Inhibition of STAT3 Signaling Reduces IgA1 Autoantigen Production in IgA Nephropathy

. 2017 Nov ; 2 (6) : 1194-1207. [epub] 20170719

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid29270528

Grantová podpora
R01 GM098539 NIGMS NIH HHS - United States
R01 DK105124 NIDDK NIH HHS - United States
K01 DK106341 NIDDK NIH HHS - United States
R01 DK078244 NIDDK NIH HHS - United States
P30 DK079337 NIDDK NIH HHS - United States
R01 DK082753 NIDDK NIH HHS - United States
R56 DK078244 NIDDK NIH HHS - United States

Odkazy

PubMed 29270528
PubMed Central PMC5733772
DOI 10.1016/j.ekir.2017.07.002
PII: S2468-0249(17)30300-5
Knihovny.cz E-zdroje

INTRODUCTION: IgA nephropathy is a chronic renal disease characterized by mesangial immunodeposits that contain autoantigen, which is aberrantly glycosylated IgA1 with some hinge-region O-glycans deficient in galactose. Macroscopic hematuria during an upper respiratory tract infection is common among patients with IgA nephropathy, which suggests a connection between inflammation and disease activity. Interleukin-6 (IL-6) is an inflammatory cytokine involved in IgA immune response. We previously showed that IL-6 selectively increases production of galactose-deficient IgA1 in IgA1-secreting cells from patients with IgA nephropathy. METHODS: We characterized IL-6 signaling pathways involved in the overproduction of galactose-deficient IgA1. To understand molecular mechanisms, IL-6 signaling was analyzed by kinomic activity profiling and Western blotting, followed by confirmation assays using siRNA knock-down and small-molecule inhibitors. RESULTS: STAT3 was differentially activated by IL-6 in IgA1-secreting cells from patients with IgA nephropathy compared with those from healthy control subjects. Specifically, IL-6 induced enhanced and prolonged phosphorylation of STAT3 in the cells from patients with IgA nephropathy, which resulted in overproduction of galactose-deficient IgA1. This IL-6-mediated overproduction of galactose-deficient IgA1 could be blocked by small molecule inhibitors of JAK/STAT signaling. DISCUSSION: Our results revealed that IL-6-induced aberrant activation of STAT3-mediated overproduction of galactose-deficient IgA1. STAT3 signaling pathway may thus represent a new target for disease-specific therapy of IgA nephropathy.

Zobrazit více v PubMed

Berger J., Hinglais N. [Intercapillary deposits of IgA-IgG] J Urol Nephrol. (Paris) 1968;74:694–695. PubMed

Julian B.A., Waldo F.B., Rifai A. IgA nephropathy, the most common glomerulonephritis worldwide. A neglected disease in the United States? Am J Med. 1988;84:129–132. PubMed

D'Amico G. Natural history of idiopathic IgA nephropathy: role of clinical and histological prognostic factors. Am J Kidney Dis. 2000;36:227–237. PubMed

Conley M.E., Cooper M.D., Michael A.F. Selective deposition of immunoglobulin A1 in immunoglobulin A nephropathy, anaphylactoid purpura nephritis, and systemic lupus erythematosus. J Clin Invest. 1980;66:1432–1436. PubMed PMC

Hiki Y., Kokubo T., Iwase H. Underglycosylation of IgA1 hinge plays a certain role for its glomerular deposition in IgA nephropathy. J Am Soc Nephrol. 1999;10:760–769. PubMed

Allen A.C., Bailey E.M., Brenchley P.E. Mesangial IgA1 in IgA nephropathy exhibits aberrant O-glycosylation: observations in three patients. Kidney Int. 2001;60:969–973. PubMed

Suzuki H., Kiryluk K., Novak J. The pathophysiology of IgA nephropathy. J Am Soc Nephrol. 2011;22:1795–1803. PubMed PMC

Wyatt R.J., Julian B.A. IgA nephropathy. N Engl J Med. 2013;368:2402–2414. PubMed

Suzuki H., Fan R., Zhang Z. Aberrantly glycosylated IgA1 in IgA nephropathy patients is recognized by IgG antibodies with restricted heterogeneity. J Clin Invest. 2009;119:1668–1677. PubMed PMC

Tomana M., Matousovic K., Julian B.A. Galactose-deficient IgA1 in sera of IgA nephropathy patients is present in complexes with IgG. Kidney Int. 1997;52:509–516. PubMed

Tomana M., Novak J., Julian B.A. Circulating immune complexes in IgA nephropathy consist of IgA1 with galactose-deficient hinge region and antiglycan antibodies. J Clin Invest. 1999;104:73–81. PubMed PMC

Allen A.C., Harper S.J., Feehally J. Galactosylation of N- and O-linked carbohydrate moieties of IgA1 and IgG in IgA nephropathy. Clin Exp Immunol. 1995;100:470–474. PubMed PMC

Mestecky J., Tomana M., Crowley-Nowick P.A. Defective galactosylation and clearance of IgA1 molecules as a possible etiopathogenic factor in IgA nephropathy. Contrib Nephrol. 1993;104:172–182. PubMed

Moldoveanu Z., Wyatt R.J., Lee J.Y. Patients with IgA nephropathy have increased serum galactose-deficient IgA1 levels. Kidney Int. 2007;71:1148–1154. PubMed

Gharavi A.G., Moldoveanu Z., Wyatt R.J. Aberrant IgA1 glycosylation is inherited in familial and sporadic IgA nephropathy. J Am Soc Nephrol. 2008;19:1008–1014. PubMed PMC

Zhao N., Hou P., Lv J. The level of galactose-deficient IgA1 in the sera of patients with IgA nephropathy is associated with disease progression. Kidney Int. 2012;82:790–796. PubMed PMC

Coppo R., Basolo B., Martina G. Circulating immune complexes containing IgA, IgG and IgM in patients with primary IgA nephropathy and with Henoch-Schoenlein nephritis. Correlation with clinical and histologic signs of activity. Clin Nephrol. 1982;18:230–239. PubMed

Novak J., Tomana M., Matousovic K. IgA1-containing immune complexes in IgA nephropathy differentially affect proliferation of mesangial cells. Kidney Int. 2005;67:504–513. PubMed

Mestecky J., Raska M., Julian B.A. IgA nephropathy: molecular mechanisms of the disease. Annu Rev Pathol. 2013;8:217–240. PubMed

Levy M., Gonzalez-Burchard G., Broyer M. Berger's disease in children. Natural history and outcome. Medicine. 1985;64:157–180. PubMed

Floege J., Feehally J. The mucosa-kidney axis in IgA nephropathy. Nat Rev Nephrol. 2016;12:147–156. PubMed

Bene M.C., Faure G.C. Mesangial IgA in IgA nephropathy arises from the mucosa. Am J Kidney Dis. 1988;12:406–409. PubMed

Xie Y., Chen X., Nishi S. Relationship between tonsils and IgA nephropathy as well as indications of tonsillectomy. Kidney Int. 2004;65:1135–1144. PubMed

Kiryluk K., Novak J., Gharavi A.G. Pathogenesis of immunoglobulin A nephropathy: recent insight from genetic studies. Annu Rev Med. 2013;64:339–356. PubMed PMC

Kiryluk K., Li Y., Scolari F. Discovery of new risk loci for IgA nephropathy implicates genes involved in immunity against intestinal pathogens. Nat Genet. 2014;46:1187–1196. PubMed PMC

Suzuki H., Raska M., Yamada K. Cytokines alter IgA1 O-glycosylation by dysregulating C1GalT1 and ST6GalNAc-II enzymes. J Biol Chem. 2014;289:5330–5339. PubMed PMC

Smith A.C., Molyneux K., Feehally J. O-glycosylation of serum IgA1 antibodies against mucosal and systemic antigens in IgA nephropathy. J Am Soc Nephrol. 2006;17:3520–3528. PubMed

Suzuki H., Moldoveanu Z., Hall S. IgA1-secreting cell lines from patients with IgA nephropathy produce aberrantly glycosylated IgA1. J Clin Invest. 2008;118:629–639. PubMed PMC

Inoue T., Sugiyama H., Hiki Y. Differential expression of glycogenes in tonsillar B lymphocytes in association with proteinuria and renal dysfunction in IgA nephropathy. Clin Immunol. 2010;136:447–455. PubMed

Sato D., Suzuki Y., Kano T. Tonsillar TLR9 expression and efficacy of tonsillectomy with steroid pulse therapy in IgA nephropathy patients. Nephrol Dial Transplant. 2012;27:1090–1097. PubMed

Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 2001;25:402–408. PubMed

Gilbert A.N., Shevin R.S., Anderson J.C. Generation of microtumors using 3D human biogel culture system and patient-derived glioblastoma cells for kinomic profiling and drug response testing. J Vis Exp. 2016:e54026. PubMed PMC

Anderson J.C., Willey C.D., Mehta A. High throughput kinomic profiling of human clear cell renal cell carcinoma identifies kinase activity dependent molecular subtypes. PLoS One. 2015;10:e0139267. PubMed PMC

Anderson J.C., Taylor R.B., Fiveash J.B. Kinomic alterations in atypical meningioma. Med Res Arch. 2015;3 10.18103/mra.v0i3.104. PubMed PMC

Le W., Liang S., Chen H. Long-term outcome of IgA nephropathy patients with recurrent macroscopic hematuria. Am J Nephrol. 2014;40:43–50. PubMed

Boyd J.K., Cheung C.K., Molyneux K. An update on the pathogenesis and treatment of IgA nephropathy. Kidney Int. 2012;81:833–843. PubMed

Mattu T.S., Pleass R.J., Willis A.C. The glycosylation and structure of human serum IgA1, Fab, and Fc regions and the role of N-glycosylation on Fcα receptor interactions. J Biol Chem. 1998;273:2260–2272. PubMed

Diehl S., Rincon M. The two faces of IL-6 on Th1/Th2 differentiation. Mol Immunol. 2002;39:531–536. PubMed

Hurtado A., Johnson R.J. Hygiene hypothesis and prevalence of glomerulonephritis. Kidney Int. 2005;68(suppl 97):S62–S67. PubMed

Chintalacharuvu S.R., Emancipator S.N. The glycosylation of IgA produced by murine B cells is altered by Th2 cytokines. J Immunol. 1997;159:2327–2333. PubMed

Chintalacharuvu S.R., Emancipator S.N. Differential glycosylation of two glycoproteins synthesized by murine B cells in response to IL-4 plus IL-5. Cytokine. 2000;12:1182–1188. PubMed

Inoshita H., Kim B.G., Yamashita M. Disruption of Smad4 expression in T cells leads to IgA nephropathy-like manifestations. PLoS One. 2013;8:e78736. PubMed PMC

Yamada K., Kobayashi N., Ikeda T. Down-regulation of core 1 β1,3-galactosyltransferase and Cosmc by Th2 cytokine alters O-glycosylation of IgA1. Nephrol Dial Transplant. 2010;25:3890–3897. PubMed PMC

Royle L., Roos A., Harvey D.J. Secretory IgA N- and O-glycans provide a link between the innate and adaptive immune systems. J Biol Chem. 2003;278:20140–20153. PubMed

Hastings M.C., Moldoveanu Z., Julian B.A. Galactose-deficient IgA1 in African Americans with IgA nephropathy: serum levels and heritability. Clin J Am Soc Nephrol. 2010;5:2069–2074. PubMed PMC

Lin X., Ding J., Zhu L. Aberrant galactosylation of IgA1 is involved in the genetic susceptibility of Chinese patients with IgA nephropathy. Nephrol Dial Transplant. 2009;24:3372–3375. PubMed

Qin W., Zhou Q., Yang L.C. Peripheral B lymphocyte β1,3-galactosyltransferase and chaperone expression in immunoglobulin A nephropathy. J Intern Med. 2005;258:467–477. PubMed

Malycha F., Eggermann T., Hristov M. No evidence for a role of cosmc-chaperone mutations in European IgA nephropathy patients. Nephrol Dial Transplant. 2009;24:321–324. PubMed

Kiryluk K., Li Y., Moldoveanu Z. GWAS for serum galactose-deficient IgA1 implicates critical genes of the O-glycosylation pathway. PLoS Genet. 2017;13:e1006609. PubMed PMC

Rostoker G., Rymer J.C., Bagnard G. Imbalances in serum proinflammatory cytokines and their soluble receptors: a putative role in the progression of idiopathic IgA nephropathy (IgAN) and Henoch-Schönlein purpura nephritis, and a potential target of immunoglobulin therapy? Clin Exp Immunol. 1998;114:468–476. PubMed PMC

Panichi V., Migliori M., De Pietro S. C-reactive protein and interleukin-6 levels are related to renal function in predialytic chronic renal failure. Nephron. 2002;91:594–600. PubMed

Ranieri E., Gesualdo L., Petrarulo F. Urinary IL-6/EGF ratio: a useful prognostic marker for the progression of renal damage in IgA nephropathy. Kidney Int. 1996;50:1990–2001. PubMed

Papanicolaou D.A., Wilder R.L., Manolagas S.C. The pathophysiologic roles of interleukin-6 in human disease. Ann Intern Med. 1998;128:127–137. PubMed

Gharavi A.G., Kiryluk K., Choi M. Genome-wide association study identifies susceptibility loci for IgA nephropathy. Nat Genet. 2011;43:321–327. PubMed PMC

Imielinski M., Baldassano R.N., Griffiths A. Common variants at five new loci associated with early-onset inflammatory bowel disease. Nat Genet. 2009;41:1335–1340. PubMed PMC

Liu J.Z., van Sommeren S., Huang H. Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations. Nat Genet. 2015;47:979–986. PubMed PMC

Anglesio M.S., George J., Kulbe H. IL6-STAT3-HIF signaling and therapeutic response to the angiogenesis inhibitor sunitinib in ovarian clear cell cancer. Clin Cancer Res. 2011;17:2538–2548. PubMed

Jones S.A., Scheller J., Rose-John S. Therapeutic strategies for the clinical blockade of IL-6/gp130 signaling. J Clin Invest. 2011;121:3375–3383. PubMed PMC

Bende R.J., Jochems G.J., Frame T.H. Effects of IL-4, IL-5, and IL-6 on growth and immunoglobulin production of Epstein-Barr virus-infected human B cells. Cell Immunol. 1992;143:310–323. PubMed

Lin L., Benson D.M., Jr., DeAngelis S. A small molecule, LLL12 inhibits constitutive STAT3 and IL-6-induced STAT3 signaling and exhibits potent growth suppressive activity in human multiple myeloma cells. Int J Cancer. 2012;130:1459–1469. PubMed PMC

Lue C., Kiyono H., McGhee J.R. Recombinant human interleukin 6 (rhIL-6) promotes the terminal differentiation of in vivo-activated human B cells into antibody-secreting cells. Cell Immunol. 1991;132:423–432. PubMed

Heinrich P.C., Behrmann I., Haan S. Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem J. 2003;374:1–20. PubMed PMC

Zeng J., Mi R., Wang Y. Promoters of human Cosmc and T-synthase genes are similar in structure, yet different in epigenetic regulation. J Biol Chem. 2015;290:19018–19033. PubMed PMC

Al Khatib S., Keles S., Garcia-Lloret M. Defects along the Th17 differentiation pathway underlie genetically distinct forms of the hyper IgE syndrome. J Allergy Clin Immunol. 2009;124:342–348. 348.e1–5. PubMed PMC

Milner J.D., Brenchley J.M., Laurence A. Impaired T(H)17 cell differentiation in subjects with autosomal dominant hyper-IgE syndrome. Nature. 2008;452:773–776. PubMed PMC

Baran-Marszak F., Boukhiar M., Harel S. Constitutive and B-cell receptor-induced activation of STAT3 are important signaling pathways targeted by bortezomib in leukemic mantle cell lymphoma. Haematologica. 2010;95:1865–1872. PubMed PMC

Cheng F., Wang H., Horna P. Stat3 inhibition augments the immunogenicity of B-cell lymphoma cells, leading to effective antitumor immunity. Cancer Res. 2012;72:4440–4448. PubMed PMC

Koskela H.L., Eldfors S., Ellonen P. Somatic STAT3 mutations in large granular lymphocytic leukemia. N Engl J Med. 2012;366:1905–1913. PubMed PMC

Vogel T.P., Milner J.D., Cooper M.A. The ying and yang of STAT3 in human disease. J Clin Immunol. 2015;35:615–623. PubMed PMC

Munoz J., Dhillon N., Janku F. STAT3 inhibitors: finding a home in lymphoma and leukemia. Oncologist. 2014;19:536–544. PubMed PMC

Forbes L.R., Milner J., Haddad E. Signal transducer and activator of transcription 3: a year in review. Curr Opin Hematol. 2016;23:23–27. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...