Leukemia Inhibitory Factor Signaling Enhances Production of Galactose-Deficient IgA1 in IgA Nephropathy
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
R01 DK105124
NIDDK NIH HHS - United States
PubMed
32523959
PubMed Central
PMC7265702
DOI
10.1159/000505748
PII: kdd-0006-0168
Knihovny.cz E-zdroje
- Klíčová slova
- Aberrant O-glycosylation, Autoantigen, IgA nephropathy, Leukemia inhibitory factor, O-glycans,
- Publikační typ
- časopisecké články MeSH
OBJECTIVES: IgA nephropathy (IgAN) is thought to involve an autoimmune process wherein galactose-deficient IgA1 (Gd-IgA1), recognized as autoantigen by autoantibodies, forms pathogenic immune complexes. Mounting evidence has implicated abnormal activation of some protein-tyrosine kinases (PTKs) in IgAN. Furthermore, genome-wide association studies (GWAS) of IgAN provided insight into disease pathobiology and genetics. A GWAS locus on chromosome 22q12 contains genes encoding leukemia inhibitory factor (LIF) and oncostatin M, interleukin (IL)-6-related cytokines implicated in mucosal immunity and inflammation. We have previously shown that IL-6 mediates overproduction of Gd-IgA1 through aberrant STAT3 activation. Here, we show that LIF enhanced production of Gd-IgA1 in IgA1-secreting cells of patients with IgAN and provide initial analyses of LIF signaling. METHODS: We characterized LIF signaling that is involved in the overproduction of Gd-IgA1, using IgA1-secreting cell lines derived from peripheral blood of patients with IgAN and healthy controls (HC). We used global PTK activity profiling, immunoblotting, lectin ELISA, and siRNA knock-down. RESULTS: LIF stimulation did not significantly affect production of total IgA1 in IgA1-secreting cells from patients with IgAN or HC. However, LIF increased production of Gd-IgA1, but only in the cells from patients with IgAN. LIF stimulation enhanced phosphorylation of STAT1 in IgA1-secreting cells from patients with IgAN to a higher degree than in the cells from HC. siRNA knock-down of STAT1 blocked LIF-mediated overproduction of Gd-IgA1. Unexpectedly, this abnormal phosphorylation of STAT1 in IgA1-secreting cells from patients with IgAN was not mediated by JAK, but rather involved activation of Src-family PTKs (SFKs). CONCLUSION: Abnormal LIF/STAT1 signaling represents another pathway potentially leading to overproduction of Gd-IgA1 in IgAN, providing possible explanation for the phenotype associated with chromosome 22q12 GWAS locus. Abnormal LIF/STAT1 signaling and the associated SFKs may represent potential diagnostic and/or therapeutic targets in IgAN.
Department of Immunology Palacky University Olomouc Olomouc Czechia
Department of Medicine College of Physicians and Surgeons Columbia University New York New York USA
Department of Medicine University of Alabama at Birmingham Birmingham Alabama USA
Department of Microbiology University of Alabama at Birmingham Birmingham Alabama USA
Department of Nephrology Juntendo University Faculty of Medicine Tokyo Japan
Department of Radiation Oncology University of Alabama at Birmingham Birmingham Alabama USA
Zobrazit více v PubMed
Berger J, Hinglais N. [Intercapillary deposits of IgA-IgG] J Urol Nephrol (Paris) 1968 Sep;74((9)):694–5. PubMed
Julian BA, Waldo FB, Rifai A, Mestecky J. IgA nephropathy, the most common glomerulonephritis worldwide. A neglected disease in the United States? Am J Med. 1988 Jan;84((1)):129–32. PubMed
D'Amico G. Natural history of idiopathic IgA nephropathy: role of clinical and histological prognostic factors. Am J Kidney Dis. 2000 Aug;36((2)):227–37. PubMed
Wyatt RJ, Julian BA. IgA nephropathy. N Engl J Med. 2013 Jun;368((25)):2402–14. PubMed
Conley ME, Cooper MD, Michael AF. Selective deposition of immunoglobulin A1 in immunoglobulin A nephropathy, anaphylactoid purpura nephritis, and systemic lupus erythematosus. J Clin Invest. 1980 Dec;66((6)):1432–6. PubMed PMC
Allen AC, Bailey EM, Brenchley PE, Buck KS, Barratt J, Feehally J. Mesangial IgA1 in IgA nephropathy exhibits aberrant O-glycosylation: observations in three patients. Kidney Int. 2001 Sep;60((3)):969–73. PubMed
Hiki Y, Odani H, Takahashi M, Yasuda Y, Nishimoto A, Iwase H, et al. Mass spectrometry proves under-O-glycosylation of glomerular IgA1 in IgA nephropathy. Kidney Int. 2001 Mar;59((3)):1077–85. PubMed
Suzuki H, Fan R, Zhang Z, Brown R, Hall S, Julian BA, et al. Aberrantly glycosylated IgA1 in IgA nephropathy patients is recognized by IgG antibodies with restricted heterogeneity. J Clin Invest. 2009 Jun;119((6)):1668–77. PubMed PMC
Suzuki H, Kiryluk K, Novak J, Moldoveanu Z, Herr AB, Renfrow MB, et al. The pathophysiology of IgA nephropathy. J Am Soc Nephrol. 2011 Oct;22((10)):1795–803. PubMed PMC
Novak J, Julian BA, Mestecky J, Renfrow MB. Glycosylation of IgA1 and pathogenesis of IgA nephropathy. Semin Immunopathol. 2012 May;34((3)):365–82. PubMed
Moldoveanu Z, Wyatt RJ, Lee JY, Tomana M, Julian BA, Mestecky J, et al. Patients with IgA nephropathy have increased serum galactose-deficient IgA1 levels. Kidney Int. 2007 Jun;71((11)):1148–54. PubMed
Suzuki H, Moldoveanu Z, Hall S, Brown R, Vu HL, Novak L, et al. IgA1-secreting cell lines from patients with IgA nephropathy produce aberrantly glycosylated IgA1. J Clin Invest. 2008 Feb;118((2)):629–39. PubMed PMC
Suzuki H, Raska M, Yamada K, Moldoveanu Z, Julian BA, Wyatt RJ, et al. Cytokines alter IgA1 O-glycosylation by dysregulating C1GalT1 and ST6GalNAc-II enzymes. J Biol Chem. 2014 Feb;289((8)):5330–9. PubMed PMC
Stuchlova Horynova M, Vrablikova A, Stewart TJ, Takahashi K, Czernekova L, Yamada K, et al. N-acetylgalactosaminide α2,6-sialyltransferase II is a candidate enzyme for sialylation of galactose-deficient IgA1, the key autoantigen in IgA nephropathy. Nephrol Dial Transplant. 2015 Feb;30((2)):234–8. PubMed PMC
Kiryluk K, Li Y, Moldoveanu Z, Suzuki H, Reily C, Hou P, et al. GWAS for serum galactose-deficient IgA1 implicates critical genes of the O-glycosylation pathway. PLoS Genet. 2017 Feb;13((2)):e1006609. PubMed PMC
Gale DP, Molyneux K, Wimbury D, Higgins P, Levine AP, Caplin B, et al. Galactosylation of IgA1 is associated with common variation in C1GALT1. J Am Soc Nephrol. 2017 Jul;28((7)):2158–66. PubMed PMC
Lyons PA, Rayner TF, Trivedi S, Holle JU, Watts RA, Jayne DR, et al. Genetically distinct subsets within ANCA-associated vasculitis. N Engl J Med. 2012 Jul;367((3)):214–23. PubMed PMC
Liang L, Willis-Owen SA, Laprise C, Wong KC, Davies GA, Hudson TJ, et al. An epigenome-wide association study of total serum immunoglobulin E concentration. Nature. 2015 Apr;520((7549)):670–4. PubMed PMC
Weidinger S, Gieger C, Rodriguez E, Baurecht H, Mempel M, Klopp N, et al. Genome-wide scan on total serum IgE levels identifies FCER1A as novel susceptibility locus. PLoS Genet. 2008 Aug;4((8)):e1000166. PubMed PMC
Lauc G, Huffman JE, Pučić M, Zgaga L, Adamczyk B, Mužinić A, et al. Loci associated with N-glycosylation of human immunoglobulin G show pleiotropy with autoimmune diseases and haematological cancers. PLoS Genet. 2013;9((1)):e1003225. PubMed PMC
Feehally J, Farrall M, Boland A, Gale DP, Gut I, Heath S, et al. HLA has strongest association with IgA nephropathy in genome-wide analysis. J Am Soc Nephrol. 2010 Oct;21((10)):1791–7. PubMed PMC
Gharavi AG, Kiryluk K, Choi M, Li Y, Hou P, Xie J, et al. Genome-wide association study identifies susceptibility loci for IgA nephropathy. Nat Genet. 2011 Mar;43((4)):321–7. PubMed PMC
Yu XQ, Li M, Zhang H, Low HQ, Wei X, Wang JQ, et al. A genome-wide association study in Han Chinese identifies multiple susceptibility loci for IgA nephropathy. Nat Genet. 2011 Dec;44((2)):178–82. PubMed
Rockman SP, Demmler K, Roczo N, Cosgriff A, Phillips WA, Thomas RJ, et al. Expression of interleukin-6, leukemia inhibitory factor and their receptors by colonic epithelium and pericryptal fibroblasts. J Gastroenterol Hepatol. 2001 Sep;16((9)):991–1000. PubMed
Guimbaud R, Abitbol V, Bertrand V, Quartier G, Chauvelot-Moachon L, Giroud J, et al. Leukemia inhibitory factor involvement in human ulcerative colitis and its potential role in malignant course. Eur Cytokine Netw. 1998 Dec;9((4)):607–12. PubMed
Yamada K, Huang ZQ, Raska M, Reily C, Anderson JC, Suzuki H, et al. Inhibition of STAT3 signaling reduces IgA1 autoantigen production in IgA nephropathy. Kidney Int Rep. 2017 Jul;2((6)):1194–207. PubMed PMC
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Δ Δ C(T)) Method. Methods. 2001 Dec;25((4)):402–8. PubMed
Novak J, Rizk D, Takahashi K, Zhang X, Bian Q, Ueda H, et al. New insights into the pathogenesis of IgA nephropathy. Kidney Dis. 2015 May;1((1)):8–18. PubMed PMC
Zhao N, Hou P, Lv J, Moldoveanu Z, Li Y, Kiryluk K, et al. The level of galactose-deficient IgA1 in the sera of patients with IgA nephropathy is associated with disease progression. Kidney Int. 2012 Oct;82((7)):790–6. PubMed PMC
Maixnerova D, Ling C, Hall S, Reily C, Brown R, Neprasova M, et al. Galactose-deficient IgA1 and the corresponding IgG autoantibodies predict IgA nephropathy progression. PLoS One. 2019 Feb;14((2)):e0212254. PubMed PMC
Suzuki H, Allegri L, Suzuki Y, Hall S, Moldoveanu Z, Wyatt RJ, et al. Galactose-deficient IgA1 as a candidate urinary polypeptide marker of IgA nephropathy? Dis Markers. 2016;2016:7806438. PubMed PMC
Novak J, Barratt J, Julian BA, Renfrow MB. Aberrant glycosylation of the IgA1 molecule in IgA nephropathy. Semin Nephrol. 2018 Sep;38((5)):461–76. PubMed PMC
Kiryluk K, Li Y, Scolari F, Sanna-Cherchi S, Choi M, Verbitsky M, et al. Discovery of new risk loci for IgA nephropathy implicates genes involved in immunity against intestinal pathogens. Nat Genet. 2014 Nov;46((11)):1187–96. PubMed PMC
Kiryluk K, Li Y, Sanna-Cherchi S, Rohanizadegan M, Suzuki H, Eitner F, et al. Geographic differences in genetic susceptibility to IgA nephropathy: GWAS replication study and geospatial risk analysis. PLoS Genet. 2012;8((6)):e1002765. PubMed PMC
Jostins L, Ripke S, Weersma RK, Duerr RH, McGovern DP, Hui KY, et al. International IBD Genetics Consortium (IIBDGC) Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature. 2012 Nov;491((7422)):119–24. PubMed PMC
McGovern DP, Kugathasan S, Cho JH. Genetics of inflammatory bowel diseases. Gastroenterology. 2015 Oct;149((5)):1163–1176.e2. PubMed PMC
Lee JC, Biasci D, Roberts R, Gearry RB, Mansfield JC, Ahmad T, et al. UK IBD Genetics Consortium Genome-wide association study identifies distinct genetic contributions to prognosis and susceptibility in Crohn's disease. Nat Genet. 2017 Feb;49((2)):262–8. PubMed PMC
de Lange KM, Moutsianas L, Lee JC, Lamb CA, Luo Y, Kennedy NA, et al. Genome-wide association study implicates immune activation of multiple integrin genes in inflammatory bowel disease. Nat Genet. 2017 Feb;49((2)):256–61. PubMed PMC
Ambruzs JM, Walker PD, Larsen CP. The histopathologic spectrum of kidney biopsies in patients with inflammatory bowel disease. Clin J Am Soc Nephrol. 2014 Feb;9((2)):265–70. PubMed PMC
Vincent FB, Saulep-Easton D, Figgett WA, Fairfax KA, Mackay F. The BAFF/APRIL system: emerging functions beyond B cell biology and autoimmunity. Cytokine Growth Factor Rev. 2013 Jun;24((3)):203–15. PubMed PMC
Avery DT, Kalled SL, Ellyard JI, Ambrose C, Bixler SA, Thien M, et al. BAFF selectively enhances the survival of plasmablasts generated from human memory B cells. J Clin Invest. 2003 Jul;112((2)):286–97. PubMed PMC
McCarthy DD, Chiu S, Gao Y, Summers-deLuca LE, Gommerman JL. BAFF induces a hyper-IgA syndrome in the intestinal lamina propria concomitant with IgA deposition in the kidney independent of LIGHT. Cell Immunol. 2006 Jun;241((2)):85–94. PubMed
McCarthy DD, Kujawa J, Wilson C, Papandile A, Poreci U, Porfilio EA, et al. Mice overexpressing BAFF develop a commensal flora-dependent, IgA-associated nephropathy. J Clin Invest. 2011 Oct;121((10)):3991–4002. PubMed PMC
Vincent FB, Northcott M, Hoi A, Mackay F, Morand EF. Association of serum B cell activating factor from the tumour necrosis factor family (BAFF) and a proliferation-inducing ligand (APRIL) with central nervous system and renal disease in systemic lupus erythematosus. Lupus. 2013 Aug;22((9)):873–84. PubMed
Dooley MA, Houssiau F, Aranow C, D'Cruz DP, Askanase A, Roth DA, et al. BLISS-52 and -76 Study Groups Effect of belimumab treatment on renal outcomes: results from the phase 3 belimumab clinical trials in patients with SLE. Lupus. 2013 Jan;22((1)):63–72. PubMed
Franke A, McGovern DP, Barrett JC, Wang K, Radford-Smith GL, Ahmad T, et al. Genome-wide meta-analysis increases to 71 the number of confirmed Crohn's disease susceptibility loci. Nat Genet. 2010 Dec;42((12)):1118–25. PubMed PMC
Imielinski M, Baldassano RN, Griffiths A, Russell RK, Annese V, Dubinsky M, et al. Western Regional Alliance for Pediatric IBD. International IBD Genetics Consortium. NIDDK IBD Genetics Consortium. Belgian-French IBD Consortium. Wellcome Trust Case Control Consortium Common variants at five new loci associated with early-onset inflammatory bowel disease. Nat Genet. 2009 Dec;41((12)):1335–40. PubMed PMC
Papanicolaou DA, Wilder RL, Manolagas SC, Chrousos GP. The pathophysiologic roles of interleukin-6 in human disease. Ann Intern Med. 1998 Jan;128((2)):127–37. PubMed
Bende RJ, Jochems GJ, Frame TH, Klein MR, van Eijk RV, van Lier RA, et al. Effects of IL-4, IL-5, and IL-6 on growth and immunoglobulin production of Epstein-Barr virus-infected human B cells. Cell Immunol. 1992 Sep;143((2)):310–23. PubMed
Lin L, Benson DM, Jr, DeAngelis S, Bakan CE, Li PK, Li C, et al. A small molecule, LLL12 inhibits constitutive STAT3 and IL-6-induced STAT3 signaling and exhibits potent growth suppressive activity in human multiple myeloma cells. Int J Cancer. 2012 Mar;130((6)):1459–69. PubMed PMC
Lue C, Kiyono H, McGhee JR, Fujihashi K, Kishimoto T, Hirano T, et al. Recombinant human interleukin 6 (rhIL-6) promotes the terminal differentiation of in vivo-activated human B cells into antibody-secreting cells. Cell Immunol. 1991 Feb;132((2)):423–32. PubMed
Zhang L, Turner B, Ribbeck K, Ten Hagen KG. Loss of the mucosal barrier alters the progenitor cell niche via Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling. J Biol Chem. 2017 Dec;292((52)):21231–42. PubMed PMC
Aaronson DS, Horvath CM. A road map for those who don't know JAK-STAT. Science. 2002 May;296((5573)):1653–5. PubMed
Shuai K, Liu B. Regulation of JAK-STAT signalling in the immune system. Nat Rev Immunol. 2003 Nov;3((11)):900–11. PubMed
Avalle L, Pensa S, Regis G, Novelli F, Poli V. STAT1 and STAT3 in tumorigenesis: A matter of balance. JAK-STAT. 2012 Apr;1((2)):65–72. PubMed PMC
O'Shea JJ, Plenge R. JAK and STAT signaling molecules in immunoregulation and immune-mediated disease. Immunity. 2012 Apr;36((4)):542–50. PubMed PMC
Schwerd T, Twigg SR, Aschenbrenner D, Manrique S, Miller KA, Taylor IB, et al. A biallelic mutation in IL6STencoding the GP130 co-receptor causes immunodeficiency and craniosynostosis. J Exp Med. 2017 Sep;214((9)):2547–62. PubMed PMC
Aparicio-Siegmund S, Sommer J, Monhasery N, Schwanbeck R, Keil E, Finkenstädt D, et al. Inhibition of protein kinase II (CK2) prevents induced signal transducer and activator of transcription (STAT) 1/3 and constitutive STAT3 activation. Oncotarget. 2014 Apr;5((8)):2131–48. PubMed PMC
Espada J, Martín-Pérez J. An update on Src family of nonreceptor tyrosine kinases biology. Int Rev Cell Mol Biol. 2017;331:83–122. PubMed
Parsons SJ, Parsons JT. Src family kinases, key regulators of signal transduction. Oncogene. 2004 Oct;23((48)):7906–9. PubMed
Coccia EM, Del Russo N, Stellacci E, Testa U, Marziali G, Battistini A. STAT1 activation during monocyte to macrophage maturation: role of adhesion molecules. Int Immunol. 1999 Jul;11((7)):1075–83. PubMed
Collins-McMillen D, Stevenson EV, Kim JH, Lee BJ, Cieply SJ, Nogalski MT, et al. Human cytomegalovirus utilizes a nontraditional signal transducer and activator of transcription 1 activation cascade via signaling through epidermal growth factor receptor and integrins to efficiently promote the motility, differentiation, and polarization of infected monocytes. J Virol. 2017 Nov;91((24)):91. PubMed PMC
Ernst M, Gearing DP, Dunn AR. Functional and biochemical association of Hck with the LIF/IL-6 receptor signal transducing subunit gp130 in embryonic stem cells. EMBO J. 1994 Apr;13((7)):1574–84. PubMed PMC
Fang Y, Zhong L, Lin M, Zhou X, Jing H, Ying M, et al. MEK/ERK dependent activation of STAT1 mediates dasatinib-induced differentiation of acute myeloid leukemia. PLoS One. 2013 Jun;8((6)):e66915. PubMed PMC
Bhattacharjee A, Pal S, Feldman GM, Cathcart MK. Hck is a key regulator of gene expression in alternatively activated human monocytes. J Biol Chem. 2011 Oct;286((42)):36709–23. PubMed PMC
Gauld SB, Cambier JC. Src-family kinases in B-cell development and signaling. Oncogene. 2004 Oct;23((48)):8001–6. PubMed