j.jmb.2021.167214. PubMed DOI PMC

Wołącewicz M., Becht R., Grywalska E., Niedźwiedzka-Rystwej P. Herpesviruses in Head and Neck Cancers. Viruses. 2020;12:172. doi: 10.3390/v12020172. PubMed DOI PMC

Poole C.L., James S.H. Antiviral Therapies for Herpesviruses: Current Agents and New Directions. Clin. Ther. 2018;40:1282–1298. doi: 10.1016/j.clinthera.2018.07.006. PubMed DOI PMC

Kłysik K., Pietraszek A., Karewicz A., Nowakowska M. Acyclovir in the Treatment of Herpes Viruses—A Review. Curr. Med. Chem. 2020;27:4118–4137. doi: 10.2174/0929867325666180309105519. PubMed DOI

Chen E.Y., Raghunathan V., Prasad V. An Overview of Cancer Drugs Approved by the US Food and Drug Administration Based on the Surrogate End Point of Response Rate. JAMA Intern. Med. 2019;179:915–921. doi: 10.1001/jamainternmed.2019.0583. PubMed DOI PMC

Vasan N., Baselga J., Hyman D.M. A view on drug resistance in cancer. Nature. 2019;575:299–309. doi: 10.1038/s41586-019-1730-1. PubMed DOI PMC

Šudomová M., Hassan S. Nutraceutical Curcumin with Promising Protection against Herpesvirus Infections and Their Associated Inflammation: Mechanisms and Pathways. Microorganisms. 2021;9:292. doi: 10.3390/microorganisms9020292. PubMed DOI PMC

Atanasov A.G., Zotchev S.B., Dirsch V.M., International Natural Product Sciences Taskforce. Supuran C.T. Natural products in drug discovery: Advances and opportunities. Nat. Rev. Drug Discov. 2021;20:200–216. doi: 10.1038/s41573-020-00114-z. PubMed DOI PMC

Hassan S.T.S., Šudomová M., Mazurakova A., Kubatka P. Insights into Antiviral Properties and Molecular Mechanisms of Non-Flavonoid Polyphenols against Human Herpesviruses. Int. J. Mol. Sci. 2022;23:13891. doi: 10.3390/ijms232213891. PubMed DOI PMC

Dias M.C., Pinto D.C.G.A., Silva A.M.S. Plant Flavonoids: Chemical Characteristics and Biological Activity. Molecules. 2021;26:5377. doi: 10.3390/molecules26175377. PubMed DOI PMC

Kumar S., Pandey A.K. Chemistry and Biological Activities of Flavonoids: An Overview. Sci. World J. 2013;2013:162750. doi: 10.1155/2013/162750. PubMed DOI PMC

Petrussa E., Braidot E., Zancani M., Peresson C., Bertolini A., Patui S., Vianello A. Plant Flavonoids—Biosynthesis, Transport and Involvement in Stress Responses. Int. J. Mol. Sci. 2013;14:14950–14973. doi: 10.3390/ijms140714950. PubMed DOI PMC

Liu W., Feng Y., Yu S., Fan Z., Li X., Li J., Yin H. The Flavonoid Biosynthesis Network in Plants. Int. J. Mol. Sci. 2021;22:12824. doi: 10.3390/ijms222312824. PubMed DOI PMC

Shen N., Wang T., Gan Q., Liu S., Wang L., Jin B. Plant flavonoids: Classification, distribution, biosynthesis, and antioxidant activity. Food Chem. 2022;383:132531. doi: 10.1016/j.foodchem.2022.132531. PubMed DOI

Teng H., Chen L. Polyphenols and bioavailability: An update. Crit. Rev. Food Sci. Nutr. 2019;59:2040–2051. doi: 10.1080/10408398.2018.1437023. PubMed DOI

Panche A.N., Diwan A.D., Chandra S.R. Flavonoids: An overview. J. Nutr. Sci. 2016;5:e47. doi: 10.1017/jns.2016.41. PubMed DOI PMC

Durazzo A., Lucarini M., Souto E.B., Cicala C., Caiazzo E., Izzo A.A., Novellino E., Santini A. Polyphenols: A concise overview on the chemistry, occurrence, and human health. Phytother. Res. 2019;33:2221–2243. doi: 10.1002/ptr.6419. PubMed DOI

Singh B., Kumar A., Malik A.K. Flavonoids biosynthesis in plants and its further analysis by capillary electrophoresis. Electrophoresis. 2017;38:820–832. doi: 10.1002/elps.201600334. PubMed DOI

Treutter D. Significance of Flavonoids in Plant Resistance and Enhancement of Their Biosynthesis. Plant Biol. 2005;7:581–591. doi: 10.1055/s-2005-873009. PubMed DOI

Wen K., Fang X., Yang J., Yao Y., Nandakumar K.S., Salem M.L., Cheng K. Recent Research on Flavonoids and their Biomedical Applications. Curr. Med. Chem. 2021;28:1042–1066. doi: 10.2174/0929867327666200713184138. PubMed DOI

Hassan S.T.S., Masarčíková R., Berchová-Bímová K. Bioactive natural products with anti-herpes simplex virus properties. J. Pharm. Pharmacol. 2015;67:1325–1336. doi: 10.1111/jphp.12436. PubMed DOI

Treml J., Gazdová M., Šmejkal K., Šudomová M., Kubatka P., Hassan S.T.S. Natural Products-Derived Chemicals: Breaking Barriers to Novel Anti-HSV Drug Development. Viruses. 2020;12:154. doi: 10.3390/v12020154. PubMed DOI PMC

Šudomová M., Berchová-Bímová K., Mazurakova A., Šamec D., Kubatka P., Hassan S.T.S. Flavonoids Target Human Herpesviruses That Infect the Nervous System: Mechanisms of Action and Therapeutic Insights. Viruses. 2022;14:592. doi: 10.3390/v14030592. PubMed DOI PMC

Liskova A., Samec M., Koklesova L., Brockmueller A., Zhai K., Abdellatif B., Siddiqui M., Biringer K., Kudela E., Pec M., et al. Flavonoids as an effective sensitizer for anti-cancer therapy: Insights into multi-faceted mechanisms and applicability towards individualized patient profiles. EPMA J. 2021;12:155–176. doi: 10.1007/s13167-021-00242-5. PubMed DOI PMC

Samec M., Liskova A., Koklesova L., Mersakova S., Strnadel J., Kajo K., Pec M., Zhai K., Smejkal K., Mirzaei S., et al. Flavonoids Targeting HIF-1: Implications on Cancer Metabolism. Cancers. 2021;13:130. doi: 10.3390/cancers13010130. PubMed DOI PMC

Liskova A., Koklesova L., Samec M., Smejkal K., Samuel S.M., Varghese E., Abotaleb M., Biringer K., Kudela E., Danko J., et al. Flavonoids in Cancer Metastasis. Cancers. 2020;12:1498. doi: 10.3390/cancers12061498. PubMed DOI PMC

Bisol Â., De Campos P.S., Lamers M.L. Flavonoids as anticancer therapies: A systematic review of clinical trials. Phytother. Res. 2020;34:568–582. doi: 10.1002/ptr.6551. PubMed DOI

Nowalk A., Green M. Epstein-Barr Virus. Microbiol. Spectr. 2016;4:127–134. doi: 10.1128/microbiolspec.DMIH2-0011-2015. PubMed DOI

Ciccarese G., Trave I., Herzum A., Parodi A., Drago F. Dermatological manifestations of Epstein-Barr virus systemic infection: A case report and literature review. Int. J. Dermatol. 2020;59:1202–1209. doi: 10.1111/ijd.14887. PubMed DOI

Tsao S.W., Tsang C.M., Lo K.W. Epstein–Barr virus infection and nasopharyngeal carcinoma. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2017;372:20160270. doi: 10.1098/rstb.2016.0270. PubMed DOI PMC

Farrell P.J. Epstein–Barr Virus and Cancer. Annu. Rev. Pathol. 2019;14:29–53. doi: 10.1146/annurev-pathmechdis-012418-013023. PubMed DOI

Yang J., Liu Z., Zeng B., Hu G., Gan R. Epstein–Barr virus-associated gastric cancer: A distinct subtype. Cancer Lett. 2020;495:191–199. doi: 10.1016/j.canlet.2020.09.019. PubMed DOI

Murray P.G., Young L.S. An etiological role for the Epstein-Barr virus in the pathogenesis of classical Hodgkin lymphoma. Blood. 2019;134:591–596. doi: 10.1182/blood.2019000568. PubMed DOI

Naughton P., Healy M., Enright F., Lucey B. Infectious Mononucleosis: Diagnosis and clinical interpretation. Br. J. Biomed. Sci. 2021;78:107–116. doi: 10.1080/09674845.2021.1903683. PubMed DOI

Münz C. Latency and lytic replication in Epstein–Barr virus-associated oncogenesis. Nat. Rev. Microbiol. 2019;17:691–700. doi: 10.1038/s41579-019-0249-7. PubMed DOI

Yin H., Qu J., Peng Q., Gan R. Molecular mechanisms of EBV-driven cell cycle progression and oncogenesis. Med Microbiol. Immunol. 2019;208:573–583. doi: 10.1007/s00430-018-0570-1. PubMed DOI PMC

Rosemarie Q., Sugden B. Epstein–Barr Virus: How Its Lytic Phase Contributes to Oncogenesis. Microorganisms. 2020;8:1824. doi: 10.3390/microorganisms8111824. PubMed DOI PMC

Kutok J., Wang F. SPECTRUM OF EPSTEIN-BARR VIRUS–ASSOCIATED DISEASES. Annu. Rev. Pathol. 2006;1:375–404. doi: 10.1146/annurev.pathol.1.110304.100209. PubMed DOI

Li H., Liu S., Hu J., Luo X., Li N., Bode A.M., Cao Y. Epstein-Barr virus lytic reactivation regulation and its pathogenic role in carcinogenesis. Int. J. Biol. Sci. 2016;12:1309–1318. doi: 10.7150/ijbs.16564. PubMed DOI PMC

Tsai Y.-C., Hohmann J., El-Shazly M., Chang L.-K., Dankó B., Kúsz N., Hsieh C.-T., Hunyadi A., Chang F.-R. Bioactive constituents of Lindernia crustacea and its anti-EBV effect via Rta expression inhibition in the viral lytic cycle. J. Ethnopharmacol. 2020;250:112493. doi: 10.1016/j.jep.2019.112493. PubMed DOI

Wu C.-C., Fang C.-Y., Hsu H.-Y., Chen Y.-J., Chou S.-P., Huang S.-Y., Cheng Y.-J., Lin S.-F., Chang Y., Tsai C.-H., et al. Luteolin inhibits Epstein-Barr virus lytic reactivation by repressing the promoter activities of immediate-early genes. Antivir. Res. 2016;132:99–110. doi: 10.1016/j.antiviral.2016.05.007. PubMed DOI

Wu C.-C., Fang C.-Y., Cheng Y.-J., Hsu H.-Y., Chou S.-P., Huang S.-Y., Tsai C.-H., Chen J.-Y. Inhibition of Epstein-Barr virus reactivation by the flavonoid apigenin. J. Biomed. Sci. 2017;24:2. doi: 10.1186/s12929-016-0313-9. PubMed DOI PMC

Zhang J., Koike R., Yamamoto A., Ukiya M., Fukatsu M., Banno N., Miura M., Motohashi S., Tokuda H., Akihisa T. Glycosidic Inhibitors of Melanogenesis from Leaves of Passiflora edulis. Chem. Biodivers. 2013;10:1851–1865. doi: 10.1002/cbdv.201300181. PubMed DOI

Tung C.-P., Chang F.-R., Wu Y.-C., Chuang D.-W., Hunyadi A., Liu S.-T. Inhibition of the Epstein–Barr virus lytic cycle by protoapigenone. J. Gen. Virol. 2011;92:1760–1768. doi: 10.1099/vir.0.031609-0. PubMed DOI

Vágvölgyi M., Girst G., Kúsz N., Ötvös S.B., Fülöp F., Hohmann J., Servais J.-Y., Seguin-Devaux C., Chang F.-R., Chen M.S., et al. Less Cytotoxic Protoflavones as Antiviral Agents: Protoapigenone 1′-O-isopropyl ether Shows Improved Selectivity Against the Epstein–Barr Virus Lytic Cycle. Int. J. Mol. Sci. 2019;20:6269. doi: 10.3390/ijms20246269. PubMed DOI PMC

Zhang J., Zhu W.-F., Xu J., Kitdamrongtham W., Manosroi A., Manosroi J., Tokuda H., Abe M., Akihisa T., Feng F. Potential cancer chemopreventive and anticancer constituents from the fruits of Ficus hispida L.f. (Moraceae) J. Ethnopharmacol. 2018;214:37–46. doi: 10.1016/j.jep.2017.11.016. PubMed DOI

Ito C., Matsui T., Miyabe K., Hasan C.M., Rashid M.A., Tokuda H., Itoigawa M. Three isoflavones from Derris scandens (Roxb.) Benth and their cancer chemopreventive activity and in vitro antiproliferative effects. Phytochemistry. 2020;175:112376. doi: 10.1016/j.phytochem.2020.112376. PubMed DOI

Jakhmola S., Hazarika Z., Jha A.N., Jha H.C. In silico analysis of antiviral phytochemicals efficacy against Epstein–Barr virus glycoprotein H. J. Biomol. Struct. Dyn. 2022;40:5372–5385. doi: 10.1080/07391102.2020.1871074. PubMed DOI

Lima R.T., Seca H., Palmeira A., Fernandes M.X., Castro F., Correia-Da-Silva M., Nascimento M.S.J., Sousa M.E., Pinto M., Vasconcelos M.H. Sulfated Small Molecules Targeting EBV in Burkitt Lymphoma: FromIn SilicoScreening to the Evidence ofIn VitroEffect on Viral Episomal DNA. Chem. Biol. Drug Des. 2013;81:631–644. doi: 10.1111/cbdd.12109. PubMed DOI

Akazawa H., Kohno H., Tokuda H., Suzuki N., Yasukawa K., Kimura Y., Manosroi A., Manosroi J., Akihisa T. Anti-Inflammatory and Anti-Tumor-Promoting Effects of 5-Deprenyllupulonol C and Other Compounds from Hop (Humulus lupulus L.) Chem. Biodivers. 2012;9:1045–1054. doi: 10.1002/cbdv.201100233. PubMed DOI

Akihisa T., Motoi T., Seki A., Kikuchi T., Fukatsu M., Tokuda H., Suzuki N., Kimura Y. Cytotoxic Activities and Anti-Tumor-Promoting Effects of Microbial Transformation Products of Prenylated Chalcones from Angelica keiskei. Chem. Biodivers. 2012;9:318–330. doi: 10.1002/cbdv.201100255. PubMed DOI

Liu S., Li H., Chen L., Yang L., Li L., Tao Y., Li W., Li Z., Liu H., Tang M., et al. (-)-Epigallocatechin-3-gallate inhibition of Epstein-Barr virus spontaneous lytic infection involves ERK1/2 and PI3-K/Akt signaling in EBV-positive cells. Carcinogenesis. 2013;34:627–637. doi: 10.1093/carcin/bgs364. PubMed DOI

Liu S., Li H., Tang M., Cao Y. (-)-Epigallocatechin-3-gallate inhibition of Epstein-Barr virus spontaneous lytic infection involves downregulation of latent membrane protein 1. Exp. Ther. Med. 2018;15:1105–1112. doi: 10.3892/etm.2017.5495. PubMed DOI PMC

Li H., Li Y., Hu J., Liu S., Luo X., Tang M., Bode A.M., Dong Z., Liu X., Liao W., et al. ()-Epigallocatechin-3-Gallate Inhibits EBV Lytic Replication via Targeting LMP1-Mediated MAPK Signal Axes. Oncol. Res. 2021;28:763–778. doi: 10.3727/096504021X16135618512563. PubMed DOI PMC

Chen Y.-L., Tsai H.-L., Peng C.-W. EGCG debilitates the persistence of EBV latency by reducing the DNA binding potency of nuclear antigen 1. Biochem. Biophys. Res. Commun. 2012;417:1093–1099. doi: 10.1016/j.bbrc.2011.12.104. PubMed DOI

Jakhmola S., Jonniya N.A., Sk F., Rani A., Kar P., Jha H.C. Identification of Potential Inhibitors against Epstein–Barr Virus Nuclear Antigen 1 (EBNA1): An Insight from Docking and Molecular Dynamic Simulations. ACS Chem. Neurosci. 2021;12:3060–3072. doi: 10.1021/acschemneuro.1c00350. PubMed DOI

Lee M., Son M., Ryu E., Shin Y.S., Kim J.G., Kang B.W., Sung G.-H., Cho H., Kang H. Quercetin-induced apoptosis prevents EBV infection. Oncotarget. 2015;6:12603–12624. doi: 10.18632/oncotarget.3687. PubMed DOI PMC

Huh S., Lee S., Choi S.J., Wu Z., Cho J.-H., Kim L., Shin Y.S., Kang B.W., Kim J.G., Liu K., et al. Quercetin Synergistically Inhibit EBV-Associated Gastric Carcinoma with Ganoderma lucidum Extracts. Molecules. 2019;24:3834. doi: 10.3390/molecules24213834. PubMed DOI PMC

Ito C., Itoigawa M., Tan H.T., Tokuda H., Mou X.Y., Mukainaka T., Ishikawa T., Nishino H., Furukawa H. Anti-tumor-promoting effects of isoflavonoids on Epstein–Barr virus activation and two-stage mouse skin carcinogenesis. Cancer Lett. 2000;152:187–192. doi: 10.1016/S0304-3835(00)00331-1. PubMed DOI

Bilal M., Zhao Y., Rasheed T., Ahmed I., Hassan S.T., Nawaz M.Z., Iqbal H.M. Biogenic Nanoparticle-Chitosan Conjugates with Antimicrobial, Antibiofilm, and Anticancer Potentialities: Development and Characterization. Int. J. Environ. Res. Public Health. 2019;16:598. doi: 10.3390/ijerph16040598. PubMed DOI PMC

Tanaka R., Tsujii H., Yamada T., Kajimoto T., Tokuda H., Arai T., Suzuki N., Hasegawa J., Hamashima Y., Node M. Conjugates of 3α-methoxyserrat-14-en-21β-ol (PJ-1) and 3β-methoxyserrat-14-en-21β-ol (PJ-2) as cancer chemopreventive agents. Eur. J. Med. Chem. 2011;46:3368–3375. doi: 10.1016/j.ejmech.2011.04.062. PubMed DOI

Chen Z., Kong S., Song F., Li L., Jiang H. Pharmacokinetic study of luteolin, apigenin, chrysoeriol and diosmetin after oral administration of Flos Chrysanthemi extract in rats. Fitoterapia. 2012;83:1616–1622. doi: 10.1016/j.fitote.2012.09.011. PubMed DOI PMC

Fasoulakis Z., Koutras A., Syllaios A., Schizas D., Garmpis N., Diakosavvas M., Angelou K., Tsatsaris G., Pagkalos A., Ntounis T., et al. Breast Cancer Apoptosis and the Therapeutic Role of Luteolin. Chirurgia. 2021;116:170–177. doi: 10.21614/chirurgia.116.2.170. PubMed DOI

Fan W., Qian S., Qian P., Li X. Antiviral activity of luteolin against Japanese encephalitis virus. Virus Res. 2016;220:112–116. doi: 10.1016/j.virusres.2016.04.021. PubMed DOI

Wu C.-C., Fang C.-Y., Hsu H.-Y., Chuang H.-Y., Cheng Y.-J., Chen Y.-J., Chou S.-P., Huang S.-Y., Lin S.-F., Chang Y., et al. EBV reactivation as a target of luteolin to repress NPC tumorigenesis. Oncotarget. 2016;7:18999–19017. doi: 10.18632/oncotarget.7967. PubMed DOI PMC

Lo A.K.-F., Dawson C.W., Lung H.L., Wong K.-L., Young L.S. The Role of EBV-Encoded LMP1 in the NPC Tumor Microenvironment: From Function to Therapy. Front. Oncol. 2021;11:640207. doi: 10.3389/fonc.2021.640207. PubMed DOI PMC

Lo A.K.-F., Lung R.W.-M., Dawson C.W., Young L.S., Ko C.-W., Yeung W.W., Kang W., To K.-F., Lo K.-W. Activation of sterol regulatory element-binding protein 1 (SREBP1)-mediated lipogenesis by the Epstein-Barr virus-encoded latent membrane protein 1 (LMP1) promotes cell proliferation and progression of nasopharyngeal carcinoma. J. Pathol. 2018;246:180–190. doi: 10.1002/path.5130. PubMed DOI PMC

Wu X., Liu P., Zhang H., Li Y., Salmani J.M.M., Wang F., Yang K., Fu R., Chen Z., Chen B. Wogonin as a targeted therapeutic agent for EBV (+) lymphoma cells involved in LMP1/NF-κB/miR-155/PU.1 pathway. BMC Cancer. 2017;17:147. doi: 10.1186/s12885-017-3145-4. PubMed DOI PMC

Zhang Y., Wang H., Liu Y., Wang C., Wang J., Long C., Guo W., Sun X. Baicalein inhibits growth of Epstein-Barr virus-positive nasopharyngeal carcinoma by repressing the activity of EBNA1 Q-promoter. Biomed. Pharmacother. 2018;102:1003–1014. doi: 10.1016/j.biopha.2018.03.114. PubMed DOI

Bin Park G., Kim Y.S., Lee H.-K., Yang J.W., Kim D., Hur D.Y. ASK1/JNK-mediated TAp63 activation controls the cell survival signal of baicalein-treated EBV-transformed B cells. Mol. Cell. Biochem. 2016;412:247–258. doi: 10.1007/s11010-015-2631-8. PubMed DOI

Wu T., Wang S., Wu J., Lin Z., Sui X., Xu X., Shimizu N., Chen B., Wang X. Icaritin induces lytic cytotoxicity in extranodal NK/T-cell lymphoma. J. Exp. Clin. Cancer Res. 2015;34:17. doi: 10.1186/s13046-015-0133-x. PubMed DOI PMC

David A.V.A., Arulmoli R., Parasuraman S. Overviews of biological importance of quercetin: A bioactive flavonoid. Pharmacogn. Rev. 2016;10:84–89. doi: 10.4103/0973-7847.194044. PubMed DOI PMC

Reyes-Farias M., Carrasco-Pozo C. The Anti-Cancer Effect of Quercetin: Molecular Implications in Cancer Metabolism. Int. J. Mol. Sci. 2019;20:3177. doi: 10.3390/ijms20133177. PubMed DOI PMC

Di Petrillo A., Orrù G., Fais A., Fantini M.C. Quercetin and its derivates as antiviral potentials: A comprehensive review. Phytother. Res. 2022;36:266–278. doi: 10.1002/ptr.7309. PubMed DOI PMC

Lee H.H., Lee S., Shin Y.S., Cho M., Kang H., Cho H. Anti-Cancer Effect of Quercetin in Xenograft Models with EBV-Associated Human Gastric Carcinoma. Molecules. 2016;21:1286. doi: 10.3390/molecules21101286. PubMed DOI PMC

Granato M., Rizzello C., Romeo M.A., Yadav S., Santarelli R., D’Orazi G., Faggioni A., Cirone M. Concomitant reduction of c-Myc expression and PI3K/AKT/mTOR signaling by quercetin induces a strong cytotoxic effect against Burkitt’s lymphoma. Int. J. Biochem. Cell Biol. 2016;79:393–400. doi: 10.1016/j.biocel.2016.09.006. PubMed DOI

Daker M., Bhuvanendran S., Ahmad M., Takada K., Khoo A.S.-B. Deregulation of lipid metabolism pathway genes in nasopharyngeal carcinoma cells. Mol. Med. Rep. 2013;7:731–741. doi: 10.3892/mmr.2012.1253. PubMed DOI PMC

Iranshahi M., Sahebkar A., Hosseini S., Takasaki M., Konoshima T., Tokuda H. Cancer chemopreventive activity of diversin from Ferula diversivittata in vitro and in vivo. Phytomedicine. 2010;17:269–273. doi: 10.1016/j.phymed.2009.05.020. PubMed DOI

Granato M., Montani M.S.G., Zompetta C., Santarelli R., Gonnella R., Romeo M.A., D’Orazi G., Faggioni A., Cirone M. Quercetin Interrupts the Positive Feedback Loop Between STAT3 and IL-6, Promotes Autophagy, and Reduces ROS, Preventing EBV-Driven B Cell Immortalization. Biomolecules. 2019;9:482. doi: 10.3390/biom9090482. PubMed DOI PMC

Khan N., Syed D.N., Ahmad N., Mukhtar H. Fisetin: A Dietary Antioxidant for Health Promotion. Antioxid. Redox Signal. 2013;19:151–162. doi: 10.1089/ars.2012.4901. PubMed DOI PMC

Farooqi A.A., Naureen H., Zahid R., Youssef L., Attar R., Xu B. Cancer chemopreventive role of fisetin: Regulation of cell signaling pathways in different cancers. Pharmacol. Res. 2021;172:105784. doi: 10.1016/j.phrs.2021.105784. PubMed DOI

Li R., Zhao Y., Chen J., Shao S., Zhang X. Fisetin inhibits migration, invasion and epithelial-mesenchymal transition of LMP1-positive nasopharyngeal carcinoma cells. Mol. Med. Rep. 2014;9:413–418. doi: 10.3892/mmr.2013.1836. PubMed DOI

Li R., Liang H.-Y., Li M.-Y., Lin C.-Y., Shi M.-J., Zhang X.-J. Interference of Fisetin with Targets of the Nuclear Factor-κB Signal Transduction Pathway Activated by Epstein-Barr Virus Encoded Latent Membrane Protein 1. Asian Pac. J. Cancer Prev. 2014;15:9835–9839. doi: 10.7314/APJCP.2014.15.22.9835. PubMed DOI

Yun S.-M., Kim Y.S., Kim K.H., Hur D.Y. Ampelopsin Induces DR5-Mediated Apoptotic Cell Death in EBV-Infected Cells through the p38 Pathway. Nutr. Cancer. 2020;72:489–494. doi: 10.1080/01635581.2019.1639778. PubMed DOI

Wang K.-L., Yu Y.-C., Hsia S.-M. Perspectives on the Role of Isoliquiritigenin in Cancer. Cancers. 2021;13:115. doi: 10.3390/cancers13010115. PubMed DOI PMC

Zhao T.-T., Xu Y.-Q., Hu H.-M., Gong H.-B., Zhu H.-L. Isoliquiritigenin (ISL) and its Formulations: Potential Antitumor Agents. Curr. Med. Chem. 2019;26:6786–6796. doi: 10.2174/0929867325666181112091700. PubMed DOI

Lee J.-E., Hong E.-J., Nam H.-Y., Hwang M., Kim J.-H., Han B.-G., Jeon J.-P. Molecular signatures in response to Isoliquiritigenin in lymphoblastoid cell lines. Biochem. Biophys. Res. Commun. 2012;427:392–397. doi: 10.1016/j.bbrc.2012.09.070. PubMed DOI

Sellam L.S., Zappasodi R., Chettibi F., Djennaoui D., Mesbah N.Y.-A., Amir-Tidadini Z.-C., Touil-Boukoffa C., Ouahioune W., Merghoub T., Bourouba M. Silibinin down-regulates PD-L1 expression in nasopharyngeal carcinoma by interfering with tumor cell glycolytic metabolism. Arch. Biochem. Biophys. 2020;690:108479. doi: 10.1016/j.abb.2020.108479. PubMed DOI PMC

Gaglia M.M. Kaposi’s sarcoma-associated herpesvirus at 27. Tumour Virus Res. 2021;12:200223. doi: 10.1016/j.tvr.2021.200223. PubMed DOI PMC

Goncalves P.H., Ziegelbauer J., Uldrick T.S., Yarchoan R. Kaposi sarcoma herpesvirus-associated cancers and related diseases. Curr. Opin. HIV AIDS. 2017;12:47–56. doi: 10.1097/COH.0000000000000330. PubMed DOI PMC

Li S., Bai L., Dong J., Sun R., Lan K. Kaposi’s Sarcoma-Associated Herpesvirus: Epidemiology and Molecular Biology. In: Cai Q., Yuan Z., Lan K., editors. Infectious Agents Associated Cancers: Epidemiology and Molecular Biology. Volume 1018. Springer Singapore; Singapore: 2017. pp. 91–127. Advances in Experimental Medicine and Biology. PubMed

Aneja K.K., Yuan Y. Reactivation and Lytic Replication of Kaposi’s Sarcoma-Associated Herpesvirus: An Update. Front. Microbiol. 2017;8:613. doi: 10.3389/fmicb.2017.00613. PubMed DOI PMC

Cesarman E., Damania B., Krown S.E., Martin J., Bower M., Whitby D. Kaposi sarcoma. Nat. Rev. Dis. Prim. 2019;5:9. doi: 10.1038/s41572-019-0060-9. PubMed DOI PMC

Mesri E.A., Cesarman E., Boshoff C. Kaposi’s sarcoma and its associated herpesvirus. Nat. Rev. Cancer. 2010;10:707–719. doi: 10.1038/nrc2888. PubMed DOI PMC

Giffin L., Damania B. KSHV: Pathways to Tumorigenesis and Persistent Infection. Adv. Virus Res. 2014;88:111–159. doi: 10.1016/b978-0-12-800098-4.00002-7. PubMed DOI PMC

Yan L., Majerciak V., Zheng Z.-M., Lan K. Towards Better Understanding of KSHV Life Cycle: From Transcription and Posttranscriptional Regulations to Pathogenesis. Virol. Sin. 2019;34:135–161. doi: 10.1007/s12250-019-00114-3. PubMed DOI PMC

Long W.-Y., Zhao G.-H., Wu Y. Hesperetin inhibits KSHV reactivation and is reversed by HIF1α overexpression. J. Gen. Virol. 2021;102:001686. doi: 10.1099/jgv.0.001686. PubMed DOI

Mekni-Toujani M., Mousavizadeh L., Gallo A., Ghram A. Thymus capitatus flavonoids inhibit infection of Kaposi’s sarcoma-associated herpesvirus. FEBS Open Bio. 2022;12:1166–1177. doi: 10.1002/2211-5463.13407. PubMed DOI PMC

Tsai C.-Y., Chen C.-Y., Chiou Y.-H., Shyu H.-W., Lin K.-H., Chou M.-C., Huang M.-H., Wang Y.-F. Epigallocatechin-3-Gallate Suppresses Human Herpesvirus 8 Replication and Induces ROS Leading to Apoptosis and Autophagy in Primary Effusion Lymphoma Cells. Int. J. Mol. Sci. 2017;19:16. doi: 10.3390/ijms19010016. PubMed DOI PMC

Granato M., Montani M.S.G., Angiolillo C., D’Orazi G., Faggioni A., Cirone M. Cytotoxic Drugs Activate KSHV Lytic Cycle in Latently Infected PEL Cells by Inducing a Moderate ROS Increase Controlled by HSF1, NRF2 and p62/SQSTM1. Viruses. 2018;11:8. doi: 10.3390/v11010008. PubMed DOI PMC

Sivarajan R., Oberwinkler H., Roll V., König E.-M., Steinke M., Bodem J. A defined anthocyanin mixture sourced from bilberry and black currant inhibits Measles virus and various herpesviruses. BMC Complement. Med. Ther. 2022;22:181. doi: 10.1186/s12906-022-03661-7. PubMed DOI PMC

Zhu X., Chen Y., Zhu W., Ji M., Xu J., Guo Y., Gao F., Gu W., Yang X., Zhang C. Oroxylin A inhibits Kaposi’s sarcoma-associated herpes virus (KSHV) vIL-6-mediated lymphatic reprogramming of vascular endothelial cells through modulating PPARγ/Prox1 axis. J. Med Virol. 2019;91:463–472. doi: 10.1002/jmv.25337. PubMed DOI

Granato M., Gilardini Montani M.S., Santarelli R., D’Orazi G., Faggioni A., Cirone M. Apigenin, by activating p53 and inhibiting STAT3, modulates the balance between pro-apoptotic and pro-survival pathways to induce PEL cell death. J. Exp. Clin. Cancer Res. 2017;36:167. doi: 10.1186/s13046-017-0632-z. PubMed DOI PMC

Granato M., Rizzello C., Gilardini Montani M.S., Cuomo L., Vitillo M., Santarelli R., Gonnella R., D’Orazi G., Faggioni A., Cirone M. Quercetin induces apoptosis and autophagy in primary effusion lymphoma cells by inhibiting PI3K/AKT/mTOR and STAT3 signaling pathways. J. Nutr. Biochem. 2017;41:124–136. doi: 10.1016/j.jnutbio.2016.12.011. PubMed DOI

Gonnella R., Yadav S., Montani M.S.G., Granato M., Santarelli R., Garufi A., D’Orazi G., Faggioni A., Cirone M. Oxidant species are involved in T/B-mediated ERK1/2 phosphorylation that activates p53-p21 axis to promote KSHV lytic cycle in PEL cells. Free Radic. Biol. Med. 2017;112:327–335. doi: 10.1016/j.freeradbiomed.2017.08.005. PubMed DOI

Yeh L.-C., Shyu H.-W., Jin Y.-R., Chiou Y.-H., Lin K.-H., Chou M.-C., Huang M.-H., Wang Y.-F. Epigallocatechin-3-gallate downregulates PDHA1 interfering the metabolic pathways in human herpesvirus 8 harboring primary effusion lymphoma cells. Toxicol. Vitr. 2020;65:104753. doi: 10.1016/j.tiv.2019.104753. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace