N-acetylgalactosaminide α2,6-sialyltransferase II is a candidate enzyme for sialylation of galactose-deficient IgA1, the key autoantigen in IgA nephropathy

. 2015 Feb ; 30 (2) : 234-8. [epub] 20141003

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid25281698

Grantová podpora
DK082753 NIDDK NIH HHS - United States
R01 GM098539 NIGMS NIH HHS - United States
GM098539 NIGMS NIH HHS - United States
R01 DK078244 NIDDK NIH HHS - United States
R01 DK082753 NIDDK NIH HHS - United States
DK078244 NIDDK NIH HHS - United States

BACKGROUND: Galactose-deficient O-glycans in the hinge region (HR) of immunoglobulin A1 (IgA1) play a key role in the pathogenesis of IgA nephropathy (IgAN). O-Glycans of circulatory IgA1 consist of N-acetylgalactosamine (GalNAc) with a β1,3-linked galactose; both sugars may be sialylated. In patients with IgAN, α2,6-sialylated GalNAc is a frequent form of the galactose-deficient O-glycans. Prior analyses of IgA1-producing cells had indicated that α2,6-sialyltransferase II (ST6GalNAc-II) is likely responsible for sialylation of GalNAc of galactose-deficient IgA1, but direct evidence is missing. METHODS: We produced a secreted variant of recombinant human ST6GalNAc-II and an IgA1 fragment comprised of Cα1-HR-Cα2. This IgA1 fragment and a synthetic HR peptide with enzymatically attached GalNAc residues served as acceptors. ST6GalNAc-II activity was assessed in vitro and the attachment of sialic acid to these acceptors was detected by lectin blot and mass spectrometry. RESULTS: ST6GalNAc-II was active with both acceptors. High-resolution mass spectrometry analysis revealed that up to three sialic acid residues were added to the GalNAc residues of the HR glycopeptide. CONCLUSIONS: Our data provide direct evidence that ST6GalNAc-II can sialylate GalNAc of galactose-deficient IgA1. As serum levels of galactose-deficient IgA1 with sialylated glycoforms are increased in IgAN patients, our data explain the corresponding part of the biosynthetic pathway.

Zobrazit více v PubMed

Stuchlova Horynova M, Raska M, Clausen H, et al. Aberrant O-glycosylation and anti-glycan antibodies in an autoimmune disease IgA nephropathy and breast adenocarcinoma. Cell Mol Life Sci. 2013;70:829–839. PubMed PMC

Mestecky J, Raska M, Julian BA, et al. IgA nephropathy: molecular mechanisms of the disease. Annu Rev Pathol. 2013;8:217–240. PubMed

Wyatt RJ, Julian BA. IgA nephropathy. N Engl J Med. 2013;368:2402–2414. PubMed

Baenziger J, Kornfeld S. Structure of the carbohydrate units of IgA1 immunoglobulin. II. Structure of the O-glycosidically linked oligosaccharide units. J Biol Chem. 1974;249:7270–7281. PubMed

Field MC, Dwek RA, Edge CJ, et al. O-linked oligosaccharides from human serum immunoglobulin A1. Biochem Soc Trans. 1989;17:1034–1035. PubMed

Mattu TS, Pleass RJ, Willis AC, et al. The glycosylation and structure of human serum IgA1, Fab, and Fc regions and the role of N-glycosylation on Fc α receptor interactions. J Biol Chem. 1998;273:2260–2272. PubMed

Wada Y, Dell A, Haslam SM, et al. Comparison of methods for profiling O-glycosylation: human proteome organisation human disease glycomics/proteome initiative multi-institutional study of IgA1. Mol Cell Proteomics. 2010;9:719–727. PubMed PMC

Takahashi K, Wall SB, Suzuki H, et al. Clustered O-glycans of IgA1: defining macro- and micro-heterogeneity by use of electron capture/transfer dissociation. Mol Cell Proteomics. 2010;9:2545–2557. PubMed PMC

Tomana M, Novak J, Julian BA, et al. Circulating immune complexes in IgA nephropathy consist of IgA1 with galactose-deficient hinge region and antiglycan antibodies. J Clin Invest. 1999;104:73–81. PubMed PMC

Suzuki H, Fan R, Zhang Z, et al. Aberrantly glycosylated IgA1 in IgA nephropathy patients is recognized by IgG antibodies with restricted heterogeneity. J Clin Invest. 2009;119:1668–1677. PubMed PMC

Suzuki H, Kiryluk K, Novak J, et al. The pathophysiology of IgA nephropathy. J Am Soc Nephrol. 2011;22:1795–1803. PubMed PMC

D'Amico G. Natural history of idiopathic IgA nephropathy and factors predictive of disease outcome. Semin Nephrol. 2004;24:179–196. PubMed

Frangione B, Wolfenstein-Todel C. Partial duplication in the "hinge" region of IgA1 myeloma proteins. Proc Natl Acad Sci USA. 1972;69:3673–3676. PubMed PMC

Takahashi K, Smith AD, Poulsen K, et al. Naturally occurring structural isomers in serum IgA1 O-glycosylation. J Proteome Res. 2012;11:692–702. PubMed PMC

Novak J, Renfrow MB, Gharavi AG, et al. Pathogenesis of immunoglobulin A nephropathy. Curr Opin Nephrol Hypertens. 2013;22:287–294. PubMed

Franc V, Rehulka P, Raus M, et al. Elucidating heterogeneity of IgA1 hinge-region O-glycosylation by use of MALDI-TOF/TOF mass spectrometry: role of cysteine alkylation during sample processing. J Proteom. 2013;92:299–312. PubMed PMC

Iwasaki H, Zhang Y, Tachibana K, et al. Initiation of O-glycan synthesis in IgA1 hinge region is determined by a single enzyme, UDP-N-acetyl-α-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase 2. J Biol Chem. 2003;278:5613–5621. PubMed

Ju T, Cummings RD. A unique molecular chaperone Cosmc required for activity of the mammalian core 1 β 3-galactosyltransferase. Proc Natl Acad Sci USA. 2002;99:16613–16618. PubMed PMC

Ju T, Brewer K, D'Souza A, et al. Cloning and expression of human core 1 beta1,3-galactosyltransferase. J Biol Chem. 2002;277:178–186. PubMed

Suzuki H, Moldoveanu Z, Hall S, et al. IgA1-secreting cell lines from patients with IgA nephropathy produce aberrantly glycosylated IgA1. J Clin Invest. 2008;118:629–639. PubMed PMC

Dall'Olio F, Chiricolo M. Sialyltransferases in cancer. Glycoconj J. 2001;18:841–850. PubMed

Raska M, Moldoveanu Z, Suzuki H, et al. Identification and characterization of CMP-NeuAc:GalNAc-IgA1 α2,6-sialyltransferase in IgA1-producing cells. J Mol Biol. 2007;369:69–78. PubMed PMC

Suzuki H, Raska M, Yamada K, et al. Cytokines alter IgA1 O-glycosylation by dysregulating C1GalT1 and ST6GalNAc-II enzymes. J Biol Chem. 2014;289:5330–5339. PubMed PMC

Takahashi K, Raska M, Stuchlova Horynova M, et al. Enzymatic sialylation of IgA1 O-glycans: implications for studies of IgA nephropathy. PLoS ONE. 2014;9:e99026. PubMed PMC

Horynova M, Takahashi K, Hall S, et al. Production of N-acetylgalactosaminyl-transferase 2 (GalNAc-T2) fused with secretory signal Igkappa in insect cells. Protein Expr Purif. 2012;81:175–180. PubMed PMC

Stosova T, Sebela M, Rehulka P, et al. Evaluation of the possible proteomic application of trypsin from Streptomyces griseus. Anal Biochem. 2008;376:94–102. PubMed

Tomana M, Matousovic K, Julian BA, et al. Galactose-deficient IgA1 in sera of IgA nephropathy patients is present in complexes with IgG. Kidney Int. 1997;52:509–516. PubMed

Moldoveanu Z, Wyatt RJ, Lee JY, et al. Patients with IgA nephropathy have increased serum galactose-deficient IgA1 levels. Kidney Int. 2007;71:1148–1154. PubMed

Novak J, Julian BA, Tomana M, et al. Progress in molecular and genetic studies of IgA nephropathy. J Clin Immunol. 2001;21:310–327. PubMed

Raska M, Takahashi K, Czernekova L, et al. Glycosylation patterns of HIV-1 gp120 depend on the type of expressing cells and affect antibody recognition. J Biol Chem. 2010;285:20860–20869. PubMed PMC

Allen AC, Bailey EM, Brenchley PE, et al. Mesangial IgA1 in IgA nephropathy exhibits aberrant O-glycosylation: observations in three patients. Kidney Int. 2001;60:969–973. PubMed

Hiki Y, Odani H, Takahashi M, et al. Mass spectrometry proves under-O-glycosylation of glomerular IgA1 in IgA nephropathy. Kidney Int. 2001;59:1077–1085. PubMed

Ikehara Y, Kojima N, Kurosawa N, et al. Cloning and expression of a human gene encoding an N-acetylgalactosamine-α2,6-sialyltransferase (ST6GalNAc I): a candidate for synthesis of cancer-associated sialyl-Tn antigens. Glycobiology. 1999;9:1213–1224. PubMed

Marcos NT, Pinho S, Grandela C, et al. Role of the human ST6GalNAc-I and ST6GalNAc-II in the synthesis of the cancer-associated sialyl-Tn antigen. Cancer Res. 2004;64:7050–7057. PubMed

Samyn-Petit B, Krzewinski-Recchi MA, Steelant WF, et al. Molecular cloning and functional expression of human ST6GalNAc II. Molecular expression in various human cultured cells. Biochim Biophys Acta. 2000;1474:201–211. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...