GalNAc-T14 may Contribute to Production of Galactose-Deficient Immunoglobulin A1, the Main Autoantigen in IgA Nephropathy

. 2023 May ; 8 (5) : 1068-1075. [epub] 20230213

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37180502

Grantová podpora
R01 AI149431 NIAID NIH HHS - United States
R01 DK078244 NIDDK NIH HHS - United States
R01 DK082753 NIDDK NIH HHS - United States
R56 DK078244 NIDDK NIH HHS - United States

Odkazy

PubMed 37180502
PubMed Central PMC10166743
DOI 10.1016/j.ekir.2023.02.1072
PII: S2468-0249(23)01169-5
Knihovny.cz E-zdroje

INTRODUCTION: Immunoglobulin A1 (IgA1) with galactose-deficient O-glycans (Gd-IgA1) play a key role in the pathogenesis of IgA nephropathy (IgAN). Mucosal-tissue infections increase IL-6 production and, in patients with IgAN, are often associated with macroscopic hematuria. IgA1-secreting cell lines derived from the circulation of patients with IgAN, compared to those of healthy controls (HCs), produce more IgA1 that has O-glycans with terminal or sialylated N-acetylgalactosamine (GalNAc). GalNAc residues are added to IgA1 hinge region by some of the 20 GalNAc transferases, the O-glycosylation-initiating enzymes. Expression of GALNT2, encoding GalNAc-T2, the main enzyme initiating IgA1 O-glycosylation, is similar in cells derived from patients with IgAN and HCs. In this report, we extend our observations of GALNT14 overexpression in IgA1-producing cell lines from patients with IgAN. METHODS: GALNT14 expression was analyzed in peripheral blood mononuclear cells (PBMCs) from patients with IgAN and from HCs. Moreover, the effect of GALNT14 overexpression or knock-down on Gd-IgA1 production in Dakiki cells was assessed. RESULTS: GALNT14 was overexpressed in PBMCs from patients with IgAN. IL-6 increased GALNT14 expression in PBMCs from patients with IgAN and HCs. We used IgA1-producing cell line Dakiki, a previously reported model of Gd-IgA1-producing cells, and showed that overexpression of GalNAc-T14 enhanced galactose deficiency of IgA1, whereas siRNA-mediated GalNAc-T14 knock-down reduced it. GalNAc-T14 was localized in trans-Golgi network, as expected. CONCLUSIONS: Overexpression of GALNT14 due to inflammatory signals during mucosal infections may contribute to overproduction of Gd-IgA1 in patients with IgAN.

Zobrazit více v PubMed

Wyatt R.J., Julian B.A. IgA nephropathy. N Engl J Med. 2013;368:2402–2414. doi: 10.1056/NEJMra1206793. PubMed DOI

Knoppova B., Reily C., Maillard N., et al. The origin and activities of IgA1-containing immune complexes in IgA nephropathy. Front Immunol. 2016;7:117. doi: 10.3389/fimmu.2016.00117. PubMed DOI PMC

Mestecky J., Raska M., Julian B.A., et al. IgA nephropathy: molecular mechanisms of the disease. Annu Rev Pathol. 2013;8:217–240. doi: 10.1146/annurev-pathol-011110-130216. PubMed DOI

Mestecky J., Novak J., Moldoveanu Z., Raska M. IgA nephropathy enigma. Clin Immunol. 2016;172:72–77. doi: 10.1016/j.clim.2016.07.011. PubMed DOI PMC

Takahashi K., Smith A.D., Poulsen K., et al. Naturally occurring structural isomers in serum IgA1 O-glycosylation. J Proteome Res. 2012;11:692–702. doi: 10.1021/pr200608q. PubMed DOI PMC

Ohyama Y., Renfrow M.B., Novak J., Takahashi K. Aberrantly glycosylated IgA1 in IgA nephropathy: what we know and what we don’t know. J Clin Med. 2021;10:3467. doi: 10.3390/jcm10163467. PubMed DOI PMC

Novak J., Moldoveanu Z., Renfrow M.B., et al. IgA nephropathy and Henoch-Schoenlein purpura nephritis: aberrant glycosylation of IgA1, formation of IgA1-containing immune complexes, and activation of mesangial cells. Contrib Nephrol. 2007;157:134–138. doi: 10.1159/000102455. PubMed DOI

Novak J., Julian B.A., Mestecky J., Renfrow M.B. Glycosylation of IgA1 and pathogenesis of IgA nephropathy. Semin Immunopathol. 2012;34:365–382. doi: 10.1007/s00281-012-0306-z. PubMed DOI

Tomana M., Novak J., Julian B.A., Matousovic K., Konecny K., Mestecky J. Circulating immune complexes in IgA nephropathy consist of IgA1 with galactose-deficient hinge region and antiglycan antibodies. J Clin Invest. 1999;104:73–81. doi: 10.1172/JCI5535. PubMed DOI PMC

Moldoveanu Z., Wyatt R.J., Lee J.Y., et al. Patients with IgA nephropathy have increased serum galactose-deficient IgA1 levels. Kidney Int. 2007;71:1148–1154. doi: 10.1038/sj.ki.5002185. PubMed DOI

Gharavi A.G., Moldoveanu Z., Wyatt R.J., et al. Aberrant IgA1 glycosylation is inherited in familial and sporadic IgA nephropathy. J Am Soc Nephrol. 2008;19:1008–1014. doi: 10.1681/ASN.2007091052. PubMed DOI PMC

Kiryluk K., Moldoveanu Z., Sanders J.T., et al. Aberrant glycosylation of IgA1 is inherited in both pediatric IgA nephropathy and Henoch-Schonlein purpura nephritis. Kidney Int. 2011;80:79–87. doi: 10.1038/ki.2011.16. PubMed DOI PMC

Zhao N., Hou P., Lv J., et al. The level of galactose-deficient IgA1 in the sera of patients with IgA nephropathy is associated with disease progression. Kidney Int. 2012;82:790–796. doi: 10.1038/ki.2012.197. PubMed DOI PMC

Berthoux F., Suzuki H., Thibaudin L., et al. Autoantibodies targeting galactose-deficient IgA1 associate with progression of IgA nephropathy. J Am Soc Nephrol. 2012;23:1579–1587. doi: 10.1681/ASN.2012010053. PubMed DOI PMC

Suzuki H., Raska M., Yamada K., et al. Cytokines alter IgA1 O-glycosylation by dysregulating C1GalT1 and ST6GalNAc-II enzymes. J Biol Chem. 2014;289:5330–5339. doi: 10.1074/jbc.M113.512277. PubMed DOI PMC

Raska M., Moldoveanu Z., Suzuki H., et al. Identification and characterization of CMP-NeuAc:GalNAc-IgA1 alpha2,6-sialyltransferase in IgA1-producing cells. J Mol Biol. 2007;369:69–78. doi: 10.1016/j.jmb.2007.03.002. PubMed DOI PMC

Stuchlova Horynova M., Vrablikova A., Stewart T.J., et al. N-acetylgalactosaminide α2,6-sialyltransferase II is a candidate enzyme for sialylation of galactose-deficient IgA1, the key autoantigen in IgA nephropathy. Nephrol Dial Transplant. 2015;30:234–238. doi: 10.1093/ndt/gfu308. PubMed DOI PMC

Takahashi K., Raska M., Stuchlova Horynova M., et al. Enzymatic sialylation of IgA1 O-glycans: implications for studies of IgA nephropathy. PLoS One. 2014;9 doi: 10.1371/journal.pone.0099026. PubMed DOI PMC

Stewart T.J., Takahashi K., Whitaker R.H., et al. IgA1 hinge-region clustered glycan fidelity is established early during semi-ordered glycosylation by GalNAc-T2. Glycobiology. 2019;29:543–556. doi: 10.1093/glycob/cwz007. PubMed DOI PMC

Horynova M., Takahashi K., Hall S., Renfrow M.B., Novak J., Raška M. Production of N-acetylgalactosaminyl-transferase 2 (GalNAc-T2) fused with secretory signal Igkappa in insect cells. Protein Expr Purif. 2012;81:175–180. doi: 10.1016/j.pep.2011.10.006. PubMed DOI PMC

Stewart T.J., Takahashi K., Xu N., et al. Quantitative assessment of successive carbohydrate additions to the clustered O-glycosylation sites of IgA1 by glycosyltransferases. Glycobiology. 2021;31:540–556. doi: 10.1093/glycob/cwaa111. PubMed DOI PMC

Iwasaki H., Zhang Y., Tachibana K., et al. Initiation of O-glycan synthesis in IgA1 hinge region is determined by a single enzyme, UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase 2. J Biol Chem. 2003;278:5613–5621. doi: 10.1074/jbc.M211097200. PubMed DOI

Suzuki H., Moldoveanu Z., Hall S., et al. IgA1-secreting cell lines from patients with IgA nephropathy produce aberrantly glycosylated IgA1. J Clin Invest. 2008;118:629–639. doi: 10.1172/JCI33189. PubMed DOI PMC

Raska M., Yamada K., Horynova M., et al. Role of GalNAc-transferases in the synthesis of aberrant IgA1 O-glycans in IgA nephropathy. J Am Soc Nephrol. 2011;22:625A.

Levey A.S., Stevens L.A., Schmid C.H., et al. A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009;150:604–612. doi: 10.7326/0003-4819-150-9-200905050-00006. PubMed DOI PMC

Zachova K., Jemelkova J., Kosztyu P., et al. Galactose-deficient IgA1 B cells in the circulation of IgA nephropathy patients carry preferentially lambda light chains and mucosal homing receptors. J Am Soc Nephrol. 2022;33:908–917. doi: 10.1681/ASN.2021081086. PubMed DOI PMC

Raska M., Takahashi K., Czernekova L., et al. Glycosylation patterns of HIV-1 gp120 depend on the type of expressing cells and affect antibody recognition. J Biol Chem. 2010;285:20860–20869. doi: 10.1074/jbc.M109.085472. PubMed DOI PMC

Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI

Martinez-Salas E., Francisco-Velilla R., Fernandez-Chamorro J., Embarek A.M. Insights into structural and mechanistic features of viral IRES elements. Front Microbiol. 2017;8:2629. doi: 10.3389/fmicb.2017.02629. PubMed DOI PMC

Yamada K., Huang Z.Q., Raska M., et al. Leukemia inhibitory factor signaling enhances production of galactose-deficient IgA1 in IgA nephropathy. Kidney Dis (Basel) 2020;6:168–180. doi: 10.1159/000505748. PubMed DOI PMC

Yamada K., Huang Z.Q., Raska M., et al. Inhibition of STAT3 signaling reduces IgA1 autoantigen production in IgA nephropathy. Kidney Int Rep. 2017;2:1194–1207. doi: 10.1016/j.ekir.2017.07.002. PubMed DOI PMC

Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227:680–685. doi: 10.1038/227680a0. PubMed DOI

Hiki Y., Hori H., Yamamoto K., et al. Specificity of two monoclonal antibodies against a synthetic glycopeptide, an analogue to the hypo-galactosylated IgA1 hinge region. J Nephrol. 2015;28:181–186. doi: 10.1007/s40620-014-0118-4. PubMed DOI PMC

Raska M., Yamada K., Stewart T., et al. Role of N-acetylgalactosaminyl transferases in the synthesis of aberrant IgA1 O-glycans in IgA nephropathy. J Am Soc Nephrol. 2012;23:519A.

Odani H., Hiki Y., Takahashi M., et al. Direct evidence for decreased sialylation and galactosylation of human serum IgA1 Fc O-glycosylated hinge peptides in IgA nephropathy by mass spectrometry. Biochem Biophys Res Commun. 2000;271:268–274. doi: 10.1006/bbrc.2000.2613. PubMed DOI

Nakazawa S., Imamura R., Kawamura M., et al. Difference in IgA1 O-glycosylation between IgA deposition donors and IgA nephropathy recipients. Biochem Biophys Res Commun. 2019;508:1106–1112. doi: 10.1016/j.bbrc.2018.12.014. PubMed DOI

Inoue T., Iijima H., Tajiri M., et al. Deficiency of N-acetylgalactosamine in O-linked oligosaccharides of IgA is a novel biologic marker for Crohn’s disease. Inflam Bowel Dis. 2012;18:1723–1734. doi: 10.1002/ibd.22876. PubMed DOI

Hiki Y., Tanaka A., Kokubo T., et al. Analyses of IgA1 hinge glycopeptides in IgA nephropathy by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J Am Soc Nephrol. 1998;9:577–582. doi: 10.1681/ASN.V94577. PubMed DOI

Takahashi K., Suzuki H., Yamada K., et al. Molecular characterization of IgA1 secreted by IgA1-producing cell lines from patients with IgA nephropathy. J Am Soc Nephrol. 2012;23:853A.

Wandall H.H., Irazoqui F., Tarp M.A., et al. The lectin domains of polypeptide GalNAc-transferases exhibit carbohydrate-binding specificity for GalNAc: lectin binding to GalNAc-glycopeptide substrates is required for high density GalNAc-O-glycosylation. Glycobiology. 2007;17:374–387. doi: 10.1093/glycob/cwl082. PubMed DOI

Wang H., Tachibana K., Zhang Y., et al. Cloning and characterization of a novel UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase, pp-GalNAc-T14. Biochem Biophys Res Commun. 2003;300:738–744. doi: 10.1016/s0006-291x(02)02908-x. PubMed DOI

Lin W.R., Yeh C.T. GALNT14: an emerging marker capable of predicting therapeutic outcomes in multiple cancers. Int J Mol Sci. 2020;21 doi: 10.3390/ijms21041491. PubMed DOI PMC

Gill D.J., Chia J., Senewiratne J., Bard F. Regulation of O-glycosylation through Golgi-to-ER relocation of initiation enzymes. J Cell Biol. 2010;189:843–858. doi: 10.1083/jcb.201003055. PubMed DOI PMC

Kunkel E.J., Kim C.H., Lazarus N.H., et al. CCR10 expression is a common feature of circulating and mucosal epithelial tissue IgA Ab-secreting cells. J Clin Invest. 2003;111:1001–1010. doi: 10.1172/JCI17244. PubMed DOI PMC

Brandtzaeg P., Johansen F.E. Mucosal B cells: phenotypic characteristics, transcriptional regulation, and homing properties. Immunol Rev. 2005;206:32–63. doi: 10.1111/j.0105-2896.2005.00283.x. PubMed DOI

Novak J., Takahashi K., Suzuki H., et al. In: Pathogenesis and Treatment in IgA Nephropathy. Tomino Y., editor. Springer; 2016. Heterogeneity of aberrant O-glycosylation of IgA1 in IgA nephropathy; pp. 1–16.

Lai K.N., Tang S.C., Schena F.P., et al. IgA nephropathy. Nat Rev Dis Primers. 2016;2 doi: 10.1038/nrdp.2016.1. PubMed DOI

Nakazawa S., Imamura R., Kawamura M., et al. Evaluation of IgA1 O-glycosylation in Henoch-Schonlein purpura nephritis using mass spectrometry. Transplant Proc. 2019;51:1481–1487. doi: 10.1016/j.transproceed.2019.01.122. PubMed DOI

Yu G., Zhang Y., Meng B., et al. O-glycoforms of polymeric immunoglobulin A1 in the plasma of patients with IgA nephropathy are associated with pathological phenotypes. Nephrol Dial Transplant. 2021;37:33–41. doi: 10.1093/ndt/gfab204. PubMed DOI

Suzuki H., Fan R., Zhang Z., et al. Aberrantly glycosylated IgA1 in IgA nephropathy patients is recognized by IgG antibodies with restricted heterogeneity. J Clin Invest. 2009;119:1668–1677. doi: 10.1172/JCI38468. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace