Biological Evaluation and Molecular Docking of Protocatechuic Acid from Hibiscus sabdariffa L. as a Potent Urease Inhibitor by an ESI-MS Based Method
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
29019930
PubMed Central
PMC6151788
DOI
10.3390/molecules22101696
PII: molecules22101696
Knihovny.cz E-zdroje
- Klíčová slova
- ESI-Mass spectrometry, Hibiscus sabdariffa L., cytotoxicity, molecular docking, protocatechuic acid, urease inhibitors,
- MeSH
- buněčné linie MeSH
- Hibiscus chemie MeSH
- hmotnostní spektrometrie s elektrosprejovou ionizací MeSH
- hydroxybenzoáty chemie MeSH
- kyseliny hydroxamové chemie MeSH
- lidé MeSH
- simulace molekulového dockingu metody MeSH
- ureasa antagonisté a inhibitory MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- acetohydroxamic acid MeSH Prohlížeč
- hydroxybenzoáty MeSH
- kyseliny hydroxamové MeSH
- protocatechuic acid MeSH Prohlížeč
- ureasa MeSH
Studies on enzyme inhibition remain a crucial area in drug discovery since these studies have led to the discoveries of new lead compounds useful in the treatment of several diseases. In this study, protocatechuic acid (PCA), an active compound from Hibiscus sabdariffa L. has been evaluated for its inhibitory properties against jack bean urease (JBU) as well as its possible toxic effect on human gastric epithelial cells (GES-1). Anti-urease activity was evaluated by an Electrospray Ionization-Mass Spectrometry (ESI-MS) based method, while cytotoxicity was assayed by the MTT method. PCA exerted notable anti-JBU activity compared with that of acetohydroxamic acid (AHA), with IC50 values of 1.7 and 3.2 µM, respectively. PCA did not show any significant cytotoxic effect on (GES-1) cells at concentrations ranging from 1.12 to 3.12 µM. Molecular docking study revealed high spontaneous binding ability of PCA to the active site of urease. Additionally, the anti-urease activity was found to be related to the presence of hydroxyl moieties of PCA. This study presents PCA as a natural urease inhibitor, which could be used safely in the treatment of diseases caused by urease-producing bacteria.
Zobrazit více v PubMed
Mazzei L., Cianci M., Musiani F., Ciurli S. Inactivation of urease by 1,4-benzoquinone: Chemistry at the protein surface. Dalton Trans. 2016;45:5455–5459. doi: 10.1039/C6DT00652C. PubMed DOI
Taha M., Ismail N.H., Imran S., Wadood A., Rahim F., Riaz M. Synthesis of potent urease inhibitors based on disulfide scaffold and their molecular docking studies. Bioorg. Med. Chem. 2015;23:7211–7218. doi: 10.1016/j.bmc.2015.10.017. PubMed DOI
Konieczna I., Zarnowiec P., Kwinkowski M., Kolesinska B., Fraczyk J., Kaminski Z., Kaca W. Bacterial urease and its role in long-lasting human diseases. Curr. Protein Pept. 2012;13:789–806. doi: 10.2174/138920312804871094. PubMed DOI PMC
Awllia J.A.J., Sara A., Wahab A.-T., Al-Ghamdi M., Rasheed S., Huwait E., Iqbal Choudhary M. Discovery of new inhibitors of urease enzyme: A study using STD-NMR spectroscopy. Lett. Drug Des. Discov. 2015;12:819–827. doi: 10.2174/1570180812666150520001629. DOI
Kosikowska P., Berlicki Ł. Urease inhibitors as potential drugs for gastric and urinary tract infections: A patent review. Expert Opin. Ther. Pat. 2011;21:945–957. doi: 10.1517/13543776.2011.574615. PubMed DOI
Follmer C.J. Ureases as a target for the treatment of gastric and urinary infections. Clin. Pathol. 2010;63:424–430. doi: 10.1136/jcp.2009.072595. PubMed DOI
Mobley H.L., Island M.D., Hausinger R.P. Molecular biology of microbial ureases. Microbiol. Rev. 1995;59:451–480. PubMed PMC
Hassan S.T.S., Žemlička M. Plant-derived urease inhibitors as alternative chemotherapeutic agents. Arch. Pharm. 2016;349:507–522. doi: 10.1002/ardp.201500019. PubMed DOI
Ibrar A., Khan I., Abbas N. Structurally diversified heterocycles and related privileged scaffolds as potential urease inhibitors: A brief overview. Arch. Pharm. 2013;346:423–446. doi: 10.1002/ardp.201300041. PubMed DOI
Tanaka T., Kawase M., Tani S. Urease inhibitory activity of simple α,β-unsaturated ketones. Life Sci. 2003;73:2985–2990. doi: 10.1016/S0024-3205(03)00708-2. PubMed DOI
Islam N.U., Amin R., Shahid M., Amin M., Zaib S., Iqbal J. A multi-target therapeutic potential of Prunus domestica gum stabilized nanoparticles exhibited prospective anticancer, antibacterial, urease-inhibition, anti-inflammatory and analgesic properties. BMC Complement. Altern. Med. 2017;17:276. doi: 10.1186/s12906-017-1791-3. PubMed DOI PMC
Modolo L.V., de Souza A.X., Horta L.P., Araujo D.P., de Fátima Â. An overview on the potential of natural products as ureases inhibitors: A review. J. Adv. Res. 2015;6:35–44. doi: 10.1016/j.jare.2014.09.001. PubMed DOI PMC
Saeed A., Mahesar P.A., Channar P.A., Larik F.A., Abbas Q., Hassan M., Raza H., Seo S.Y. Hybrid pharmacophoric approach in the design and synthesis of coumarin linked pyrazolinyl as urease inhibitors, kinetic mechanism and molecular docking. Chem. Biodivers. 2017;14:e1700035. doi: 10.1002/cbdv.201700035. PubMed DOI
Mazzei L., Cianci M., Contaldo U., Musiani F., Ciurli S. Urease inhibition in the presence of N-(n-Butyl) thiophosphoric triamide, a suicide substrate: Structure and kinetics. Biochemistry. 2017;56:5391–5404. doi: 10.1021/acs.biochem.7b00750. PubMed DOI
You Z., Yu H., Zheng B., Zhang C., Lv C., Li K., Pan L. Syntheses, structures, and inhibition studies of Jack bean urease by copper(II) complexes derived from a tridentate hydrazone ligand. Inorg. Chim. Acta. 2017 doi: 10.1016/j.ica.2017.09.011. in press. DOI
Deng H.H., Hong G.L., Lin F.L., Liu A.L., Xia X.H., Chen W. Colorimetric detection of urea, urease, and urease inhibitor based on the peroxidase-like activity of gold nanoparticles. Anal. Chim. Acta. 2016;915:74–80. doi: 10.1016/j.aca.2016.02.008. PubMed DOI
Hassan S.T.S., Šudomová M. The development of urease inhibitors: What opportunities exist for better treatment of helicobacter pylori infection in children? Children. 2017;4:2. doi: 10.3390/children4010002. PubMed DOI PMC
Hassan S.T.S., Berchová K., Šudomová M. Antimicrobial, antiparasitic and anticancer properties of Hibiscus sabdariffa (L.) and its phytochemicals: In vitro and in vivo studies. Ceska Slov. Farm. 2016;65:10–14. PubMed
Da-Costa-Rocha I., Bonnlaender B., Sievers H., Pischel I., Heinrich M. Hibiscus sabdariffa L.—A phytochemical and pharmacological review. Food Chem. 2014;165:424–443. doi: 10.1016/j.foodchem.2014.05.002. PubMed DOI
Hopkins A.L., Lamm M.G., Funk J.L., Ritenbaugh C. Hibiscus sabdariffa L. in the treatment of hypertension and hyperlipidemia: A comprehensive review of animal and human studies. Fitoterapia. 2013;85:84–94. doi: 10.1016/j.fitote.2013.01.003. PubMed DOI PMC
Hassan S.T.S., Berchová K., Majerová M., Pokorná M., Švajdlenka E. In vitro synergistic effect of Hibiscus sabdariffa aqueous extract in combination with standard antibiotics against Helicobacter pylori clinical isolates. Pharm. Biol. 2016;54:1736–1740. doi: 10.3109/13880209.2015.1126618. PubMed DOI
Hassan S.T.S., Švajdlenka E., Berchová-Bímová K. Hibiscus sabdariffa L. and its bioactive constituents exhibit antiviral activity against HSV-2 and anti-enzymatic properties against urease by an ESI-MS based assay. Molecules. 2017;22:722. doi: 10.3390/molecules22050722. PubMed DOI PMC
Khan A.K., Rashid R., Fatima N., Mahmood S., Mir S., Khan S., Jabeen N., Murtaza G. Pharmacological activities of protocatechuic acid. Acta Pol. Pharm. 2015;72:643–650. PubMed
Semaming Y., Pannengpetch P., Chattipakorn S.C., Chattipakorn N. Pharmacological properties of protocatechuic Acid and its potential roles as complementary medicine. Evid. Based Complement. Altern. Med. 2015;2015:593902. doi: 10.1155/2015/593902. PubMed DOI PMC
Kakkar S., Bais S. A review on protocatechuic acid and its pharmacological potential. ISRN Pharmacol. 2014;2014:952943. doi: 10.1155/2014/952943. PubMed DOI PMC
Tanaka T., Kawase M., Tani S. Alpha-hydroxyketones as inhibitors of urease. Bioorg. Med. Chem. 2004;12:501–505. doi: 10.1016/j.bmc.2003.10.017. PubMed DOI
Scheurer M., Brauch H.J., Schmidt C.K., Sacher F., Zerulla W., Barth T., Dressel J., Erhardt K., Locquenghien K.H., Pasda G. Occurrence and fate of nitrification and urease inhibitors in the aquatic environment. Environ. Sci. Process. Impacts. 2016;34:79–84. PubMed
Krajewska B., Zaborska W., Chudy M. Multi-step analysis of Hg2+ ion inhibition of jack bean urease. J. Inorg. Biochem. 2004;98:1160–1168. doi: 10.1016/j.jinorgbio.2004.03.014. PubMed DOI
Lin H.H., Chen J.H., Chou F.P., Wang C.J. Protocatechuic acid inhibits cancer cell metastasis involving the down-regulation of Ras/Akt/NF-κB pathway and MMP-2 production by targeting RhoB activation. Br. J. Pharmacol. 2011;162:237–254. doi: 10.1111/j.1476-5381.2010.01022.x. PubMed DOI PMC
Lin H.H., Chen J.H., Huang C.C., Wang C.J. Apoptotic effect of 3,4-dihydroxybenzoic acid on human gastric carcinoma cells involving JNK/p38 MAPK signaling activation. Int. J. Cancer. 2007;120:2306–2316. doi: 10.1002/ijc.22571. PubMed DOI
Vitaglione P., Donnarumma G., Napolitano A., Galvano F., Gallo A., Scalfi L., Fogliano V. Protocatechuic acid is the major human metabolite of cyanidin-glucosides. J. Nutr. 2007;137:2043–2048. PubMed
Chun O.K., Chung S.J., Song W.O. Estimated dietary flavonoid intake and major food sources of U.S. adults. J. Nutr. 2007;137:1244–1252. PubMed
Kay C.D., Mazza G., Holub B.J., Wang J. Anthocyanin metabolites in human urine and serum. Br. J. Nutr. 2004;91:933–942. doi: 10.1079/BJN20041126. PubMed DOI
Filiz E., Vatansever R., Ozyigit I.I. Molecular docking of Glycine max and Medicago truncatula ureases with urea; bioinformatics approaches. Mol. Biol. Rep. 2016;43:129–140. doi: 10.1007/s11033-016-3945-7. PubMed DOI
Amtul Z., Rahman A.U., Siddiqui R.A., Choudhary M.I. Chemistry and mechanism of urease inhibition. Curr. Med. Chem. 2002;9:1323–1348. doi: 10.2174/0929867023369853. PubMed DOI
Farrugia M.A., Macomber L., Hausinger R.P. Biosynthesis of the urease metallocenter. J. Biol. Chem. 2013;288:3178–3185. doi: 10.1074/jbc.R112.446526. PubMed DOI PMC
Chen Y.C. Beware of docking! Trends Pharmacol. Sci. 2015;36:78–95. doi: 10.1016/j.tips.2014.12.001. PubMed DOI
Shelley J.C., Cholleti A., Frye L.L., Greenwood J.R., Timlin M.R., Uchimaya M. Epik: A software program for pKa prediction and protonation state generation for drug-like molecules. J. Comput. Aided Mol. Des. 2007;21:681–691. doi: 10.1007/s10822-007-9133-z. PubMed DOI
Xian Y.F., Lin Z.X., Mao Q.Q., Hu Z., Zhao M., Che C.T., Ip S.P. Bioassay-guided isolation of neuroprotective compounds from Uncaria rhynchophylla against β-amyloid-induced neurotoxicity. Evid. Based Complement Altern. Med. 2012;2012:802625. doi: 10.1155/2012/802625. PubMed DOI PMC
Trott O., Olson A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010;31:455–461. doi: 10.1002/jcc.21334. PubMed DOI PMC
Musiani F., Arnofi E., Casadio R., Ciurli S. Structure-based computational study of the catalytic and inhibition mechanisms of urease. J. Biol. Inorg. Chem. 2001;6:300–314. doi: 10.1007/s007750000204. PubMed DOI
Dassault Systèmes BIOVIA . Discovery Studio Modeling Environment. Dessault Systemes; San Diego, CA, USA: 2017. Release 2017.
DeLano W.L. The PyMOL Molecular Graphics System. DeLano Scientific; San Carlos, CA, USA: 2002.
Berberine in Human Oncogenic Herpesvirus Infections and Their Linked Cancers