Molecular Mechanisms of Flavonoids against Tumor Gamma-Herpesviruses and Their Correlated Cancers-A Focus on EBV and KSHV Life Cycles and Carcinogenesis
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
36613688
PubMed Central
PMC9820319
DOI
10.3390/ijms24010247
PII: ijms24010247
Knihovny.cz E-zdroje
- Klíčová slova
- Epstein–Barr virus (EBV), Kaposi sarcoma-associated herpesvirus (KSHV), anticancer properties, antiviral activities, cancer treatment, carcinogenesis, flavonoids, herpesviruses, molecular mechanisms, tumor viruses,
- MeSH
- anthokyaniny MeSH
- flavonoidy farmakologie terapeutické užití MeSH
- Herpesviridae * MeSH
- infekce virem Epsteina-Barrové * farmakoterapie MeSH
- Kaposiho sarkom * patologie MeSH
- karcinogeneze MeSH
- lidé MeSH
- lidský herpesvirus 8 * genetika MeSH
- nádory * farmakoterapie MeSH
- virus Epsteinův-Barrové genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- anthokyaniny MeSH
- flavonoidy MeSH
Epstein-Barr virus (EBV) and Kaposi sarcoma-associated herpesvirus (KSHV) are cancer-causing viruses that belong to human gamma-herpesviruses. They are DNA viruses known to establish lifelong infections in humans, with the ability to develop various types of cancer. Drug resistance remains the main barrier to achieving effective therapies for viral infections and cancer. Thus, new medications with dual antiviral and anticancer actions are highly needed. Flavonoids are secondary metabolites biosynthesized by plants with diverse therapeutic effects on human health. In this review, we feature the potential role of flavonoids (flavones, protoflavones, isoflavones, flavanones, flavonols, dihydroflavonols, catechins, chalcones, anthocyanins, and other flavonoid-type compounds) in controlling gamma-herpesvirus-associated cancers by blocking EBV and KSHV infections and inhibiting the formation and growth of the correlated tumors, such as nasopharyngeal carcinoma, Burkitt's lymphoma, gastric cancer, extranodal NK/T-cell lymphoma, squamous cell carcinoma, Kaposi sarcoma, and primary effusion lymphoma. The underlying mechanisms via targeting EBV and KSHV life cycles and carcinogenesis are highlighted. Moreover, the effective concentrations or doses are emphasized.
Zobrazit více v PubMed
Münz C. The Role of Lytic Infection for Lymphomagenesis of Human γ-Herpesviruses. Front. Cell. Infect. Microbiol. 2021;11:605258. doi: 10.3389/fcimb.2021.605258. PubMed DOI PMC
Wen K.W., Wang L., Menke J.R., Damania B. Cancers associated with human gammaherpesviruses. FEBS J. 2021 doi: 10.1111/febs.16206. PubMed DOI PMC
Šudomová M., Berchová-Bímová K., Marzocco S., Liskova A., Kubatka P., Hassan S.T. Berberine in Human Oncogenic Herpesvirus Infections and Their Linked Cancers. Viruses. 2021;13:1014. doi: 10.3390/v13061014. PubMed DOI PMC
Soldan S.S., Lieberman P.M. Epstein-Barr virus infection in the development of neurological disorders. Drug Discov. Today Dis. Model. 2020;32:35–52. doi: 10.1016/j.ddmod.2020.01.001. PubMed DOI PMC
Bharucha T., Houlihan C.F., Breuer J. Herpesvirus Infections of the Central Nervous System. Semin. Neurol. 2019;39:369–382. doi: 10.1055/s-0039-1687837. PubMed DOI
Adler B., Sattler C., Adler H. Herpesviruses and Their Host Cells: A Successful Liaison. Trends Microbiol. 2017;25:229–241. doi: 10.1016/j.tim.2016.11.009. PubMed DOI
Ackermann M. Pathogenesis of gammaherpesvirus infections. Vet. Microbiol. 2006;113:211–222. doi: 10.1016/j.vetmic.2005.11.008. PubMed DOI
Azab W., Osterrieder K. Initial Contact: The First Steps in Herpesvirus Entry. Adv. Anat. Embryol. Cell. Biol. 2017;223:1–27. doi: 10.1007/978-3-319-53168-7_1. PubMed DOI
Connolly S.A., Jardetzky T.S., Longnecker R. The structural basis of herpesvirus entry. Nat. Rev. Microbiol. 2021;19:110–121. doi: 10.1038/s41579-020-00448-w. PubMed DOI PMC
Jarosinski K.W. Interindividual Spread of Herpesviruses. Adv. Anat. Embryol. Cell. Biol. 2017;223:195–224. doi: 10.1007/978-3-319-53168-7_9. PubMed DOI
Cohen J.I. Herpesvirus latency. J. Clin. Investig. 2020;130:3361–3369. doi: 10.1172/JCI136225. PubMed DOI PMC
Speck S.H., Ganem D. Viral Latency and Its Regulation: Lessons from the γ-Herpesviruses. Cell Host Microbe. 2010;8:100–115. doi: 10.1016/j.chom.2010.06.014. PubMed DOI PMC
McKenzie J., El-Guindy A. Epstein-Barr Virus Lytic Cycle Reactivation. Curr. Top. Microbiol. Immunol. 2015;391:237–261. doi: 10.1007/978-3-319-22834-1_8. PubMed DOI
Broussard G., Damania B. Regulation of KSHV Latency and Lytic Reactivation. Viruses. 2020;12:1034. doi: 10.3390/v12091034. PubMed DOI PMC
Jondle C.N., Tarakanova V.L. Innate immunity and alpha/gammaherpesviruses: First impressions last a lifetime. Curr. Opin. Virol. 2020;44:81–89. doi: 10.1016/j.coviro.2020.07.002. PubMed DOI PMC
Lange P.T., White M.C., Damania B. Activation and Evasion of Innate Immunity by Gammaherpesviruses. J. Mol. Biol. 2021;434:167214. doi: 10.1016/j.jmb.2021.167214. PubMed DOI PMC
Wołącewicz M., Becht R., Grywalska E., Niedźwiedzka-Rystwej P. Herpesviruses in Head and Neck Cancers. Viruses. 2020;12:172. doi: 10.3390/v12020172. PubMed DOI PMC
Poole C.L., James S.H. Antiviral Therapies for Herpesviruses: Current Agents and New Directions. Clin. Ther. 2018;40:1282–1298. doi: 10.1016/j.clinthera.2018.07.006. PubMed DOI PMC
Kłysik K., Pietraszek A., Karewicz A., Nowakowska M. Acyclovir in the Treatment of Herpes Viruses—A Review. Curr. Med. Chem. 2020;27:4118–4137. doi: 10.2174/0929867325666180309105519. PubMed DOI
Chen E.Y., Raghunathan V., Prasad V. An Overview of Cancer Drugs Approved by the US Food and Drug Administration Based on the Surrogate End Point of Response Rate. JAMA Intern. Med. 2019;179:915–921. doi: 10.1001/jamainternmed.2019.0583. PubMed DOI PMC
Vasan N., Baselga J., Hyman D.M. A view on drug resistance in cancer. Nature. 2019;575:299–309. doi: 10.1038/s41586-019-1730-1. PubMed DOI PMC
Šudomová M., Hassan S. Nutraceutical Curcumin with Promising Protection against Herpesvirus Infections and Their Associated Inflammation: Mechanisms and Pathways. Microorganisms. 2021;9:292. doi: 10.3390/microorganisms9020292. PubMed DOI PMC
Atanasov A.G., Zotchev S.B., Dirsch V.M., International Natural Product Sciences Taskforce. Supuran C.T. Natural products in drug discovery: Advances and opportunities. Nat. Rev. Drug Discov. 2021;20:200–216. doi: 10.1038/s41573-020-00114-z. PubMed DOI PMC
Hassan S.T.S., Šudomová M., Mazurakova A., Kubatka P. Insights into Antiviral Properties and Molecular Mechanisms of Non-Flavonoid Polyphenols against Human Herpesviruses. Int. J. Mol. Sci. 2022;23:13891. doi: 10.3390/ijms232213891. PubMed DOI PMC
Dias M.C., Pinto D.C.G.A., Silva A.M.S. Plant Flavonoids: Chemical Characteristics and Biological Activity. Molecules. 2021;26:5377. doi: 10.3390/molecules26175377. PubMed DOI PMC
Kumar S., Pandey A.K. Chemistry and Biological Activities of Flavonoids: An Overview. Sci. World J. 2013;2013:162750. doi: 10.1155/2013/162750. PubMed DOI PMC
Petrussa E., Braidot E., Zancani M., Peresson C., Bertolini A., Patui S., Vianello A. Plant Flavonoids—Biosynthesis, Transport and Involvement in Stress Responses. Int. J. Mol. Sci. 2013;14:14950–14973. doi: 10.3390/ijms140714950. PubMed DOI PMC
Liu W., Feng Y., Yu S., Fan Z., Li X., Li J., Yin H. The Flavonoid Biosynthesis Network in Plants. Int. J. Mol. Sci. 2021;22:12824. doi: 10.3390/ijms222312824. PubMed DOI PMC
Shen N., Wang T., Gan Q., Liu S., Wang L., Jin B. Plant flavonoids: Classification, distribution, biosynthesis, and antioxidant activity. Food Chem. 2022;383:132531. doi: 10.1016/j.foodchem.2022.132531. PubMed DOI
Teng H., Chen L. Polyphenols and bioavailability: An update. Crit. Rev. Food Sci. Nutr. 2019;59:2040–2051. doi: 10.1080/10408398.2018.1437023. PubMed DOI
Panche A.N., Diwan A.D., Chandra S.R. Flavonoids: An overview. J. Nutr. Sci. 2016;5:e47. doi: 10.1017/jns.2016.41. PubMed DOI PMC
Durazzo A., Lucarini M., Souto E.B., Cicala C., Caiazzo E., Izzo A.A., Novellino E., Santini A. Polyphenols: A concise overview on the chemistry, occurrence, and human health. Phytother. Res. 2019;33:2221–2243. doi: 10.1002/ptr.6419. PubMed DOI
Singh B., Kumar A., Malik A.K. Flavonoids biosynthesis in plants and its further analysis by capillary electrophoresis. Electrophoresis. 2017;38:820–832. doi: 10.1002/elps.201600334. PubMed DOI
Treutter D. Significance of Flavonoids in Plant Resistance and Enhancement of Their Biosynthesis. Plant Biol. 2005;7:581–591. doi: 10.1055/s-2005-873009. PubMed DOI
Wen K., Fang X., Yang J., Yao Y., Nandakumar K.S., Salem M.L., Cheng K. Recent Research on Flavonoids and their Biomedical Applications. Curr. Med. Chem. 2021;28:1042–1066. doi: 10.2174/0929867327666200713184138. PubMed DOI
Hassan S.T.S., Masarčíková R., Berchová-Bímová K. Bioactive natural products with anti-herpes simplex virus properties. J. Pharm. Pharmacol. 2015;67:1325–1336. doi: 10.1111/jphp.12436. PubMed DOI
Treml J., Gazdová M., Šmejkal K., Šudomová M., Kubatka P., Hassan S.T.S. Natural Products-Derived Chemicals: Breaking Barriers to Novel Anti-HSV Drug Development. Viruses. 2020;12:154. doi: 10.3390/v12020154. PubMed DOI PMC
Šudomová M., Berchová-Bímová K., Mazurakova A., Šamec D., Kubatka P., Hassan S.T.S. Flavonoids Target Human Herpesviruses That Infect the Nervous System: Mechanisms of Action and Therapeutic Insights. Viruses. 2022;14:592. doi: 10.3390/v14030592. PubMed DOI PMC
Liskova A., Samec M., Koklesova L., Brockmueller A., Zhai K., Abdellatif B., Siddiqui M., Biringer K., Kudela E., Pec M., et al. Flavonoids as an effective sensitizer for anti-cancer therapy: Insights into multi-faceted mechanisms and applicability towards individualized patient profiles. EPMA J. 2021;12:155–176. doi: 10.1007/s13167-021-00242-5. PubMed DOI PMC
Samec M., Liskova A., Koklesova L., Mersakova S., Strnadel J., Kajo K., Pec M., Zhai K., Smejkal K., Mirzaei S., et al. Flavonoids Targeting HIF-1: Implications on Cancer Metabolism. Cancers. 2021;13:130. doi: 10.3390/cancers13010130. PubMed DOI PMC
Liskova A., Koklesova L., Samec M., Smejkal K., Samuel S.M., Varghese E., Abotaleb M., Biringer K., Kudela E., Danko J., et al. Flavonoids in Cancer Metastasis. Cancers. 2020;12:1498. doi: 10.3390/cancers12061498. PubMed DOI PMC
Bisol Â., De Campos P.S., Lamers M.L. Flavonoids as anticancer therapies: A systematic review of clinical trials. Phytother. Res. 2020;34:568–582. doi: 10.1002/ptr.6551. PubMed DOI
Nowalk A., Green M. Epstein-Barr Virus. Microbiol. Spectr. 2016;4:127–134. doi: 10.1128/microbiolspec.DMIH2-0011-2015. PubMed DOI
Ciccarese G., Trave I., Herzum A., Parodi A., Drago F. Dermatological manifestations of Epstein-Barr virus systemic infection: A case report and literature review. Int. J. Dermatol. 2020;59:1202–1209. doi: 10.1111/ijd.14887. PubMed DOI
Tsao S.W., Tsang C.M., Lo K.W. Epstein–Barr virus infection and nasopharyngeal carcinoma. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2017;372:20160270. doi: 10.1098/rstb.2016.0270. PubMed DOI PMC
Farrell P.J. Epstein–Barr Virus and Cancer. Annu. Rev. Pathol. 2019;14:29–53. doi: 10.1146/annurev-pathmechdis-012418-013023. PubMed DOI
Yang J., Liu Z., Zeng B., Hu G., Gan R. Epstein–Barr virus-associated gastric cancer: A distinct subtype. Cancer Lett. 2020;495:191–199. doi: 10.1016/j.canlet.2020.09.019. PubMed DOI
Murray P.G., Young L.S. An etiological role for the Epstein-Barr virus in the pathogenesis of classical Hodgkin lymphoma. Blood. 2019;134:591–596. doi: 10.1182/blood.2019000568. PubMed DOI
Naughton P., Healy M., Enright F., Lucey B. Infectious Mononucleosis: Diagnosis and clinical interpretation. Br. J. Biomed. Sci. 2021;78:107–116. doi: 10.1080/09674845.2021.1903683. PubMed DOI
Münz C. Latency and lytic replication in Epstein–Barr virus-associated oncogenesis. Nat. Rev. Microbiol. 2019;17:691–700. doi: 10.1038/s41579-019-0249-7. PubMed DOI
Yin H., Qu J., Peng Q., Gan R. Molecular mechanisms of EBV-driven cell cycle progression and oncogenesis. Med Microbiol. Immunol. 2019;208:573–583. doi: 10.1007/s00430-018-0570-1. PubMed DOI PMC
Rosemarie Q., Sugden B. Epstein–Barr Virus: How Its Lytic Phase Contributes to Oncogenesis. Microorganisms. 2020;8:1824. doi: 10.3390/microorganisms8111824. PubMed DOI PMC
Kutok J., Wang F. SPECTRUM OF EPSTEIN-BARR VIRUS–ASSOCIATED DISEASES. Annu. Rev. Pathol. 2006;1:375–404. doi: 10.1146/annurev.pathol.1.110304.100209. PubMed DOI
Li H., Liu S., Hu J., Luo X., Li N., Bode A.M., Cao Y. Epstein-Barr virus lytic reactivation regulation and its pathogenic role in carcinogenesis. Int. J. Biol. Sci. 2016;12:1309–1318. doi: 10.7150/ijbs.16564. PubMed DOI PMC
Tsai Y.-C., Hohmann J., El-Shazly M., Chang L.-K., Dankó B., Kúsz N., Hsieh C.-T., Hunyadi A., Chang F.-R. Bioactive constituents of Lindernia crustacea and its anti-EBV effect via Rta expression inhibition in the viral lytic cycle. J. Ethnopharmacol. 2020;250:112493. doi: 10.1016/j.jep.2019.112493. PubMed DOI
Wu C.-C., Fang C.-Y., Hsu H.-Y., Chen Y.-J., Chou S.-P., Huang S.-Y., Cheng Y.-J., Lin S.-F., Chang Y., Tsai C.-H., et al. Luteolin inhibits Epstein-Barr virus lytic reactivation by repressing the promoter activities of immediate-early genes. Antivir. Res. 2016;132:99–110. doi: 10.1016/j.antiviral.2016.05.007. PubMed DOI
Wu C.-C., Fang C.-Y., Cheng Y.-J., Hsu H.-Y., Chou S.-P., Huang S.-Y., Tsai C.-H., Chen J.-Y. Inhibition of Epstein-Barr virus reactivation by the flavonoid apigenin. J. Biomed. Sci. 2017;24:2. doi: 10.1186/s12929-016-0313-9. PubMed DOI PMC
Zhang J., Koike R., Yamamoto A., Ukiya M., Fukatsu M., Banno N., Miura M., Motohashi S., Tokuda H., Akihisa T. Glycosidic Inhibitors of Melanogenesis from Leaves of Passiflora edulis. Chem. Biodivers. 2013;10:1851–1865. doi: 10.1002/cbdv.201300181. PubMed DOI
Tung C.-P., Chang F.-R., Wu Y.-C., Chuang D.-W., Hunyadi A., Liu S.-T. Inhibition of the Epstein–Barr virus lytic cycle by protoapigenone. J. Gen. Virol. 2011;92:1760–1768. doi: 10.1099/vir.0.031609-0. PubMed DOI
Vágvölgyi M., Girst G., Kúsz N., Ötvös S.B., Fülöp F., Hohmann J., Servais J.-Y., Seguin-Devaux C., Chang F.-R., Chen M.S., et al. Less Cytotoxic Protoflavones as Antiviral Agents: Protoapigenone 1′-O-isopropyl ether Shows Improved Selectivity Against the Epstein–Barr Virus Lytic Cycle. Int. J. Mol. Sci. 2019;20:6269. doi: 10.3390/ijms20246269. PubMed DOI PMC
Zhang J., Zhu W.-F., Xu J., Kitdamrongtham W., Manosroi A., Manosroi J., Tokuda H., Abe M., Akihisa T., Feng F. Potential cancer chemopreventive and anticancer constituents from the fruits of Ficus hispida L.f. (Moraceae) J. Ethnopharmacol. 2018;214:37–46. doi: 10.1016/j.jep.2017.11.016. PubMed DOI
Ito C., Matsui T., Miyabe K., Hasan C.M., Rashid M.A., Tokuda H., Itoigawa M. Three isoflavones from Derris scandens (Roxb.) Benth and their cancer chemopreventive activity and in vitro antiproliferative effects. Phytochemistry. 2020;175:112376. doi: 10.1016/j.phytochem.2020.112376. PubMed DOI
Jakhmola S., Hazarika Z., Jha A.N., Jha H.C. In silico analysis of antiviral phytochemicals efficacy against Epstein–Barr virus glycoprotein H. J. Biomol. Struct. Dyn. 2022;40:5372–5385. doi: 10.1080/07391102.2020.1871074. PubMed DOI
Lima R.T., Seca H., Palmeira A., Fernandes M.X., Castro F., Correia-Da-Silva M., Nascimento M.S.J., Sousa M.E., Pinto M., Vasconcelos M.H. Sulfated Small Molecules Targeting EBV in Burkitt Lymphoma: FromIn SilicoScreening to the Evidence ofIn VitroEffect on Viral Episomal DNA. Chem. Biol. Drug Des. 2013;81:631–644. doi: 10.1111/cbdd.12109. PubMed DOI
Akazawa H., Kohno H., Tokuda H., Suzuki N., Yasukawa K., Kimura Y., Manosroi A., Manosroi J., Akihisa T. Anti-Inflammatory and Anti-Tumor-Promoting Effects of 5-Deprenyllupulonol C and Other Compounds from Hop (Humulus lupulus L.) Chem. Biodivers. 2012;9:1045–1054. doi: 10.1002/cbdv.201100233. PubMed DOI
Akihisa T., Motoi T., Seki A., Kikuchi T., Fukatsu M., Tokuda H., Suzuki N., Kimura Y. Cytotoxic Activities and Anti-Tumor-Promoting Effects of Microbial Transformation Products of Prenylated Chalcones from Angelica keiskei. Chem. Biodivers. 2012;9:318–330. doi: 10.1002/cbdv.201100255. PubMed DOI
Liu S., Li H., Chen L., Yang L., Li L., Tao Y., Li W., Li Z., Liu H., Tang M., et al. (-)-Epigallocatechin-3-gallate inhibition of Epstein-Barr virus spontaneous lytic infection involves ERK1/2 and PI3-K/Akt signaling in EBV-positive cells. Carcinogenesis. 2013;34:627–637. doi: 10.1093/carcin/bgs364. PubMed DOI
Liu S., Li H., Tang M., Cao Y. (-)-Epigallocatechin-3-gallate inhibition of Epstein-Barr virus spontaneous lytic infection involves downregulation of latent membrane protein 1. Exp. Ther. Med. 2018;15:1105–1112. doi: 10.3892/etm.2017.5495. PubMed DOI PMC
Li H., Li Y., Hu J., Liu S., Luo X., Tang M., Bode A.M., Dong Z., Liu X., Liao W., et al. ()-Epigallocatechin-3-Gallate Inhibits EBV Lytic Replication via Targeting LMP1-Mediated MAPK Signal Axes. Oncol. Res. 2021;28:763–778. doi: 10.3727/096504021X16135618512563. PubMed DOI PMC
Chen Y.-L., Tsai H.-L., Peng C.-W. EGCG debilitates the persistence of EBV latency by reducing the DNA binding potency of nuclear antigen 1. Biochem. Biophys. Res. Commun. 2012;417:1093–1099. doi: 10.1016/j.bbrc.2011.12.104. PubMed DOI
Jakhmola S., Jonniya N.A., Sk F., Rani A., Kar P., Jha H.C. Identification of Potential Inhibitors against Epstein–Barr Virus Nuclear Antigen 1 (EBNA1): An Insight from Docking and Molecular Dynamic Simulations. ACS Chem. Neurosci. 2021;12:3060–3072. doi: 10.1021/acschemneuro.1c00350. PubMed DOI
Lee M., Son M., Ryu E., Shin Y.S., Kim J.G., Kang B.W., Sung G.-H., Cho H., Kang H. Quercetin-induced apoptosis prevents EBV infection. Oncotarget. 2015;6:12603–12624. doi: 10.18632/oncotarget.3687. PubMed DOI PMC
Huh S., Lee S., Choi S.J., Wu Z., Cho J.-H., Kim L., Shin Y.S., Kang B.W., Kim J.G., Liu K., et al. Quercetin Synergistically Inhibit EBV-Associated Gastric Carcinoma with Ganoderma lucidum Extracts. Molecules. 2019;24:3834. doi: 10.3390/molecules24213834. PubMed DOI PMC
Ito C., Itoigawa M., Tan H.T., Tokuda H., Mou X.Y., Mukainaka T., Ishikawa T., Nishino H., Furukawa H. Anti-tumor-promoting effects of isoflavonoids on Epstein–Barr virus activation and two-stage mouse skin carcinogenesis. Cancer Lett. 2000;152:187–192. doi: 10.1016/S0304-3835(00)00331-1. PubMed DOI
Bilal M., Zhao Y., Rasheed T., Ahmed I., Hassan S.T., Nawaz M.Z., Iqbal H.M. Biogenic Nanoparticle-Chitosan Conjugates with Antimicrobial, Antibiofilm, and Anticancer Potentialities: Development and Characterization. Int. J. Environ. Res. Public Health. 2019;16:598. doi: 10.3390/ijerph16040598. PubMed DOI PMC
Tanaka R., Tsujii H., Yamada T., Kajimoto T., Tokuda H., Arai T., Suzuki N., Hasegawa J., Hamashima Y., Node M. Conjugates of 3α-methoxyserrat-14-en-21β-ol (PJ-1) and 3β-methoxyserrat-14-en-21β-ol (PJ-2) as cancer chemopreventive agents. Eur. J. Med. Chem. 2011;46:3368–3375. doi: 10.1016/j.ejmech.2011.04.062. PubMed DOI
Chen Z., Kong S., Song F., Li L., Jiang H. Pharmacokinetic study of luteolin, apigenin, chrysoeriol and diosmetin after oral administration of Flos Chrysanthemi extract in rats. Fitoterapia. 2012;83:1616–1622. doi: 10.1016/j.fitote.2012.09.011. PubMed DOI PMC
Fasoulakis Z., Koutras A., Syllaios A., Schizas D., Garmpis N., Diakosavvas M., Angelou K., Tsatsaris G., Pagkalos A., Ntounis T., et al. Breast Cancer Apoptosis and the Therapeutic Role of Luteolin. Chirurgia. 2021;116:170–177. doi: 10.21614/chirurgia.116.2.170. PubMed DOI
Fan W., Qian S., Qian P., Li X. Antiviral activity of luteolin against Japanese encephalitis virus. Virus Res. 2016;220:112–116. doi: 10.1016/j.virusres.2016.04.021. PubMed DOI
Wu C.-C., Fang C.-Y., Hsu H.-Y., Chuang H.-Y., Cheng Y.-J., Chen Y.-J., Chou S.-P., Huang S.-Y., Lin S.-F., Chang Y., et al. EBV reactivation as a target of luteolin to repress NPC tumorigenesis. Oncotarget. 2016;7:18999–19017. doi: 10.18632/oncotarget.7967. PubMed DOI PMC
Lo A.K.-F., Dawson C.W., Lung H.L., Wong K.-L., Young L.S. The Role of EBV-Encoded LMP1 in the NPC Tumor Microenvironment: From Function to Therapy. Front. Oncol. 2021;11:640207. doi: 10.3389/fonc.2021.640207. PubMed DOI PMC
Lo A.K.-F., Lung R.W.-M., Dawson C.W., Young L.S., Ko C.-W., Yeung W.W., Kang W., To K.-F., Lo K.-W. Activation of sterol regulatory element-binding protein 1 (SREBP1)-mediated lipogenesis by the Epstein-Barr virus-encoded latent membrane protein 1 (LMP1) promotes cell proliferation and progression of nasopharyngeal carcinoma. J. Pathol. 2018;246:180–190. doi: 10.1002/path.5130. PubMed DOI PMC
Wu X., Liu P., Zhang H., Li Y., Salmani J.M.M., Wang F., Yang K., Fu R., Chen Z., Chen B. Wogonin as a targeted therapeutic agent for EBV (+) lymphoma cells involved in LMP1/NF-κB/miR-155/PU.1 pathway. BMC Cancer. 2017;17:147. doi: 10.1186/s12885-017-3145-4. PubMed DOI PMC
Zhang Y., Wang H., Liu Y., Wang C., Wang J., Long C., Guo W., Sun X. Baicalein inhibits growth of Epstein-Barr virus-positive nasopharyngeal carcinoma by repressing the activity of EBNA1 Q-promoter. Biomed. Pharmacother. 2018;102:1003–1014. doi: 10.1016/j.biopha.2018.03.114. PubMed DOI
Bin Park G., Kim Y.S., Lee H.-K., Yang J.W., Kim D., Hur D.Y. ASK1/JNK-mediated TAp63 activation controls the cell survival signal of baicalein-treated EBV-transformed B cells. Mol. Cell. Biochem. 2016;412:247–258. doi: 10.1007/s11010-015-2631-8. PubMed DOI
Wu T., Wang S., Wu J., Lin Z., Sui X., Xu X., Shimizu N., Chen B., Wang X. Icaritin induces lytic cytotoxicity in extranodal NK/T-cell lymphoma. J. Exp. Clin. Cancer Res. 2015;34:17. doi: 10.1186/s13046-015-0133-x. PubMed DOI PMC
David A.V.A., Arulmoli R., Parasuraman S. Overviews of biological importance of quercetin: A bioactive flavonoid. Pharmacogn. Rev. 2016;10:84–89. doi: 10.4103/0973-7847.194044. PubMed DOI PMC
Reyes-Farias M., Carrasco-Pozo C. The Anti-Cancer Effect of Quercetin: Molecular Implications in Cancer Metabolism. Int. J. Mol. Sci. 2019;20:3177. doi: 10.3390/ijms20133177. PubMed DOI PMC
Di Petrillo A., Orrù G., Fais A., Fantini M.C. Quercetin and its derivates as antiviral potentials: A comprehensive review. Phytother. Res. 2022;36:266–278. doi: 10.1002/ptr.7309. PubMed DOI PMC
Lee H.H., Lee S., Shin Y.S., Cho M., Kang H., Cho H. Anti-Cancer Effect of Quercetin in Xenograft Models with EBV-Associated Human Gastric Carcinoma. Molecules. 2016;21:1286. doi: 10.3390/molecules21101286. PubMed DOI PMC
Granato M., Rizzello C., Romeo M.A., Yadav S., Santarelli R., D’Orazi G., Faggioni A., Cirone M. Concomitant reduction of c-Myc expression and PI3K/AKT/mTOR signaling by quercetin induces a strong cytotoxic effect against Burkitt’s lymphoma. Int. J. Biochem. Cell Biol. 2016;79:393–400. doi: 10.1016/j.biocel.2016.09.006. PubMed DOI
Daker M., Bhuvanendran S., Ahmad M., Takada K., Khoo A.S.-B. Deregulation of lipid metabolism pathway genes in nasopharyngeal carcinoma cells. Mol. Med. Rep. 2013;7:731–741. doi: 10.3892/mmr.2012.1253. PubMed DOI PMC
Iranshahi M., Sahebkar A., Hosseini S., Takasaki M., Konoshima T., Tokuda H. Cancer chemopreventive activity of diversin from Ferula diversivittata in vitro and in vivo. Phytomedicine. 2010;17:269–273. doi: 10.1016/j.phymed.2009.05.020. PubMed DOI
Granato M., Montani M.S.G., Zompetta C., Santarelli R., Gonnella R., Romeo M.A., D’Orazi G., Faggioni A., Cirone M. Quercetin Interrupts the Positive Feedback Loop Between STAT3 and IL-6, Promotes Autophagy, and Reduces ROS, Preventing EBV-Driven B Cell Immortalization. Biomolecules. 2019;9:482. doi: 10.3390/biom9090482. PubMed DOI PMC
Khan N., Syed D.N., Ahmad N., Mukhtar H. Fisetin: A Dietary Antioxidant for Health Promotion. Antioxid. Redox Signal. 2013;19:151–162. doi: 10.1089/ars.2012.4901. PubMed DOI PMC
Farooqi A.A., Naureen H., Zahid R., Youssef L., Attar R., Xu B. Cancer chemopreventive role of fisetin: Regulation of cell signaling pathways in different cancers. Pharmacol. Res. 2021;172:105784. doi: 10.1016/j.phrs.2021.105784. PubMed DOI
Li R., Zhao Y., Chen J., Shao S., Zhang X. Fisetin inhibits migration, invasion and epithelial-mesenchymal transition of LMP1-positive nasopharyngeal carcinoma cells. Mol. Med. Rep. 2014;9:413–418. doi: 10.3892/mmr.2013.1836. PubMed DOI
Li R., Liang H.-Y., Li M.-Y., Lin C.-Y., Shi M.-J., Zhang X.-J. Interference of Fisetin with Targets of the Nuclear Factor-κB Signal Transduction Pathway Activated by Epstein-Barr Virus Encoded Latent Membrane Protein 1. Asian Pac. J. Cancer Prev. 2014;15:9835–9839. doi: 10.7314/APJCP.2014.15.22.9835. PubMed DOI
Yun S.-M., Kim Y.S., Kim K.H., Hur D.Y. Ampelopsin Induces DR5-Mediated Apoptotic Cell Death in EBV-Infected Cells through the p38 Pathway. Nutr. Cancer. 2020;72:489–494. doi: 10.1080/01635581.2019.1639778. PubMed DOI
Wang K.-L., Yu Y.-C., Hsia S.-M. Perspectives on the Role of Isoliquiritigenin in Cancer. Cancers. 2021;13:115. doi: 10.3390/cancers13010115. PubMed DOI PMC
Zhao T.-T., Xu Y.-Q., Hu H.-M., Gong H.-B., Zhu H.-L. Isoliquiritigenin (ISL) and its Formulations: Potential Antitumor Agents. Curr. Med. Chem. 2019;26:6786–6796. doi: 10.2174/0929867325666181112091700. PubMed DOI
Lee J.-E., Hong E.-J., Nam H.-Y., Hwang M., Kim J.-H., Han B.-G., Jeon J.-P. Molecular signatures in response to Isoliquiritigenin in lymphoblastoid cell lines. Biochem. Biophys. Res. Commun. 2012;427:392–397. doi: 10.1016/j.bbrc.2012.09.070. PubMed DOI
Sellam L.S., Zappasodi R., Chettibi F., Djennaoui D., Mesbah N.Y.-A., Amir-Tidadini Z.-C., Touil-Boukoffa C., Ouahioune W., Merghoub T., Bourouba M. Silibinin down-regulates PD-L1 expression in nasopharyngeal carcinoma by interfering with tumor cell glycolytic metabolism. Arch. Biochem. Biophys. 2020;690:108479. doi: 10.1016/j.abb.2020.108479. PubMed DOI PMC
Gaglia M.M. Kaposi’s sarcoma-associated herpesvirus at 27. Tumour Virus Res. 2021;12:200223. doi: 10.1016/j.tvr.2021.200223. PubMed DOI PMC
Goncalves P.H., Ziegelbauer J., Uldrick T.S., Yarchoan R. Kaposi sarcoma herpesvirus-associated cancers and related diseases. Curr. Opin. HIV AIDS. 2017;12:47–56. doi: 10.1097/COH.0000000000000330. PubMed DOI PMC
Li S., Bai L., Dong J., Sun R., Lan K. Kaposi’s Sarcoma-Associated Herpesvirus: Epidemiology and Molecular Biology. In: Cai Q., Yuan Z., Lan K., editors. Infectious Agents Associated Cancers: Epidemiology and Molecular Biology. Volume 1018. Springer Singapore; Singapore: 2017. pp. 91–127. Advances in Experimental Medicine and Biology. PubMed
Aneja K.K., Yuan Y. Reactivation and Lytic Replication of Kaposi’s Sarcoma-Associated Herpesvirus: An Update. Front. Microbiol. 2017;8:613. doi: 10.3389/fmicb.2017.00613. PubMed DOI PMC
Cesarman E., Damania B., Krown S.E., Martin J., Bower M., Whitby D. Kaposi sarcoma. Nat. Rev. Dis. Prim. 2019;5:9. doi: 10.1038/s41572-019-0060-9. PubMed DOI PMC
Mesri E.A., Cesarman E., Boshoff C. Kaposi’s sarcoma and its associated herpesvirus. Nat. Rev. Cancer. 2010;10:707–719. doi: 10.1038/nrc2888. PubMed DOI PMC
Giffin L., Damania B. KSHV: Pathways to Tumorigenesis and Persistent Infection. Adv. Virus Res. 2014;88:111–159. doi: 10.1016/b978-0-12-800098-4.00002-7. PubMed DOI PMC
Yan L., Majerciak V., Zheng Z.-M., Lan K. Towards Better Understanding of KSHV Life Cycle: From Transcription and Posttranscriptional Regulations to Pathogenesis. Virol. Sin. 2019;34:135–161. doi: 10.1007/s12250-019-00114-3. PubMed DOI PMC
Long W.-Y., Zhao G.-H., Wu Y. Hesperetin inhibits KSHV reactivation and is reversed by HIF1α overexpression. J. Gen. Virol. 2021;102:001686. doi: 10.1099/jgv.0.001686. PubMed DOI
Mekni-Toujani M., Mousavizadeh L., Gallo A., Ghram A. Thymus capitatus flavonoids inhibit infection of Kaposi’s sarcoma-associated herpesvirus. FEBS Open Bio. 2022;12:1166–1177. doi: 10.1002/2211-5463.13407. PubMed DOI PMC
Tsai C.-Y., Chen C.-Y., Chiou Y.-H., Shyu H.-W., Lin K.-H., Chou M.-C., Huang M.-H., Wang Y.-F. Epigallocatechin-3-Gallate Suppresses Human Herpesvirus 8 Replication and Induces ROS Leading to Apoptosis and Autophagy in Primary Effusion Lymphoma Cells. Int. J. Mol. Sci. 2017;19:16. doi: 10.3390/ijms19010016. PubMed DOI PMC
Granato M., Montani M.S.G., Angiolillo C., D’Orazi G., Faggioni A., Cirone M. Cytotoxic Drugs Activate KSHV Lytic Cycle in Latently Infected PEL Cells by Inducing a Moderate ROS Increase Controlled by HSF1, NRF2 and p62/SQSTM1. Viruses. 2018;11:8. doi: 10.3390/v11010008. PubMed DOI PMC
Sivarajan R., Oberwinkler H., Roll V., König E.-M., Steinke M., Bodem J. A defined anthocyanin mixture sourced from bilberry and black currant inhibits Measles virus and various herpesviruses. BMC Complement. Med. Ther. 2022;22:181. doi: 10.1186/s12906-022-03661-7. PubMed DOI PMC
Zhu X., Chen Y., Zhu W., Ji M., Xu J., Guo Y., Gao F., Gu W., Yang X., Zhang C. Oroxylin A inhibits Kaposi’s sarcoma-associated herpes virus (KSHV) vIL-6-mediated lymphatic reprogramming of vascular endothelial cells through modulating PPARγ/Prox1 axis. J. Med Virol. 2019;91:463–472. doi: 10.1002/jmv.25337. PubMed DOI
Granato M., Gilardini Montani M.S., Santarelli R., D’Orazi G., Faggioni A., Cirone M. Apigenin, by activating p53 and inhibiting STAT3, modulates the balance between pro-apoptotic and pro-survival pathways to induce PEL cell death. J. Exp. Clin. Cancer Res. 2017;36:167. doi: 10.1186/s13046-017-0632-z. PubMed DOI PMC
Granato M., Rizzello C., Gilardini Montani M.S., Cuomo L., Vitillo M., Santarelli R., Gonnella R., D’Orazi G., Faggioni A., Cirone M. Quercetin induces apoptosis and autophagy in primary effusion lymphoma cells by inhibiting PI3K/AKT/mTOR and STAT3 signaling pathways. J. Nutr. Biochem. 2017;41:124–136. doi: 10.1016/j.jnutbio.2016.12.011. PubMed DOI
Gonnella R., Yadav S., Montani M.S.G., Granato M., Santarelli R., Garufi A., D’Orazi G., Faggioni A., Cirone M. Oxidant species are involved in T/B-mediated ERK1/2 phosphorylation that activates p53-p21 axis to promote KSHV lytic cycle in PEL cells. Free Radic. Biol. Med. 2017;112:327–335. doi: 10.1016/j.freeradbiomed.2017.08.005. PubMed DOI
Yeh L.-C., Shyu H.-W., Jin Y.-R., Chiou Y.-H., Lin K.-H., Chou M.-C., Huang M.-H., Wang Y.-F. Epigallocatechin-3-gallate downregulates PDHA1 interfering the metabolic pathways in human herpesvirus 8 harboring primary effusion lymphoma cells. Toxicol. Vitr. 2020;65:104753. doi: 10.1016/j.tiv.2019.104753. PubMed DOI
Anti-Epstein-Barr Virus Activities of Flavones and Flavonols with Effects on Virus-Related Cancers
Flavonoids as Aglycones in Retaining Glycosidase-Catalyzed Reactions: Prospects for Green Chemistry