GalNAc-T14 may Contribute to Production of Galactose-Deficient Immunoglobulin A1, the Main Autoantigen in IgA Nephropathy
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
Grantová podpora
R01 AI149431
NIAID NIH HHS - United States
R01 DK078244
NIDDK NIH HHS - United States
R01 DK082753
NIDDK NIH HHS - United States
R56 DK078244
NIDDK NIH HHS - United States
PubMed
37180502
PubMed Central
PMC10166743
DOI
10.1016/j.ekir.2023.02.1072
PII: S2468-0249(23)01169-5
Knihovny.cz E-zdroje
- Klíčová slova
- GalNAc-T14, IL-6 cytokine, IgA nephropathy, inflammation,
- Publikační typ
- časopisecké články MeSH
INTRODUCTION: Immunoglobulin A1 (IgA1) with galactose-deficient O-glycans (Gd-IgA1) play a key role in the pathogenesis of IgA nephropathy (IgAN). Mucosal-tissue infections increase IL-6 production and, in patients with IgAN, are often associated with macroscopic hematuria. IgA1-secreting cell lines derived from the circulation of patients with IgAN, compared to those of healthy controls (HCs), produce more IgA1 that has O-glycans with terminal or sialylated N-acetylgalactosamine (GalNAc). GalNAc residues are added to IgA1 hinge region by some of the 20 GalNAc transferases, the O-glycosylation-initiating enzymes. Expression of GALNT2, encoding GalNAc-T2, the main enzyme initiating IgA1 O-glycosylation, is similar in cells derived from patients with IgAN and HCs. In this report, we extend our observations of GALNT14 overexpression in IgA1-producing cell lines from patients with IgAN. METHODS: GALNT14 expression was analyzed in peripheral blood mononuclear cells (PBMCs) from patients with IgAN and from HCs. Moreover, the effect of GALNT14 overexpression or knock-down on Gd-IgA1 production in Dakiki cells was assessed. RESULTS: GALNT14 was overexpressed in PBMCs from patients with IgAN. IL-6 increased GALNT14 expression in PBMCs from patients with IgAN and HCs. We used IgA1-producing cell line Dakiki, a previously reported model of Gd-IgA1-producing cells, and showed that overexpression of GalNAc-T14 enhanced galactose deficiency of IgA1, whereas siRNA-mediated GalNAc-T14 knock-down reduced it. GalNAc-T14 was localized in trans-Golgi network, as expected. CONCLUSIONS: Overexpression of GALNT14 due to inflammatory signals during mucosal infections may contribute to overproduction of Gd-IgA1 in patients with IgAN.
Department of Immunology University Hospital Olomouc Olomouc Czech Republic
Department of Microbiology University of Alabama at Birmingham Birmingham Alabama USA
Department of Transfusion Medicine University Hospital Olomouc Olomouc Czech Republic
Zobrazit více v PubMed
Wyatt R.J., Julian B.A. IgA nephropathy. N Engl J Med. 2013;368:2402–2414. doi: 10.1056/NEJMra1206793. PubMed DOI
Knoppova B., Reily C., Maillard N., et al. The origin and activities of IgA1-containing immune complexes in IgA nephropathy. Front Immunol. 2016;7:117. doi: 10.3389/fimmu.2016.00117. PubMed DOI PMC
Mestecky J., Raska M., Julian B.A., et al. IgA nephropathy: molecular mechanisms of the disease. Annu Rev Pathol. 2013;8:217–240. doi: 10.1146/annurev-pathol-011110-130216. PubMed DOI
Mestecky J., Novak J., Moldoveanu Z., Raska M. IgA nephropathy enigma. Clin Immunol. 2016;172:72–77. doi: 10.1016/j.clim.2016.07.011. PubMed DOI PMC
Takahashi K., Smith A.D., Poulsen K., et al. Naturally occurring structural isomers in serum IgA1 O-glycosylation. J Proteome Res. 2012;11:692–702. doi: 10.1021/pr200608q. PubMed DOI PMC
Ohyama Y., Renfrow M.B., Novak J., Takahashi K. Aberrantly glycosylated IgA1 in IgA nephropathy: what we know and what we don’t know. J Clin Med. 2021;10:3467. doi: 10.3390/jcm10163467. PubMed DOI PMC
Novak J., Moldoveanu Z., Renfrow M.B., et al. IgA nephropathy and Henoch-Schoenlein purpura nephritis: aberrant glycosylation of IgA1, formation of IgA1-containing immune complexes, and activation of mesangial cells. Contrib Nephrol. 2007;157:134–138. doi: 10.1159/000102455. PubMed DOI
Novak J., Julian B.A., Mestecky J., Renfrow M.B. Glycosylation of IgA1 and pathogenesis of IgA nephropathy. Semin Immunopathol. 2012;34:365–382. doi: 10.1007/s00281-012-0306-z. PubMed DOI
Tomana M., Novak J., Julian B.A., Matousovic K., Konecny K., Mestecky J. Circulating immune complexes in IgA nephropathy consist of IgA1 with galactose-deficient hinge region and antiglycan antibodies. J Clin Invest. 1999;104:73–81. doi: 10.1172/JCI5535. PubMed DOI PMC
Moldoveanu Z., Wyatt R.J., Lee J.Y., et al. Patients with IgA nephropathy have increased serum galactose-deficient IgA1 levels. Kidney Int. 2007;71:1148–1154. doi: 10.1038/sj.ki.5002185. PubMed DOI
Gharavi A.G., Moldoveanu Z., Wyatt R.J., et al. Aberrant IgA1 glycosylation is inherited in familial and sporadic IgA nephropathy. J Am Soc Nephrol. 2008;19:1008–1014. doi: 10.1681/ASN.2007091052. PubMed DOI PMC
Kiryluk K., Moldoveanu Z., Sanders J.T., et al. Aberrant glycosylation of IgA1 is inherited in both pediatric IgA nephropathy and Henoch-Schonlein purpura nephritis. Kidney Int. 2011;80:79–87. doi: 10.1038/ki.2011.16. PubMed DOI PMC
Zhao N., Hou P., Lv J., et al. The level of galactose-deficient IgA1 in the sera of patients with IgA nephropathy is associated with disease progression. Kidney Int. 2012;82:790–796. doi: 10.1038/ki.2012.197. PubMed DOI PMC
Berthoux F., Suzuki H., Thibaudin L., et al. Autoantibodies targeting galactose-deficient IgA1 associate with progression of IgA nephropathy. J Am Soc Nephrol. 2012;23:1579–1587. doi: 10.1681/ASN.2012010053. PubMed DOI PMC
Suzuki H., Raska M., Yamada K., et al. Cytokines alter IgA1 O-glycosylation by dysregulating C1GalT1 and ST6GalNAc-II enzymes. J Biol Chem. 2014;289:5330–5339. doi: 10.1074/jbc.M113.512277. PubMed DOI PMC
Raska M., Moldoveanu Z., Suzuki H., et al. Identification and characterization of CMP-NeuAc:GalNAc-IgA1 alpha2,6-sialyltransferase in IgA1-producing cells. J Mol Biol. 2007;369:69–78. doi: 10.1016/j.jmb.2007.03.002. PubMed DOI PMC
Stuchlova Horynova M., Vrablikova A., Stewart T.J., et al. N-acetylgalactosaminide α2,6-sialyltransferase II is a candidate enzyme for sialylation of galactose-deficient IgA1, the key autoantigen in IgA nephropathy. Nephrol Dial Transplant. 2015;30:234–238. doi: 10.1093/ndt/gfu308. PubMed DOI PMC
Takahashi K., Raska M., Stuchlova Horynova M., et al. Enzymatic sialylation of IgA1 O-glycans: implications for studies of IgA nephropathy. PLoS One. 2014;9 doi: 10.1371/journal.pone.0099026. PubMed DOI PMC
Stewart T.J., Takahashi K., Whitaker R.H., et al. IgA1 hinge-region clustered glycan fidelity is established early during semi-ordered glycosylation by GalNAc-T2. Glycobiology. 2019;29:543–556. doi: 10.1093/glycob/cwz007. PubMed DOI PMC
Horynova M., Takahashi K., Hall S., Renfrow M.B., Novak J., Raška M. Production of N-acetylgalactosaminyl-transferase 2 (GalNAc-T2) fused with secretory signal Igkappa in insect cells. Protein Expr Purif. 2012;81:175–180. doi: 10.1016/j.pep.2011.10.006. PubMed DOI PMC
Stewart T.J., Takahashi K., Xu N., et al. Quantitative assessment of successive carbohydrate additions to the clustered O-glycosylation sites of IgA1 by glycosyltransferases. Glycobiology. 2021;31:540–556. doi: 10.1093/glycob/cwaa111. PubMed DOI PMC
Iwasaki H., Zhang Y., Tachibana K., et al. Initiation of O-glycan synthesis in IgA1 hinge region is determined by a single enzyme, UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase 2. J Biol Chem. 2003;278:5613–5621. doi: 10.1074/jbc.M211097200. PubMed DOI
Suzuki H., Moldoveanu Z., Hall S., et al. IgA1-secreting cell lines from patients with IgA nephropathy produce aberrantly glycosylated IgA1. J Clin Invest. 2008;118:629–639. doi: 10.1172/JCI33189. PubMed DOI PMC
Raska M., Yamada K., Horynova M., et al. Role of GalNAc-transferases in the synthesis of aberrant IgA1 O-glycans in IgA nephropathy. J Am Soc Nephrol. 2011;22:625A.
Levey A.S., Stevens L.A., Schmid C.H., et al. A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009;150:604–612. doi: 10.7326/0003-4819-150-9-200905050-00006. PubMed DOI PMC
Zachova K., Jemelkova J., Kosztyu P., et al. Galactose-deficient IgA1 B cells in the circulation of IgA nephropathy patients carry preferentially lambda light chains and mucosal homing receptors. J Am Soc Nephrol. 2022;33:908–917. doi: 10.1681/ASN.2021081086. PubMed DOI PMC
Raska M., Takahashi K., Czernekova L., et al. Glycosylation patterns of HIV-1 gp120 depend on the type of expressing cells and affect antibody recognition. J Biol Chem. 2010;285:20860–20869. doi: 10.1074/jbc.M109.085472. PubMed DOI PMC
Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI
Martinez-Salas E., Francisco-Velilla R., Fernandez-Chamorro J., Embarek A.M. Insights into structural and mechanistic features of viral IRES elements. Front Microbiol. 2017;8:2629. doi: 10.3389/fmicb.2017.02629. PubMed DOI PMC
Yamada K., Huang Z.Q., Raska M., et al. Leukemia inhibitory factor signaling enhances production of galactose-deficient IgA1 in IgA nephropathy. Kidney Dis (Basel) 2020;6:168–180. doi: 10.1159/000505748. PubMed DOI PMC
Yamada K., Huang Z.Q., Raska M., et al. Inhibition of STAT3 signaling reduces IgA1 autoantigen production in IgA nephropathy. Kidney Int Rep. 2017;2:1194–1207. doi: 10.1016/j.ekir.2017.07.002. PubMed DOI PMC
Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227:680–685. doi: 10.1038/227680a0. PubMed DOI
Hiki Y., Hori H., Yamamoto K., et al. Specificity of two monoclonal antibodies against a synthetic glycopeptide, an analogue to the hypo-galactosylated IgA1 hinge region. J Nephrol. 2015;28:181–186. doi: 10.1007/s40620-014-0118-4. PubMed DOI PMC
Raska M., Yamada K., Stewart T., et al. Role of N-acetylgalactosaminyl transferases in the synthesis of aberrant IgA1 O-glycans in IgA nephropathy. J Am Soc Nephrol. 2012;23:519A.
Odani H., Hiki Y., Takahashi M., et al. Direct evidence for decreased sialylation and galactosylation of human serum IgA1 Fc O-glycosylated hinge peptides in IgA nephropathy by mass spectrometry. Biochem Biophys Res Commun. 2000;271:268–274. doi: 10.1006/bbrc.2000.2613. PubMed DOI
Nakazawa S., Imamura R., Kawamura M., et al. Difference in IgA1 O-glycosylation between IgA deposition donors and IgA nephropathy recipients. Biochem Biophys Res Commun. 2019;508:1106–1112. doi: 10.1016/j.bbrc.2018.12.014. PubMed DOI
Inoue T., Iijima H., Tajiri M., et al. Deficiency of N-acetylgalactosamine in O-linked oligosaccharides of IgA is a novel biologic marker for Crohn’s disease. Inflam Bowel Dis. 2012;18:1723–1734. doi: 10.1002/ibd.22876. PubMed DOI
Hiki Y., Tanaka A., Kokubo T., et al. Analyses of IgA1 hinge glycopeptides in IgA nephropathy by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J Am Soc Nephrol. 1998;9:577–582. doi: 10.1681/ASN.V94577. PubMed DOI
Takahashi K., Suzuki H., Yamada K., et al. Molecular characterization of IgA1 secreted by IgA1-producing cell lines from patients with IgA nephropathy. J Am Soc Nephrol. 2012;23:853A.
Wandall H.H., Irazoqui F., Tarp M.A., et al. The lectin domains of polypeptide GalNAc-transferases exhibit carbohydrate-binding specificity for GalNAc: lectin binding to GalNAc-glycopeptide substrates is required for high density GalNAc-O-glycosylation. Glycobiology. 2007;17:374–387. doi: 10.1093/glycob/cwl082. PubMed DOI
Wang H., Tachibana K., Zhang Y., et al. Cloning and characterization of a novel UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase, pp-GalNAc-T14. Biochem Biophys Res Commun. 2003;300:738–744. doi: 10.1016/s0006-291x(02)02908-x. PubMed DOI
Lin W.R., Yeh C.T. GALNT14: an emerging marker capable of predicting therapeutic outcomes in multiple cancers. Int J Mol Sci. 2020;21 doi: 10.3390/ijms21041491. PubMed DOI PMC
Gill D.J., Chia J., Senewiratne J., Bard F. Regulation of O-glycosylation through Golgi-to-ER relocation of initiation enzymes. J Cell Biol. 2010;189:843–858. doi: 10.1083/jcb.201003055. PubMed DOI PMC
Kunkel E.J., Kim C.H., Lazarus N.H., et al. CCR10 expression is a common feature of circulating and mucosal epithelial tissue IgA Ab-secreting cells. J Clin Invest. 2003;111:1001–1010. doi: 10.1172/JCI17244. PubMed DOI PMC
Brandtzaeg P., Johansen F.E. Mucosal B cells: phenotypic characteristics, transcriptional regulation, and homing properties. Immunol Rev. 2005;206:32–63. doi: 10.1111/j.0105-2896.2005.00283.x. PubMed DOI
Novak J., Takahashi K., Suzuki H., et al. In: Pathogenesis and Treatment in IgA Nephropathy. Tomino Y., editor. Springer; 2016. Heterogeneity of aberrant O-glycosylation of IgA1 in IgA nephropathy; pp. 1–16.
Lai K.N., Tang S.C., Schena F.P., et al. IgA nephropathy. Nat Rev Dis Primers. 2016;2 doi: 10.1038/nrdp.2016.1. PubMed DOI
Nakazawa S., Imamura R., Kawamura M., et al. Evaluation of IgA1 O-glycosylation in Henoch-Schonlein purpura nephritis using mass spectrometry. Transplant Proc. 2019;51:1481–1487. doi: 10.1016/j.transproceed.2019.01.122. PubMed DOI
Yu G., Zhang Y., Meng B., et al. O-glycoforms of polymeric immunoglobulin A1 in the plasma of patients with IgA nephropathy are associated with pathological phenotypes. Nephrol Dial Transplant. 2021;37:33–41. doi: 10.1093/ndt/gfab204. PubMed DOI
Suzuki H., Fan R., Zhang Z., et al. Aberrantly glycosylated IgA1 in IgA nephropathy patients is recognized by IgG antibodies with restricted heterogeneity. J Clin Invest. 2009;119:1668–1677. doi: 10.1172/JCI38468. PubMed DOI PMC