Berberine in Human Oncogenic Herpesvirus Infections and Their Linked Cancers
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
34071559
PubMed Central
PMC8229678
DOI
10.3390/v13061014
PII: v13061014
Knihovny.cz E-zdroje
- Klíčová slova
- Epstein–Barr virus, Kaposi’s sarcoma-associated herpesvirus, berberine, cancer, herpes simplex virus, human cytomegalovirus, inflammation, oncogenic herpesviruses,
- MeSH
- antivirové látky terapeutické užití MeSH
- berberin terapeutické užití MeSH
- Herpesviridae klasifikace účinky léků patogenita MeSH
- herpetické infekce komplikace farmakoterapie MeSH
- karcinogeneze účinky léků MeSH
- klinické zkoušky jako téma MeSH
- latence viru účinky léků MeSH
- lidé MeSH
- myši MeSH
- nádory farmakoterapie virologie MeSH
- replikace viru účinky léků MeSH
- zánět farmakoterapie virologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- antivirové látky MeSH
- berberin MeSH
Human herpesviruses are known to induce a broad spectrum of diseases, ranging from common cold sores to cancer, and infections with some types of these viruses, known as human oncogenic herpesviruses (HOHVs), can cause cancer. Challenges with viral latency, recurrent infections, and drug resistance have generated the need for finding new drugs with the ability to overcome these barriers. Berberine (BBR), a naturally occurring alkaloid, is known for its multiple biological activities, including antiviral and anticancer effects. This paper comprehensively compiles all studies that have featured anti-HOHV properties of BBR along with promising preventive effects against the associated cancers. The mechanisms and pathways induced by BBR via targeting the herpesvirus life cycle and the pathogenesis of the linked malignancies are reviewed. Approaches to enhance the therapeutic efficacy of BBR and its use in clinical practice as an anti-herpesvirus drug are also discussed.
Department of Pharmacy University of Salerno 84084 Fisciano SA Italy
Museum of Literature in Moravia Klášter 1 66461 Rajhrad Czech Republic
Zobrazit více v PubMed
Hassan S.T., Masarčíková R., Berchová K. Bioactive natural products with anti-herpes simplex virus properties. J. Pharm. Pharmacol. 2015;67:1325–1336. doi: 10.1111/jphp.12436. PubMed DOI
Treml J., Gazdová M., Šmejkal K., Šudomová M., Kubatka P., Hassan S.T.S. Natural Products-Derived Chemicals: Breaking Barriers to Novel Anti-HSV Drug Development. Viruses. 2020;12:154. doi: 10.3390/v12020154. PubMed DOI PMC
Manners O., Murphy J.C., Coleman A., Hughes D.J., Whitehouse A. Contribution of the KSHV and EBV lytic cycles to tumourigenesis. Curr. Opin. Virol. 2018;32:60–70. doi: 10.1016/j.coviro.2018.08.014. PubMed DOI PMC
Dittmer D.P., Damania B., Sin S.H. Animal models of tumorigenic herpesviruses--An update. Curr. Opin. Virol. 2015;14:145–150. doi: 10.1016/j.coviro.2015.09.006. PubMed DOI PMC
Wołącewicz M., Becht R., Grywalska E., Niedźwiedzka-Rystwej P. Herpesviruses in Head and Neck Cancers. Viruses. 2020;12:172. doi: 10.3390/v12020172. PubMed DOI PMC
Tomkins A., White C., Higgins S.P. Primary herpes simplex virus infection mimicking cervical cancer. BMJ Case Rep. 2015;2015:bcr2015210194. doi: 10.1136/bcr-2015-210194. PubMed DOI PMC
Herbein G. The Human Cytomegalovirus, from Oncomodulation to Oncogenesis. Viruses. 2018;10:408. doi: 10.3390/v10080408. PubMed DOI PMC
Glaunsinger B.A. Modulation of the Translational Landscape During Herpesvirus Infection. Annu. Rev. Virol. 2015;2:311–333. doi: 10.1146/annurev-virology-100114-054839. PubMed DOI PMC
Asha K., Sharma-Walia N. Targeting Host Cellular Factors as a Strategy of Therapeutic Intervention for Herpesvirus Infections. Front. Cell Infect. Microbiol. 2021;11:603309. doi: 10.3389/fcimb.2021.603309. PubMed DOI PMC
Poole C.L., James S.H. Antiviral Therapies for Herpesviruses: Current Agents and New Directions. Clin. Ther. 2018;40:1282–1298. doi: 10.1016/j.clinthera.2018.07.006. PubMed DOI PMC
Hassan S.T.S. Brassicasterol with Dual Anti-Infective Properties against HSV-1 and Mycobacterium tuberculosis, and Cardiovascular Protective Effect: Nonclinical In Vitro and In Silico Assessments. Biomedicines. 2020;8:132. doi: 10.3390/biomedicines8050132. PubMed DOI PMC
Brezáni V., Leláková V., Hassan S.T.S., Berchová-Bímová K., Nový P., Klouček P., Maršík P., Dall’Acqua S., Hošek J., Šmejkal K. Anti-Infectivity against Herpes Simplex Virus and Selected Microbes and Anti-Inflammatory Activities of Compounds Isolated from Eucalyptus globulus Labill. Viruses. 2018;10:360. doi: 10.3390/v10070360. PubMed DOI PMC
Hassan S.T.S., Šudomová M., Berchová-Bímová K., Šmejkal K., Echeverría J. Psoromic Acid, a Lichen-Derived Molecule, Inhibits the Replication of HSV-1 and HSV-2, and Inactivates HSV-1 DNA Polymerase: Shedding Light on Antiherpetic Properties. Molecules. 2019;24:2912. doi: 10.3390/molecules24162912. PubMed DOI PMC
Čulenová M., Sychrová A., Hassan S.T.S., Berchová-Bímová K., Svobodová P., Helclová A., Michnová H., Hošek J., Vasilev H., Suchý P., et al. Multiple In vitro biological effects of phenolic compounds from Morus alba root bark. J. Ethnopharmacol. 2020;248:112296. doi: 10.1016/j.jep.2019.112296. PubMed DOI
Hassan S.T.S., Švajdlenka E. Biological Evaluation and Molecular Docking of Protocatechuic Acid from Hibiscus sabdariffa L. as a Potent Urease Inhibitor by an ESI-MS Based Method. Molecules. 2017;22:1696. doi: 10.3390/molecules22101696. PubMed DOI PMC
Feng X., Sureda A., Jafari S., Memariani Z., Tewari D., Annunziata G., Barrea L., Hassan S.T.S., Šmejkal K., Malaník M., et al. Berberine in Cardiovascular and Metabolic Diseases: From Mechanisms to Therapeutics. Theranostics. 2019;9:1923–1951. doi: 10.7150/thno.30787. PubMed DOI PMC
Wang K., Feng X., Chai L., Cao S., Qiu F. The metabolism of berberine and its contribution to the pharmacological effects. Drug Metab. Rev. 2017;49:139–157. doi: 10.1080/03602532.2017.1306544. PubMed DOI
Warowicka A., Nawrot R., Goździcka-Józefiak A. Antiviral activity of berberine. Arch. Virol. 2020;165:1935–1945. doi: 10.1007/s00705-020-04706-3. PubMed DOI PMC
Zeng Q., Deng H., Li Y., Fan T., Liu Y., Tang S., Wei W., Liu X., Guo X., Jiang J., et al. Berberine Directly Targets the NEK7 Protein to Block the NEK7-NLRP3 Interaction and Exert Anti-inflammatory Activity. J. Med. Chem. 2021;64:768–781. doi: 10.1021/acs.jmedchem.0c01743. PubMed DOI
Liu D., Meng X., Wu D., Qiu Z., Luo H. A Natural Isoquinoline Alkaloid with Antitumor Activity: Studies of the Biological Activities of Berberine. Front. Pharmacol. 2019;10:9. doi: 10.3389/fphar.2019.00009. PubMed DOI PMC
Hassan S.T.S. Shedding Light on the Effect of Natural Anti-Herpesvirus Alkaloids on SARS-CoV-2: A Treatment Option for COVID-19. Viruses. 2020;12:476. doi: 10.3390/v12040476. PubMed DOI PMC
Johnston B.P., McCormick C. Herpesviruses and the Unfolded Protein Response. Viruses. 2019;12:17. doi: 10.3390/v12010017. PubMed DOI PMC
Stempel M., Chan B., Brinkmann M.M. Coevolution pays off: Herpesviruses have the license to escape the DNA sensing pathway. Med. Microbiol. Immunol. 2019;208:495–512. doi: 10.1007/s00430-019-00582-0. PubMed DOI
Adler B., Sattler C., Adler H. Herpesviruses and Their Host Cells: A Successful Liaison. Trends Microbiol. 2017;25:229–241. doi: 10.1016/j.tim.2016.11.009. PubMed DOI
Jarosinski K.W. Interindividual Spread of Herpesviruses. Adv. Anat. Embryol. Cell Biol. 2017;223:195–224. PubMed
Azab W., Dayaram A., Greenwood A.D., Osterrieder N. How Host Specific Are Herpesviruses? Lessons from Herpesviruses Infecting Wild and Endangered Mammals. Annu. Rev. Virol. 2018;5:53–68. doi: 10.1146/annurev-virology-092917-043227. PubMed DOI
Lomonte P. Herpesvirus Latency: On the Importance of Positioning Oneself. Adv. Anat. Embryol. Cell Biol. 2017;223:95–117. PubMed
Cohen J.I. Herpesvirus latency. J. Clin. Investig. 2020;130:3361–3369. doi: 10.1172/JCI136225. PubMed DOI PMC
Connolly S.A., Jardetzky T.S., Longnecker R. The structural basis of herpesvirus entry. Nat. Rev. Microbiol. 2021;19:110–121. doi: 10.1038/s41579-020-00448-w. PubMed DOI PMC
Sadeghipour S., Mathias R.A. Herpesviruses hijack host exosomes for viral pathogenesis. Semin. Cell. Dev. Biol. 2017;67:91–100. doi: 10.1016/j.semcdb.2017.03.005. PubMed DOI
Choi U.Y., Park A., Jung J.U. Double the Trouble When Herpesviruses Join Hands. Cell Host Microbe. 2017;22:5–7. doi: 10.1016/j.chom.2017.06.016. PubMed DOI PMC
Ho D.Y., Enriquez K., Multani A. Herpesvirus Infections Potentiated by Biologics. Infect. Dis. Clin. N. Am. 2020;34:311–339. doi: 10.1016/j.idc.2020.02.006. PubMed DOI
Koyuncu O.O., MacGibeny M.A., Enquist L.W. Latent versus productive infection: The alpha herpesvirus switch. Future Virol. 2018;13:431–443. doi: 10.2217/fvl-2018-0023. PubMed DOI PMC
Lagunoff M. Activation of cellular metabolism during latent Kaposi’s Sarcoma herpesvirus infection. Curr. Opin. Virol. 2016;19:45–49. doi: 10.1016/j.coviro.2016.06.012. PubMed DOI PMC
Šudomová M., Hassan S.T.S. Nutraceutical Curcumin with Promising Protection against Herpesvirus Infections and Their Associated Inflammation: Mechanisms and Pathways. Microorganisms. 2021;9:292. doi: 10.3390/microorganisms9020292. PubMed DOI PMC
Thorley-Lawson D.A. EBV Persistence--Introducing the Virus. Curr. Top. Microbiol. Immunol. 2015;390:151–209. PubMed PMC
Zaman A., Rahaman M.H., Razzaque S. Kaposi’s sarcoma: A computational approach through protein-protein interaction and gene regulatory networks analysis. Virus Genes. 2013;46:242–254. doi: 10.1007/s11262-012-0865-z. PubMed DOI
Li R., Liao G., Nirujogi R.S., Pinto S.M., Shaw P.G., Huang T.C., Wan J., Qian J., Gowda H., Wu X., et al. Phosphoproteomic Profiling Reveals Epstein-Barr Virus Protein Kinase Integration of DNA Damage Response and Mitotic Signaling. PLoS Pathog. 2015;11:e1005346. doi: 10.1371/journal.ppat.1005346. PubMed DOI PMC
Baquero-Pérez B., Whitehouse A. Hsp70 Isoforms Are Essential for the Formation of Kaposi’s Sarcoma-Associated Herpesvirus Replication and Transcription Compartments. PLoS Pathog. 2015;11:e1005274. doi: 10.1371/journal.ppat.1005274. PubMed DOI PMC
Li D.J., Verma D., Mosbruger T., Swaminathan S. CTCF and Rad21 act as host cell restriction factors for Kaposi’s sarcoma-associated herpesvirus (KSHV) lytic replication by modulating viral gene transcription. PLoS Pathog. 2014;10:e1003880. doi: 10.1371/journal.ppat.1003880. PubMed DOI PMC
Li Q., Wilkie A.R., Weller M., Liu X., Cohen J.I. THY-1 Cell Surface Antigen (CD90) Has an Important Role in the Initial Stage of Human Cytomegalovirus Infection. PLoS Pathog. 2015;11:e1004999. doi: 10.1371/journal.ppat.1004999. PubMed DOI PMC
Weekes M.P., Tomasec P., Huttlin E.L., Fielding C.A., Nusinow D., Stanton R.J., Wang E.C.Y., Aicheler R., Murrell I., Wilkinson G.W.G., et al. Quantitative temporal viromics: An approach to investigate host-pathogen interaction. Cell. 2014;157:1460–1472. doi: 10.1016/j.cell.2014.04.028. PubMed DOI PMC
Griffiths S.J., Koegl M., Boutell C., Zenner H.L., Crump C.M., Pica F., Gonzalez O., Friedel C.C., Barry G., Martin K., et al. A systematic analysis of host factors reveals a Med23-interferon-λ regulatory axis against herpes simplex virus type 1 replication. PLoS Pathog. 2013;9:e1003514. doi: 10.1371/journal.ppat.1003514. PubMed DOI PMC
Griffiths S.J. Screening for host proteins with pro- and antiviral activity using high-throughput RNAi. Methods Mol. Biol. 2013;1064:71–90. PubMed
Münz C. Latency and lytic replication in Epstein-Barr virus-associated oncogenesis. Nat. Rev. Microbiol. 2019;17:691–700. doi: 10.1038/s41579-019-0249-7. PubMed DOI
Charostad J., Nakhaie M., Dehghani A., Faghihloo E. The interplay between EBV and KSHV viral products and NF-κB pathway in oncogenesis. Infect. Agents Cancer. 2020;15:62. doi: 10.1186/s13027-020-00317-4. PubMed DOI PMC
Young L.S., Yap L.F., Murray P.G. Epstein-Barr virus: More than 50 years old and still providing surprises. Nat. Rev. Cancer. 2016;16:789–802. doi: 10.1038/nrc.2016.92. PubMed DOI
Epstein M.A., Achong B.G., Barr Y.M. Virus particles in cultured lymphoblasts from Burkitt’s lymphoma. Lancet. 1964;1:702–703. doi: 10.1016/S0140-6736(64)91524-7. PubMed DOI
Epstein M.A., Henle G., Achong B.G., Barr Y.M. Morphological and biological studies on a virus in cultured lymphoblasts from Burkitt’s lymphoma. J. Exp. Med. 1964;121:761–770. doi: 10.1084/jem.121.5.761. PubMed DOI PMC
Farrell P.J. Epstein–Barr virus and cancer. Annu. Rev. Pathol. 2019;14:29–53. doi: 10.1146/annurev-pathmechdis-012418-013023. PubMed DOI
Ciccarese G., Trave I., Herzum A., Parodi A., Drago F. Dermatological manifestations of Epstein-Barr virus systemic infection: A case report and literature review. Int. J. Dermatol. 2020;59:1202–1209. doi: 10.1111/ijd.14887. PubMed DOI
Cui Q., Feng F.T., Xu M., Liu W.S., Yao Y.Y., Xie S.H., Li X.Z., Ye Z.L., Feng Q.S., Chen L.Z., et al. Nasopharyngeal carcinoma risk prediction via salivary detection of host and Epstein-Barr virus genetic variants. Oncotarget. 2016;8:95066–95074. doi: 10.18632/oncotarget.11144. PubMed DOI PMC
Xu M., Cheung C.C., Chow C., Lun S.W., Cheung S.T., Lo K.W. Overexpression of PIN1 enhances cancer growth and aggressiveness with cyclin D1 induction in EBV-associated nasopharyngeal carcinoma. PLoS ONE. 2016;11:e0156833. doi: 10.1371/journal.pone.0156833. PubMed DOI PMC
Wang F.W., Wu X.R., Liu W.J., Liang Y.J., Huang Y.F., Liao Y.J., Shao C.K., Zong Y.S., Mai S.J., Xie D. The nucleotide polymorphisms within the Epstein-Barr virus C and Q promoters from nasopharyngeal carcinoma affect transcriptional activity in vitro. Eur. Arch. Otorhinolaryngol. 2012;269:931–938. doi: 10.1007/s00405-011-1862-x. PubMed DOI
Shen Y., Zhang S., Sun R., Wu T., Qian J. Understanding the interplay between host immunity and Epstein-Barr virus in NPC patients. Emerg. Microbes Infect. 2015;4:20. doi: 10.1038/emi.2015.20. PubMed DOI PMC
Kelly G.L., Stylianou J., Rasaiyaah J., Wei W., Thomas W., Croom-Carter D., Kohler C., Spang R., Woodman C., Kellam P., et al. Different patterns of Epstein-Barr virus latency in endemic Burkitt lymphoma (BL) lead to distinct variants within the BL-associated gene expression signature. J. Virol. 2013;87:2882–2894. doi: 10.1128/JVI.03003-12. PubMed DOI PMC
Kempkes B., Ling P.D. EBNA2 and Its Coactivator EBNA-LP. Curr. Top. Microbiol. Immunol. 2015;391:35–59. PubMed
Frappier L. Contributions of Epstein-Barr nuclear antigen 1 (EBNA1) to cell immortalization and survival. Viruses. 2012;4:1537–1547. doi: 10.3390/v4091537. PubMed DOI PMC
Wang C., Wang H., Zhang Y., Guo W., Long C., Wang J., Liu L., Sun X. Berberine inhibits the proliferation of human nasopharyngeal carcinoma cells via an Epstein-Barr virus nuclear antigen 1-dependent mechanism. Oncol. Rep. 2017;37:2109–2120. doi: 10.3892/or.2017.5489. PubMed DOI
Tsang C.M., Cheung Y.C., Lui V.W., Yip Y.L., Zhang G., Lin V.W., Cheung K.C., Feng Y., Tsao S.W. Berberine suppresses tumorigenicity and growth of nasopharyngeal carcinoma cells by inhibiting STAT3 activation induced by tumor associated fibroblasts. BMC Cancer. 2013;13:619. doi: 10.1186/1471-2407-13-619. PubMed DOI PMC
Tao D., Zhang N., Huang Q., Ge C., Li Q., Li S., Weng K., Guo Q., Sui J., Wang C., et al. Association of Epstein-Barr virus infection with peripheral immune parameters and clinical outcome in advanced nasopharyngeal carcinoma. Sci. Rep. 2020;10:21976. doi: 10.1038/s41598-020-78892-0. PubMed DOI PMC
Hassan S.T.S., Berchová-Bímová K., Petráš J., Hassan K.T.S. Cucurbitacin B interacts synergistically with antibiotics against Staphylococcus aureus clinical isolates and exhibits antiviral activity against HSV-1. S. Afr. J. Bot. 2017;108:90–94. doi: 10.1016/j.sajb.2016.10.001. DOI
Zhou F., Hu J., Dai N., Song L., Lin T., Liu J., Li K., Peng Z., He Y., Liao D.-F. Berberine and ginsenoside Rg3 act synergistically via the MAPK/ERK pathway in nasopharyngeal carcinoma cells. J. Funct. Foods. 2020;66:103802. doi: 10.1016/j.jff.2020.103802. DOI
Park G.B., Park S.H., Kim D., Kim Y.S., Yoon S.H., Hur D.Y. Berberine induces mitochondrial apoptosis of EBV-transformed B cells through p53-mediated regulation of XAF1 and GADD45α. Int. J. Oncol. 2016;49:411–421. doi: 10.3892/ijo.2016.3502. PubMed DOI
Kumar B., Roy A., Veettil M.V., Chandran B. Insight into the Roles of E3 Ubiquitin Ligase c-Cbl, ESCRT Machinery, and Host Cell Signaling in Kaposi’s Sarcoma-Associated Herpesvirus Entry and Trafficking. J. Virol. 2018;92:e01317, e01376. doi: 10.1128/JVI.01376-17. PubMed DOI PMC
Minhas V., Wood C. Epidemiology and transmission of Kaposi’s sarcoma-associated herpesvirus. Viruses. 2014;6:4178–4194. doi: 10.3390/v6114178. PubMed DOI PMC
Ueda K. KSHV Genome Replication and Maintenance in Latency. Adv. Exp. Med. Biol. 2018;1045:299–320. PubMed
Li S., Bai L., Dong J., Sun R., Lan K. Kaposi’s Sarcoma-Associated Herpesvirus: Epidemiology and Molecular Biology. Adv. Exp. Med. Biol. 2017;1018:91–127. PubMed
Schneider J.W., Dittmer D.P. Diagnosis and Treatment of Kaposi Sarcoma. Am. J. Clin. Dermatol. 2017;18:529–539. doi: 10.1007/s40257-017-0270-4. PubMed DOI PMC
Watanabe T., Sugimoto A., Hosokawa K., Fujimuro M. Signal Transduction Pathways Associated with KSHV-Related Tumors. Adv. Exp. Med. Biol. 2018;1045:321–355. PubMed
Abere B., Mamo T.M., Hartmann S., Samarina N., Hage E., Rückert J., Hotop S.K., Büsche G., Schulz T.F. The Kaposi’s sarcoma-associated herpesvirus (KSHV) non-structural membrane protein K15 is required for viral lytic replication and may represent a therapeutic target. PLoS Pathog. 2017;13:e1006639. doi: 10.1371/journal.ppat.1006639. PubMed DOI PMC
Cesarman E., Damania B., Krown S.E., Martin J., Bower M., Whitby D. Kaposi sarcoma. Nat. Rev. Dis. Primers. 2019;5:9. doi: 10.1038/s41572-019-0060-9. PubMed DOI PMC
Shimada K., Hayakawa F., Kiyoi H. Biology and management of primary effusion lymphoma. Blood. 2018;132:1879–1888. doi: 10.1182/blood-2018-03-791426. PubMed DOI
Goto H., Kariya R., Shimamoto M., Kudo E., Taura M., Katano H., Okada S. Antitumor effect of berberine against primary effusion lymphoma via inhibition of NF-κB pathway. Cancer Sci. 2012;103:775–781. doi: 10.1111/j.1349-7006.2012.02212.x. PubMed DOI PMC
Damania B., Münz C. Immunodeficiencies that predispose to pathologies by human oncogenic γ-herpesViruses. FEMS Microbiol. Rev. 2019;43:181–192. doi: 10.1093/femsre/fuy044. PubMed DOI PMC
Tada S., Hamada M., Yura Y. Proteomic Analysis of Secretomes of Oncolytic Herpes Simplex Virus-Infected Squamous Cell Carcinoma Cells. Cancers. 2018;10:28. doi: 10.3390/cancers10020028. PubMed DOI PMC
Liljeqvist J.Å., Tunbäck P., Norberg P. Asymptomatically shed recombinant herpes simplex virus type 1 strains detected in saliva. J. Gen. Virol. 2009;90:559–566. doi: 10.1099/vir.0.007070-0. PubMed DOI
Kameyama T., Haikata K., Nakamura Y., Murase H., Yamamoto S. Shedding of herpes simplex virus type 1 into saliva after surgery for oral and genital or urological cancer patients. Kurume Med. J. 1989;36:117–121. doi: 10.2739/kurumemedj.36.117. PubMed DOI
Nolan A. Interventions for prevention and treatment of herpes simplex virus in cancer patients. Evid. Based Dent. 2009;10:116–117. doi: 10.1038/sj.ebd.6400689. PubMed DOI
Correia A.V., Coêlho M.R., de Oliveira Mendes Cahú G.G., de Almeida Silva J.L., da Mota Vasconcelos Brasil C., de Castro J.F. Seroprevalence of HSV-1/2 and correlation with aggravation of oral mucositis in patients with squamous cell carcinoma of the head and neck region submitted to antineoplastic treatment. Support Care Cancer. 2015;23:2105–2111. doi: 10.1007/s00520-014-2558-8. PubMed DOI
Smith J.W., Torres J.E., Holmquist N.D. Association of Herpes simplex virus (HSV) with cervical cancer by lymphocyte reactivity with HSV-1 and HSV-2 antigens. Am. J. Epidemiol. 1979;110:141–147. doi: 10.1093/oxfordjournals.aje.a112798. PubMed DOI
Thomas F., Elguero E., Brodeur J., Le Goff J., Missé D. Herpes simplex virus type 2 and cancer: A medical geography approach. Infect. Genet. Evol. 2011;11:1239–1242. doi: 10.1016/j.meegid.2011.04.009. PubMed DOI
Parker T.M., Smith E.M., Ritchie J.M., Haugen T.H., Vonka V., Turek L.P., Hamsikova E. Head and neck cancer associated with herpes simplex virus 1 and 2 and other risk factors. Oral Oncol. 2006;42:288–296. doi: 10.1016/j.oraloncology.2005.08.003. PubMed DOI
Schildt E.B., Eriksson M., Hardell L., Magnuson A. Oral infections and dental factors in relation to oral cancer: A Swedish case--control study. Eur. J. Cancer Prev. 1998;7:201–206. doi: 10.1097/00008469-199806000-00004. PubMed DOI
Starr J.R., Daling J.R., Fitzgibbons E.D., Madeleine M.M., Ashley R., Galloway D.A., Schwartz S.M. Serologic evidence of herpes simplex virus 1 infection and oropharyngeal cancer risk. Cancer Res. 2001;61:8459–8464. PubMed
Michaelis M., Doerr H.W., Cinatl J. The story of human cytomegalovirus and cancer: Increasing evidence and open questions. Neoplasia. 2009;11:1–9. doi: 10.1593/neo.81178. PubMed DOI PMC
Ahmed H.G., Suliman R.S.A., Ashankyty I.M., Albieh Z.A., Warille A.A. Role of human Cytomegalovirus in the etiology of nasopharyngeal carcinoma. J. Cancer Res. Ther. 2018;14:583–586. doi: 10.4103/0973-1482.176175. PubMed DOI
Kiprian D., Czarkowska-Paczek B., Wyczalkowska-Tomasik A., Paczek L. Human cytomegalovirus and Epstein-Barr virus infections increase the risk of death in patients with head and neck cancers receiving radiotherapy or radiochemotherapy. Medicine. 2018;97:e13777. doi: 10.1097/MD.0000000000013777. PubMed DOI PMC
Richardson A.K., Walker L.C., Cox B., Rollag H., Robinson B.A., Morrin H., Pearson J.F., Potter J.D., Paterson M., Surcel H.M., et al. Breast cancer and cytomegalovirus. Clin. Transl. Oncol. 2020;22:585–602. doi: 10.1007/s12094-019-02164-1. PubMed DOI
Zhang L., Guo G., Xu J., Sun X., Chen W., Jin J., Hu C., Zhang P., Shen X., Xue X. Human cytomegalovirus detection in gastric cancer and its possible association with lymphatic metastasis. Diagn. Microbiol. Infect. Dis. 2017;88:62–68. doi: 10.1016/j.diagmicrobio.2017.02.001. PubMed DOI
Lawler S.E. Cytomegalovirus and glioblastoma; controversies and opportunities. J. Neurooncol. 2015;123:465–471. doi: 10.1007/s11060-015-1734-0. PubMed DOI
Teo W.H., Chen H.P., Huang J.C., Chan Y.J. Human cytomegalovirus infection enhances cell proliferation, migration and upregulation of EMT markers in colorectal cancer-derived stem cell-like cells. Int. J. Oncol. 2017;51:1415–1426. doi: 10.3892/ijo.2017.4135. PubMed DOI PMC
Golais F., Mrázová V. Human alpha and beta herpesviruses and cancer: Passengers or foes? Folia Microbiol. 2020;65:439–449. doi: 10.1007/s12223-020-00780-x. PubMed DOI
Dziurzynski K., Chang S.M., Heimberger A.B., Kalejta R.F., McGregor Dallas S.R., Smit M., Soroceanu L., Cobbs C.S. HCMV and Gliomas Symposium. Consensus on the role of human cytomegalovirus in glioblastoma. Neuro Oncol. 2012;14:246–255. doi: 10.1093/neuonc/nor227. PubMed DOI PMC
Blaylock R.L. Accelerated cancer aggressiveness by viral oncomodulation: New targets and newer natural treatments for cancer control and treatment. Surg. Neurol. Int. 2019;10:199. doi: 10.25259/SNI_361_2019. PubMed DOI PMC
Chen H.P., Chan Y.J. The oncomodulatory role of human cytomegalovirus in colorectal cancer: Implications for clinical trials. Front. Oncol. 2014;4:314. doi: 10.3389/fonc.2014.00314. PubMed DOI PMC
Hassan S.T.S., Šudomová M., Masarčíková R. Herpes simplex virus infection: An overview of the problem, pharmacologic therapy and dietary measures. Ceska Slov. Farm. 2017;66:95–102. PubMed
Zhao J., Qin C., Liu Y., Rao Y., Feng P. Herpes Simplex Virus and Pattern Recognition Receptors: An Arms Race. Front. Immunol. 2021;11:613799. doi: 10.3389/fimmu.2020.613799. PubMed DOI PMC
Sawtell N.M., Thompson R.L. Alphaherpesvirus Latency and Reactivation with a Focus on Herpes Simplex Virus. Curr. Issues Mol. Biol. 2021;41:267–356. doi: 10.21775/cimb.041.267. PubMed DOI
Song S., Qiu M., Chu Y., Chen D., Wang X., Su A., Wu Z. Downregulation of cellular c-Jun N-terminal protein kinase and NF-κB activation by berberine may result in inhibition of herpes simplex virus replication. Antimicrob. Agents Chemother. 2014;58:5068–5078. doi: 10.1128/AAC.02427-14. PubMed DOI PMC
Chin L.W., Cheng Y.W., Lin S.S., Lai Y.Y., Lin L.Y., Chou M.Y., Chou M.C., Yang C.C. Anti-herpes simplex virus effects of berberine from Coptidis rhizoma, a major component of a Chinese herbal medicine, Ching-Wei-San. Arch. Virol. 2010;155:1933–1941. doi: 10.1007/s00705-010-0779-9. PubMed DOI
Duan Q., Liu T., Yuan P., Huang C., Shao Q., Xu L., Sun J., Huang G., Chen Z. Antiviral effect of Chinese herbal prescription JieZe-1 on adhesion and penetration of VK2/E6E7 with herpes simplex viruses type 2. J. Ethnopharmacol. 2020;249:112405. doi: 10.1016/j.jep.2019.112405. PubMed DOI PMC
Kim J.H., Weeratunga P., Kim M.S., Nikapitiya C., Lee B.H., Uddin M.B., Kim T.H., Yoon J.E., Park C., Ma J.Y., et al. Inhibitory effects of an aqueous extract from Cortex Phellodendri on the growth and replication of broad-spectrum of viruses in vitro and in vivo. BMC Complement. Altern. Med. 2016;16:265. doi: 10.1186/s12906-016-1206-x. PubMed DOI PMC
Wu J.B., Zheng J.R., Lin Z., Li X.Y., Cui P.G. In vitro antiviral activity of a berberine derivant HB-13 against herpes simplex virus. Chin. J. Dermatol. 2007;40:671–673.
Wei H.L., Wang S., Xu F., Xu L.F., Zheng J.R., Chen Y. Evaluation of a 13-hexyl-berberine hydrochloride topical gel formulation. Drug Dev. Ind. Pharm. 2013;39:534–539. doi: 10.3109/03639045.2012.687746. PubMed DOI
Luganini A., Mercorelli B., Messa L., Palù G., Gribaudo G., Loregian A. The isoquinoline alkaloid berberine inhibits human cytomegalovirus replication by interfering with the viral Immediate Early-2 (IE2) protein transactivating activity. Antiviral Res. 2019;164:52–60. doi: 10.1016/j.antiviral.2019.02.006. PubMed DOI
Pignoloni B., Fionda C., Dell’Oste V., Luganini A., Cippitelli M., Zingoni A., Landolfo S., Gribaudo G., Santoni A., Cerboni C. Distinct Roles for Human Cytomegalovirus Immediate Early Proteins IE1 and IE2 in the Transcriptional Regulation of MICA and PVR/CD155 Expression. J. Immunol. 2016;197:4066–4078. doi: 10.4049/jimmunol.1502527. PubMed DOI
Hayashi K., Minoda K., Nagaoka Y., Hayashi T., Uesato S. Antiviral activity of berberine and related compounds against human cytomegalovirus. Bioorg. Med. Chem. Lett. 2007;17:1562–1564. doi: 10.1016/j.bmcl.2006.12.085. PubMed DOI
Bennett J.M., Glaser R., Malarkey W.B., Beversdorf D.Q., Peng J., Kiecolt-Glaser J.K. Inflammation and reactivation of latent herpesviruses in older adults. Brain Behav. Immun. 2012;26:739–746. doi: 10.1016/j.bbi.2011.11.007. PubMed DOI PMC
Cruz-Muñoz M.E., Fuentes-Pananá E.M. Beta and Gamma Human Herpesviruses: Agonistic and Antagonistic Interactions with the Host Immune System. Front Microbiol. 2018;8:2521. doi: 10.3389/fmicb.2017.02521. PubMed DOI PMC
Lobo A.M., Agelidis A.M., Shukla D. Pathogenesis of herpes simplex keratitis: The host cell response and ocular surface sequelae to infection and inflammation. Ocul. Surf. 2019;17:40–49. doi: 10.1016/j.jtos.2018.10.002. PubMed DOI PMC
Islam S.M.S., Sohn S. HSV-Induced Systemic Inflammation as an Animal Model for Behçet’s Disease and Therapeutic Applications. Viruses. 2018;10:511. doi: 10.3390/v10090511. PubMed DOI PMC
Johnston C., Corey L. Current Concepts for Genital Herpes Simplex Virus Infection: Diagnostics and Pathogenesis of Genital Tract Shedding. Clin. Microbiol. Rev. 2016;29:149–161. doi: 10.1128/CMR.00043-15. PubMed DOI PMC
Alomari N., Totonchy J. Cytokine-Targeted Therapeutics for KSHV-Associated Disease. Viruses. 2020;12:1097. doi: 10.3390/v12101097. PubMed DOI PMC
Polizzotto M.N., Uldrick T.S., Wyvill K.M., Aleman K., Marshall V., Wang V., Whitby D., Pittaluga S., Jaffe E.S., Millo C., et al. Clinical Features and Outcomes of Patients with Symptomatic Kaposi Sarcoma Herpesvirus (KSHV)-associated Inflammation: Prospective Characterization of KSHV Inflammatory Cytokine Syndrome (KICS) Clin. Infect. Dis. 2016;62:730–738. doi: 10.1093/cid/civ996. PubMed DOI PMC
Shrivastava G., León-Juárez M., García-Cordero J., Meza-Sánchez D.E., Cedillo-Barrón L. Inflammasomes and its importance in viral infections. Immunol. Res. 2016;64:1101–1117. doi: 10.1007/s12026-016-8873-z. PubMed DOI
Liu T., Zhang L., Joo D., Sun S.C. NF-κB signaling in inflammation. Signal Transduct. Target. Ther. 2017;2:17023. doi: 10.1038/sigtrans.2017.23. PubMed DOI PMC
Carty M., Guy C., Bowie A.G. Detection of viral infections by innate immunity. Biochem. Pharmacol. 2020;183:114316. doi: 10.1016/j.bcp.2020.114316. PubMed DOI
Crusz S.M., Balkwill F.R. Inflammation and cancer: Advance and new agents. Nat. Rev. Clin. Oncol. 2015;12:584–596. doi: 10.1038/nrclinonc.2015.105. PubMed DOI
Murata M. Inflammation and cancer. Environ. Health Prev. Med. 2018;23:50. doi: 10.1186/s12199-018-0740-1. PubMed DOI PMC
Zou K., Li Z., Zhang Y., Zhang H.Y., Li B., Zhu W.L., Shi J.Y., Jia Q., Li Y.M. Advances in the study of berberine and its derivatives: A focus on anti-inflammatory and anti-tumor effects in the digestive system. Acta Pharmacol. Sin. 2017;38:157–167. doi: 10.1038/aps.2016.125. PubMed DOI PMC
Ehteshamfar S.M., Akhbari M., Afshari J.T., Seyedi M., Nikfar B., Shapouri-Moghaddam A., Ghanbarzadeh E., Momtazi-Borojeni A.A. Anti-inflammatory and immune-modulatory impacts of berberine on activation of autoreactive T cells in autoimmune inflammation. J. Cell. Mol. Med. 2020;24:13573–13588. doi: 10.1111/jcmm.16049. PubMed DOI PMC
Di Pierro F., Bertuccioli A., Giuberti R., Saponara M., Ivaldi L. Role of a berberine-based nutritional supplement in reducing diarrhea in subjects with functional gastrointestinal disorders. Minerva Gastroenterol. Dietol. 2020;66:29–34. doi: 10.23736/S1121-421X.19.02649-7. PubMed DOI
Funk R.S., Singh R.K., Winefield R.D., Kandel S.E., Ruisinger J.F., Moriarty P.M., Backes J.M. Variability in Potency among Commercial Preparations of Berberine. J. Diet. Suppl. 2018;15:343–351. doi: 10.1080/19390211.2017.1347227. PubMed DOI PMC
Lan J., Zhao Y., Dong F., Yan Z., Zheng W., Fan J., Sun G. Meta-analysis of the effect and safety of berberine in the treatment of type 2 diabetes mellitus, hyperlipemia and hypertension. J. Ethnopharmacol. 2015;161:69–81. doi: 10.1016/j.jep.2014.09.049. PubMed DOI
Dong H., Wang N., Zhao L., Lu F. Berberine in the treatment of type 2 diabetes mellitus: A systemic review and meta-analysis. Evid. Based Complement. Alternat. Med. 2012;2012:591654. doi: 10.1155/2012/591654. PubMed DOI PMC
Gupta P.K., Gurley B.J., Barone G., Hendrickson H.P. Clinical Pharmacokinetics and Metabolism of Berberine and Hydrastine Following an Oral Dose of Goldenseal Supplement. Planta Med. 2010;76:110. doi: 10.1055/s-0030-1251872. DOI
Gupta P.K., Hubbard M., Gurley B., Hendrickson H.P. Validation of a liquid chromatography-tandem mass spectrometric assay for the quantitative determination of hydrastine and berberine in human serum. J. Pharm. Biomed. Anal. 2009;49:1021–1026. doi: 10.1016/j.jpba.2009.01.036. PubMed DOI
Domitrović R., Cvijanović O., Pernjak-Pugel E., Skoda M., Mikelić L., Crnčević-Orlić Z. Berberine exerts nephroprotective effect against cisplatin-induced kidney damage through inhibition of oxidative/nitrosative stress, inflammation, autophagy and apoptosis. Food Chem. Toxicol. 2013;62:397–406. doi: 10.1016/j.fct.2013.09.003. PubMed DOI
Germoush M.O., Mahmoud A.M. Berberine mitigates cyclophosphamide-induced hepatotoxicity by modulating antioxidant status and inflammatory cytokines. J. Cancer Res. Clin. Oncol. 2014;140:1103–1109. doi: 10.1007/s00432-014-1665-8. PubMed DOI PMC
Hao G., Yu Y., Gu B., Xing Y., Xue M. Protective effects of berberine against doxorubicin-induced cardiotoxicity in rats by inhibiting metabolism of doxorubicin. Xenobiotica. 2015;45:1024–1029. doi: 10.3109/00498254.2015.1034223. PubMed DOI
Chitra P., Saiprasad G., Manikandan R., Sudhandiran G. Berberine attenuates bleomycin induced pulmonary toxicity and fibrosis via suppressing NF-κB dependant TGF-β activation: A biphasic experimental study. Toxicol. Lett. 2013;219:178–193. doi: 10.1016/j.toxlet.2013.03.009. PubMed DOI
Yin J., Xing H., Ye J. Efficacy of berberine in patients with type 2 diabetes mellitus. Metabolism. 2008;57:712–717. doi: 10.1016/j.metabol.2008.01.013. PubMed DOI PMC
Zhi D., Feng P.F., Sun J.L., Guo F., Zhang R., Zhao X., Li B.X. The enhancement of cardiac toxicity by concomitant administration of Berberine and macrolides. Eur. J. Pharm. Sci. 2015;76:149–155. doi: 10.1016/j.ejps.2015.05.009. PubMed DOI
Feng P., Zhao L., Guo F., Zhang B., Fang L., Zhan G., Xu X., Fang Q., Liang Z., Li B. The enhancement of cardiotoxicity that results from inhibition of CYP 3A4 activity and hERG channel by berberine in combination with statins. Chem. Biol. Interact. 2018;293:115–123. doi: 10.1016/j.cbi.2018.07.022. PubMed DOI
Singh N., Sharma B. Toxicological Effects of Berberine and Sanguinarine. Front. Mol. Biosci. 2018;5:21. doi: 10.3389/fmolb.2018.00021. PubMed DOI PMC
Habtemariam S. Berberine pharmacology and the gut microbiota: A hidden therapeutic link. Pharmacol Res. 2020;155:104722. doi: 10.1016/j.phrs.2020.104722. PubMed DOI
Hou Q., He W.J., Wu Y.S., Hao H.J., Xie X.Y., Fu X.B. Berberine: A Traditional Natural Product with Novel Biological Activities. Altern. Ther. Health Med. 2020;26:20–27. PubMed
Gaba S., Saini A., Singh G., Monga V. An insight into the medicinal attributes of berberine derivatives: A review. Bioorg. Med. Chem. 2021;38:116143. doi: 10.1016/j.bmc.2021.116143. PubMed DOI
Wang L., Li H., Wang S., Liu R., Wu Z., Wang C., Wang Y., Chen M. Enhancing the antitumor activity of berberine hydrochloride by solid lipid nanoparticle encapsulation. AAPS PharmSciTech. 2014;15:834–844. doi: 10.1208/s12249-014-0112-0. PubMed DOI PMC
Wang Z.P., Wu J.B., Chen T.S., Zhou Q., Wang Y.F. Biophotonics and Immune Responses X. SIPE; Bellingham, WA, USA: 2015. In vitro and in vivo antitumor efficacy of berberine-nanostructured lipid carriers against H22 tumor.
Lin Y.C., Kuo J.Y., Hsu C.C., Tsai W.C., Li W.C., Yu M.C., Wen H.W. Optimizing manufacture of liposomal berberine with evaluation of its antihepatoma effects in a murine xenograft model. Int. J. Pharm. 2013;441:381–388. doi: 10.1016/j.ijpharm.2012.11.017. PubMed DOI
Nguyen T.X., Huang L., Liu L., Elamin Abdalla A.M., Gauthier M., Yang G. Chitosan-coated nano-liposomes for the oral delivery of berberine hydrochloride. J. Mater. Chem. B. 2014;2:7149–7159. doi: 10.1039/C4TB00876F. PubMed DOI
Mirhadi E., Rezaee M., Malaekeh-Nikouei B. Nano strategies for berberine delivery, a natural alkaloid of Berberis. Biomed. Pharmacother. 2018;104:465–473. doi: 10.1016/j.biopha.2018.05.067. PubMed DOI
Majidzadeh H., Araj-Khodaei M., Ghaffari M., Torbati M., Ezzati Nazhad Dolatabadi J., Hamblin M.R. Nano-based delivery systems for berberine: A modern anti-cancer herbal medicine. Colloids Surf. B Biointerfaces. 2020;194:111188. doi: 10.1016/j.colsurfb.2020.111188. PubMed DOI
Gao J., Fan D., Song P., Zhang S., Liu X. Preparation and application of pH-responsive composite hydrogel beads as potential delivery carrier candidates for controlled release of berberine hydrochloride. R. Soc. Open Sci. 2020;7:200676. doi: 10.1098/rsos.200676. PubMed DOI PMC
Yan C., Liang J., Fang H., Meng X., Chen J., Zhong Z., Liu Q., Hu H., Zhang X. Fabrication and Evaluation of Silk Sericin-Derived Hydrogel for the Release of the Model Drug Berberine. Gels. 2021;7:23. doi: 10.3390/gels7010023. PubMed DOI PMC
Brandariz-Nuñez A., Liu T., Du T., Evilevitch A. Pressure-driven release of viral genome into a host nucleus is a mechanism leading to herpes infection. Elife. 2019;8:e47212. doi: 10.7554/eLife.47212. PubMed DOI PMC
Bauer D.W., Li D., Huffman J., Homa F.L., Wilson K., Leavitt J.C., Casjens S.R., Baines J., Evilevitch A. Exploring the Balance between DNA Pressure and Capsid Stability in Herpesviruses and Phages. J. Virol. 2015;89:9288–9298. doi: 10.1128/JVI.01172-15. PubMed DOI PMC
Brandariz-Nuñez A., Robinson S.J., Evilevitch A. Pressurized DNA state inside herpes capsids-A novel antiviral target. PLoS Pathog. 2020;16:e1008604. doi: 10.1371/journal.ppat.1008604. PubMed DOI PMC
Van Diemen F.R., Kruse E.M., Hooykaas M.J., Bruggeling C.E., Schürch A.C., van Ham P.M., Imhof S.M., Nijhuis M., Wiertz E.J., Lebbink R.J. CRISPR/Cas9-Mediated Genome Editing of Herpesviruses Limits Productive and Latent Infections. PLoS Pathog. 2016;12:e1005701. doi: 10.1371/journal.ppat.1005701. PubMed DOI PMC
Van Diemen F.R., Lebbink R.J. CRISPR/Cas9, a powerful tool to target human herpesViruses. Cell Microbiol. 2017;19:2. doi: 10.1111/cmi.12694. PubMed DOI
Chen Y.C., Sheng J., Trang P., Liu F. Potential Application of the CRISPR/Cas9 System against Herpesvirus Infections. Viruses. 2018;10:291. doi: 10.3390/v10060291. PubMed DOI PMC
Tumor Viruses and Their Associated Cancers: Remain on the Track with the Latest Advances