Inhibition of STAT3 Signaling Reduces IgA1 Autoantigen Production in IgA Nephropathy
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
Grantová podpora
R01 GM098539
NIGMS NIH HHS - United States
R01 DK105124
NIDDK NIH HHS - United States
K01 DK106341
NIDDK NIH HHS - United States
R01 DK078244
NIDDK NIH HHS - United States
P30 DK079337
NIDDK NIH HHS - United States
R01 DK082753
NIDDK NIH HHS - United States
R56 DK078244
NIDDK NIH HHS - United States
PubMed
29270528
PubMed Central
PMC5733772
DOI
10.1016/j.ekir.2017.07.002
PII: S2468-0249(17)30300-5
Knihovny.cz E-zdroje
- Klíčová slova
- IgA nephropathy, IgA1, O-glycans, aberrant glycosylation, autoantigen,
- Publikační typ
- časopisecké články MeSH
INTRODUCTION: IgA nephropathy is a chronic renal disease characterized by mesangial immunodeposits that contain autoantigen, which is aberrantly glycosylated IgA1 with some hinge-region O-glycans deficient in galactose. Macroscopic hematuria during an upper respiratory tract infection is common among patients with IgA nephropathy, which suggests a connection between inflammation and disease activity. Interleukin-6 (IL-6) is an inflammatory cytokine involved in IgA immune response. We previously showed that IL-6 selectively increases production of galactose-deficient IgA1 in IgA1-secreting cells from patients with IgA nephropathy. METHODS: We characterized IL-6 signaling pathways involved in the overproduction of galactose-deficient IgA1. To understand molecular mechanisms, IL-6 signaling was analyzed by kinomic activity profiling and Western blotting, followed by confirmation assays using siRNA knock-down and small-molecule inhibitors. RESULTS: STAT3 was differentially activated by IL-6 in IgA1-secreting cells from patients with IgA nephropathy compared with those from healthy control subjects. Specifically, IL-6 induced enhanced and prolonged phosphorylation of STAT3 in the cells from patients with IgA nephropathy, which resulted in overproduction of galactose-deficient IgA1. This IL-6-mediated overproduction of galactose-deficient IgA1 could be blocked by small molecule inhibitors of JAK/STAT signaling. DISCUSSION: Our results revealed that IL-6-induced aberrant activation of STAT3-mediated overproduction of galactose-deficient IgA1. STAT3 signaling pathway may thus represent a new target for disease-specific therapy of IgA nephropathy.
Department of Medicine College of Physicians and Surgeons Columbia University New York USA
Department of Medicine University of Alabama at Birmingham Birmingham Alabama USA
Department of Microbiology University of Alabama at Birmingham Birmingham Alabama USA
Department of Pediatrics University of Tennessee Health Center Memphis Tennessee USA
Department of Radiation Oncology University of Alabama at Birmingham Birmingham Alabama USA
Zobrazit více v PubMed
Berger J., Hinglais N. [Intercapillary deposits of IgA-IgG] J Urol Nephrol. (Paris) 1968;74:694–695. PubMed
Julian B.A., Waldo F.B., Rifai A. IgA nephropathy, the most common glomerulonephritis worldwide. A neglected disease in the United States? Am J Med. 1988;84:129–132. PubMed
D'Amico G. Natural history of idiopathic IgA nephropathy: role of clinical and histological prognostic factors. Am J Kidney Dis. 2000;36:227–237. PubMed
Conley M.E., Cooper M.D., Michael A.F. Selective deposition of immunoglobulin A1 in immunoglobulin A nephropathy, anaphylactoid purpura nephritis, and systemic lupus erythematosus. J Clin Invest. 1980;66:1432–1436. PubMed PMC
Hiki Y., Kokubo T., Iwase H. Underglycosylation of IgA1 hinge plays a certain role for its glomerular deposition in IgA nephropathy. J Am Soc Nephrol. 1999;10:760–769. PubMed
Allen A.C., Bailey E.M., Brenchley P.E. Mesangial IgA1 in IgA nephropathy exhibits aberrant O-glycosylation: observations in three patients. Kidney Int. 2001;60:969–973. PubMed
Suzuki H., Kiryluk K., Novak J. The pathophysiology of IgA nephropathy. J Am Soc Nephrol. 2011;22:1795–1803. PubMed PMC
Wyatt R.J., Julian B.A. IgA nephropathy. N Engl J Med. 2013;368:2402–2414. PubMed
Suzuki H., Fan R., Zhang Z. Aberrantly glycosylated IgA1 in IgA nephropathy patients is recognized by IgG antibodies with restricted heterogeneity. J Clin Invest. 2009;119:1668–1677. PubMed PMC
Tomana M., Matousovic K., Julian B.A. Galactose-deficient IgA1 in sera of IgA nephropathy patients is present in complexes with IgG. Kidney Int. 1997;52:509–516. PubMed
Tomana M., Novak J., Julian B.A. Circulating immune complexes in IgA nephropathy consist of IgA1 with galactose-deficient hinge region and antiglycan antibodies. J Clin Invest. 1999;104:73–81. PubMed PMC
Allen A.C., Harper S.J., Feehally J. Galactosylation of N- and O-linked carbohydrate moieties of IgA1 and IgG in IgA nephropathy. Clin Exp Immunol. 1995;100:470–474. PubMed PMC
Mestecky J., Tomana M., Crowley-Nowick P.A. Defective galactosylation and clearance of IgA1 molecules as a possible etiopathogenic factor in IgA nephropathy. Contrib Nephrol. 1993;104:172–182. PubMed
Moldoveanu Z., Wyatt R.J., Lee J.Y. Patients with IgA nephropathy have increased serum galactose-deficient IgA1 levels. Kidney Int. 2007;71:1148–1154. PubMed
Gharavi A.G., Moldoveanu Z., Wyatt R.J. Aberrant IgA1 glycosylation is inherited in familial and sporadic IgA nephropathy. J Am Soc Nephrol. 2008;19:1008–1014. PubMed PMC
Zhao N., Hou P., Lv J. The level of galactose-deficient IgA1 in the sera of patients with IgA nephropathy is associated with disease progression. Kidney Int. 2012;82:790–796. PubMed PMC
Coppo R., Basolo B., Martina G. Circulating immune complexes containing IgA, IgG and IgM in patients with primary IgA nephropathy and with Henoch-Schoenlein nephritis. Correlation with clinical and histologic signs of activity. Clin Nephrol. 1982;18:230–239. PubMed
Novak J., Tomana M., Matousovic K. IgA1-containing immune complexes in IgA nephropathy differentially affect proliferation of mesangial cells. Kidney Int. 2005;67:504–513. PubMed
Mestecky J., Raska M., Julian B.A. IgA nephropathy: molecular mechanisms of the disease. Annu Rev Pathol. 2013;8:217–240. PubMed
Levy M., Gonzalez-Burchard G., Broyer M. Berger's disease in children. Natural history and outcome. Medicine. 1985;64:157–180. PubMed
Floege J., Feehally J. The mucosa-kidney axis in IgA nephropathy. Nat Rev Nephrol. 2016;12:147–156. PubMed
Bene M.C., Faure G.C. Mesangial IgA in IgA nephropathy arises from the mucosa. Am J Kidney Dis. 1988;12:406–409. PubMed
Xie Y., Chen X., Nishi S. Relationship between tonsils and IgA nephropathy as well as indications of tonsillectomy. Kidney Int. 2004;65:1135–1144. PubMed
Kiryluk K., Novak J., Gharavi A.G. Pathogenesis of immunoglobulin A nephropathy: recent insight from genetic studies. Annu Rev Med. 2013;64:339–356. PubMed PMC
Kiryluk K., Li Y., Scolari F. Discovery of new risk loci for IgA nephropathy implicates genes involved in immunity against intestinal pathogens. Nat Genet. 2014;46:1187–1196. PubMed PMC
Suzuki H., Raska M., Yamada K. Cytokines alter IgA1 O-glycosylation by dysregulating C1GalT1 and ST6GalNAc-II enzymes. J Biol Chem. 2014;289:5330–5339. PubMed PMC
Smith A.C., Molyneux K., Feehally J. O-glycosylation of serum IgA1 antibodies against mucosal and systemic antigens in IgA nephropathy. J Am Soc Nephrol. 2006;17:3520–3528. PubMed
Suzuki H., Moldoveanu Z., Hall S. IgA1-secreting cell lines from patients with IgA nephropathy produce aberrantly glycosylated IgA1. J Clin Invest. 2008;118:629–639. PubMed PMC
Inoue T., Sugiyama H., Hiki Y. Differential expression of glycogenes in tonsillar B lymphocytes in association with proteinuria and renal dysfunction in IgA nephropathy. Clin Immunol. 2010;136:447–455. PubMed
Sato D., Suzuki Y., Kano T. Tonsillar TLR9 expression and efficacy of tonsillectomy with steroid pulse therapy in IgA nephropathy patients. Nephrol Dial Transplant. 2012;27:1090–1097. PubMed
Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 2001;25:402–408. PubMed
Gilbert A.N., Shevin R.S., Anderson J.C. Generation of microtumors using 3D human biogel culture system and patient-derived glioblastoma cells for kinomic profiling and drug response testing. J Vis Exp. 2016:e54026. PubMed PMC
Anderson J.C., Willey C.D., Mehta A. High throughput kinomic profiling of human clear cell renal cell carcinoma identifies kinase activity dependent molecular subtypes. PLoS One. 2015;10:e0139267. PubMed PMC
Anderson J.C., Taylor R.B., Fiveash J.B. Kinomic alterations in atypical meningioma. Med Res Arch. 2015;3 10.18103/mra.v0i3.104. PubMed PMC
Le W., Liang S., Chen H. Long-term outcome of IgA nephropathy patients with recurrent macroscopic hematuria. Am J Nephrol. 2014;40:43–50. PubMed
Boyd J.K., Cheung C.K., Molyneux K. An update on the pathogenesis and treatment of IgA nephropathy. Kidney Int. 2012;81:833–843. PubMed
Mattu T.S., Pleass R.J., Willis A.C. The glycosylation and structure of human serum IgA1, Fab, and Fc regions and the role of N-glycosylation on Fcα receptor interactions. J Biol Chem. 1998;273:2260–2272. PubMed
Diehl S., Rincon M. The two faces of IL-6 on Th1/Th2 differentiation. Mol Immunol. 2002;39:531–536. PubMed
Hurtado A., Johnson R.J. Hygiene hypothesis and prevalence of glomerulonephritis. Kidney Int. 2005;68(suppl 97):S62–S67. PubMed
Chintalacharuvu S.R., Emancipator S.N. The glycosylation of IgA produced by murine B cells is altered by Th2 cytokines. J Immunol. 1997;159:2327–2333. PubMed
Chintalacharuvu S.R., Emancipator S.N. Differential glycosylation of two glycoproteins synthesized by murine B cells in response to IL-4 plus IL-5. Cytokine. 2000;12:1182–1188. PubMed
Inoshita H., Kim B.G., Yamashita M. Disruption of Smad4 expression in T cells leads to IgA nephropathy-like manifestations. PLoS One. 2013;8:e78736. PubMed PMC
Yamada K., Kobayashi N., Ikeda T. Down-regulation of core 1 β1,3-galactosyltransferase and Cosmc by Th2 cytokine alters O-glycosylation of IgA1. Nephrol Dial Transplant. 2010;25:3890–3897. PubMed PMC
Royle L., Roos A., Harvey D.J. Secretory IgA N- and O-glycans provide a link between the innate and adaptive immune systems. J Biol Chem. 2003;278:20140–20153. PubMed
Hastings M.C., Moldoveanu Z., Julian B.A. Galactose-deficient IgA1 in African Americans with IgA nephropathy: serum levels and heritability. Clin J Am Soc Nephrol. 2010;5:2069–2074. PubMed PMC
Lin X., Ding J., Zhu L. Aberrant galactosylation of IgA1 is involved in the genetic susceptibility of Chinese patients with IgA nephropathy. Nephrol Dial Transplant. 2009;24:3372–3375. PubMed
Qin W., Zhou Q., Yang L.C. Peripheral B lymphocyte β1,3-galactosyltransferase and chaperone expression in immunoglobulin A nephropathy. J Intern Med. 2005;258:467–477. PubMed
Malycha F., Eggermann T., Hristov M. No evidence for a role of cosmc-chaperone mutations in European IgA nephropathy patients. Nephrol Dial Transplant. 2009;24:321–324. PubMed
Kiryluk K., Li Y., Moldoveanu Z. GWAS for serum galactose-deficient IgA1 implicates critical genes of the O-glycosylation pathway. PLoS Genet. 2017;13:e1006609. PubMed PMC
Rostoker G., Rymer J.C., Bagnard G. Imbalances in serum proinflammatory cytokines and their soluble receptors: a putative role in the progression of idiopathic IgA nephropathy (IgAN) and Henoch-Schönlein purpura nephritis, and a potential target of immunoglobulin therapy? Clin Exp Immunol. 1998;114:468–476. PubMed PMC
Panichi V., Migliori M., De Pietro S. C-reactive protein and interleukin-6 levels are related to renal function in predialytic chronic renal failure. Nephron. 2002;91:594–600. PubMed
Ranieri E., Gesualdo L., Petrarulo F. Urinary IL-6/EGF ratio: a useful prognostic marker for the progression of renal damage in IgA nephropathy. Kidney Int. 1996;50:1990–2001. PubMed
Papanicolaou D.A., Wilder R.L., Manolagas S.C. The pathophysiologic roles of interleukin-6 in human disease. Ann Intern Med. 1998;128:127–137. PubMed
Gharavi A.G., Kiryluk K., Choi M. Genome-wide association study identifies susceptibility loci for IgA nephropathy. Nat Genet. 2011;43:321–327. PubMed PMC
Imielinski M., Baldassano R.N., Griffiths A. Common variants at five new loci associated with early-onset inflammatory bowel disease. Nat Genet. 2009;41:1335–1340. PubMed PMC
Liu J.Z., van Sommeren S., Huang H. Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations. Nat Genet. 2015;47:979–986. PubMed PMC
Anglesio M.S., George J., Kulbe H. IL6-STAT3-HIF signaling and therapeutic response to the angiogenesis inhibitor sunitinib in ovarian clear cell cancer. Clin Cancer Res. 2011;17:2538–2548. PubMed
Jones S.A., Scheller J., Rose-John S. Therapeutic strategies for the clinical blockade of IL-6/gp130 signaling. J Clin Invest. 2011;121:3375–3383. PubMed PMC
Bende R.J., Jochems G.J., Frame T.H. Effects of IL-4, IL-5, and IL-6 on growth and immunoglobulin production of Epstein-Barr virus-infected human B cells. Cell Immunol. 1992;143:310–323. PubMed
Lin L., Benson D.M., Jr., DeAngelis S. A small molecule, LLL12 inhibits constitutive STAT3 and IL-6-induced STAT3 signaling and exhibits potent growth suppressive activity in human multiple myeloma cells. Int J Cancer. 2012;130:1459–1469. PubMed PMC
Lue C., Kiyono H., McGhee J.R. Recombinant human interleukin 6 (rhIL-6) promotes the terminal differentiation of in vivo-activated human B cells into antibody-secreting cells. Cell Immunol. 1991;132:423–432. PubMed
Heinrich P.C., Behrmann I., Haan S. Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem J. 2003;374:1–20. PubMed PMC
Zeng J., Mi R., Wang Y. Promoters of human Cosmc and T-synthase genes are similar in structure, yet different in epigenetic regulation. J Biol Chem. 2015;290:19018–19033. PubMed PMC
Al Khatib S., Keles S., Garcia-Lloret M. Defects along the Th17 differentiation pathway underlie genetically distinct forms of the hyper IgE syndrome. J Allergy Clin Immunol. 2009;124:342–348. 348.e1–5. PubMed PMC
Milner J.D., Brenchley J.M., Laurence A. Impaired T(H)17 cell differentiation in subjects with autosomal dominant hyper-IgE syndrome. Nature. 2008;452:773–776. PubMed PMC
Baran-Marszak F., Boukhiar M., Harel S. Constitutive and B-cell receptor-induced activation of STAT3 are important signaling pathways targeted by bortezomib in leukemic mantle cell lymphoma. Haematologica. 2010;95:1865–1872. PubMed PMC
Cheng F., Wang H., Horna P. Stat3 inhibition augments the immunogenicity of B-cell lymphoma cells, leading to effective antitumor immunity. Cancer Res. 2012;72:4440–4448. PubMed PMC
Koskela H.L., Eldfors S., Ellonen P. Somatic STAT3 mutations in large granular lymphocytic leukemia. N Engl J Med. 2012;366:1905–1913. PubMed PMC
Vogel T.P., Milner J.D., Cooper M.A. The ying and yang of STAT3 in human disease. J Clin Immunol. 2015;35:615–623. PubMed PMC
Munoz J., Dhillon N., Janku F. STAT3 inhibitors: finding a home in lymphoma and leukemia. Oncologist. 2014;19:536–544. PubMed PMC
Forbes L.R., Milner J., Haddad E. Signal transducer and activator of transcription 3: a year in review. Curr Opin Hematol. 2016;23:23–27. PubMed PMC