Quantitative assessment of successive carbohydrate additions to the clustered O-glycosylation sites of IgA1 by glycosyltransferases
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
R01 GM098539
NIGMS NIH HHS - United States
R01 AI162236
NIAID NIH HHS - United States
R01 DK078244
NIDDK NIH HHS - United States
F31 DK109599
NIDDK NIH HHS - United States
R01 DK082753
NIDDK NIH HHS - United States
R56 DK078244
NIDDK NIH HHS - United States
PubMed
33295603
PubMed Central
PMC8176776
DOI
10.1093/glycob/cwaa111
PII: 6028718
Knihovny.cz E-zdroje
- Klíčová slova
- IgA1 hinge region, polypeptide GalNAc-transferase, LC–MS, clustered glycosylation, mucin-type glycosylation,
- MeSH
- glykosylace MeSH
- glykosyltransferasy metabolismus MeSH
- imunoglobulin A metabolismus MeSH
- lidé MeSH
- polysacharidy analýza biosyntéza MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- glykosyltransferasy MeSH
- imunoglobulin A MeSH
- polysacharidy MeSH
Mucin-type O-glycosylation occurs on many proteins that transit the Golgi apparatus. These glycans impact structure and function of many proteins and have important roles in cellular biosynthetic processes, signaling and differentiation. Although recent technological advances have enhanced our ability to profile glycosylation of glycoproteins, limitations in the understanding of the biosynthesis of these glycan structures remain. Some of these limitations stem from the difficulty to track the biosynthetic process of mucin-type O-glycosylation, especially when glycans occur in dense clusters in repeat regions of proteins, such as the mucins or immunoglobulin A1 (IgA1). Here, we describe a series of nano-liquid chromatography (LC)-mass spectrometry (MS) analyses that demonstrate the range of glycosyltransferase enzymatic activities involved in the biosynthesis of clustered O-glycans on IgA1. By utilizing nano-LC-MS relative quantitation of in vitro reaction products, our results provide unique insights into the biosynthesis of clustered IgA1 O-glycans. We have developed a workflow to determine glycoform-specific apparent rates of a human UDP-N-acetylgalactosamine:polypeptide N-acetylgalactosaminyltrasnfersase (GalNAc-T EC 2.4.1.41) and demonstrated how pre-existing glycans affect subsequent activity of glycosyltransferases, such as core 1 galactosyltransferase and α2,3- and α2,6-specific sialyltransferases, in successive additions in the biosynthesis of clustered O-glycans. In the context of IgA1, these results have potential to provide insight into the molecular mechanisms implicated in the pathogenesis of IgA nephropathy, an autoimmune renal disease involving aberrant IgA1 O-glycosylation. In a broader sense, these methods and workflows are applicable to the studies of the concerted and competing functions of other glycosyltransferases that initiate and extend mucin-type core 1 clustered O-glycosylation.
Zobrazit více v PubMed
Allen AC, Bailey EM, Brenchley PE, Buck KS, Barratt J, Feehally J. 2001. Mesangial IgA1 in IgA nephropathy exhibits aberrant O-glycosylation: observations in three patients. Kidney Int. 60:969–973. PubMed
Baenziger J, Kornfeld S. 1974. Structure of the carbohydrate units of IgA1 immunoglobulin. II. Structure of the O-glycosidically linked oligosaccharide units. J Biol Chem. 249:7270–7281. PubMed
Bennett EP, Mandel U, Clausen H, Gerken TA, Fritz TA, Tabak LA. 2012. Control of mucin-type O-glycosylation: a classification of the polypeptide GalNAc-transferase gene family. Glycobiology. 22:736–756. PubMed PMC
Berrow NS, Alderton D, Sainsbury S, Nettleship J, Assenberg R, Rahman N, Stuart DI, Owens RJ. 2007. A versatile ligation-independent cloning method suitable for high-throughput expression screening applications. Nucleic Acids Res. 35:e45. PubMed PMC
Bevc S, Konc J, Stojan J, Hodoscek M, Penca M, Praprotnik M, Janezic D. 2011. ENZO: a web tool for derivation and evaluation of kinetic models of enzyme catalyzed reactions. PLoS One. 6:e22265. PubMed PMC
Boehm MK, Woof JM, Kerr MA, Perkins SJ. 1999. The Fab and Fc fragments of IgA1 exhibit a different arrangement from that in IgG: a study by X-ray and neutron solution scattering and homology modelling. J Mol Biol. 286:1421–1447. PubMed
Brockhausen I, Toki D, Brockhausen J, Peters S, Bielfeldt T, Kleen A, Paulsen H, Meldal M, Hagen F, Tabak LA. 1996. Specificity of O-glycosylation by bovine colostrum UDP-GalNAc: polypeptide α-N-acetylgalactosaminyltransferase using synthetic glycopeptide substrates. Glycoconj J. 13:849–856. PubMed
Brockhausen I, Yang J, Lehotay M, Ogata S, Itzkowitz S. 2001. Pathways of mucin O-glycosylation in normal and malignant rat colonic epithelial cells reveal a mechanism for cancer-associated Sialyl-Tn antigen expression. Biol Chem. 382:219–232. PubMed
Dube DH, Prescher JA, Quang CN, Bertozzi CR. 2006. Probing mucin-type O-linked glycosylation in living animals. Proc Natl Acad Sci U S A. 103:4819–4824. PubMed PMC
Elhammer A, Kornfeld S. 1986. Purification and characterization of UDP-N-acetylgalactosamine: polypeptide N-acetylgalactosaminyltransferase from bovine colostrum and murine lymphoma BW5147 cells. J Biol Chem. 261:5249–5255. PubMed
Franc V, Yang Y, Heck AJ. 2017. Proteoform profile mapping of the human serum complement component C9 revealing unexpected new features of N-, O-, and C-glycosylation. Anal Chem. 89:3483–3491. PubMed PMC
Fritz TA, Raman J, Tabak LA. 2006. Dynamic association between the catalytic and lectin domains of human UDP-GalNAc:polypeptide α-N-acetylgalactosaminyltransferase-2. J Biol Chem. 281:8613–8619. PubMed
Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A. 2005. Protein Identification and Analysis Tools on the ExPASy Server. In: Walker JM, editor. Protein Identification and Analysis Tools on the ExPASy Server. Totowa, NJ: Humana Press. p. 571–607.
Gerken TA. 2004. Kinetic modeling confirms the biosynthesis of mucin core 1 β-Gal(1-3) α-GalNAc-O-Ser/Thr O-glycan structures are modulated by neighboring glycosylation effects. Biochemistry. 43:4137–4142. PubMed
Gerken TA, Owens CL, Pasumarthy M. 1998. Site-specific core 1 O-glycosylation pattern of the porcine submaxillary gland mucin tandem repeat. Evidence for the modulation of glycan length by peptide sequence. J Biol Chem. 273:26580–26588. PubMed
Gerken TA, Zhang J, Levine J, Elhammer A. 2002. Mucin core O-glycosylation is modulated by neighboring residue glycosylation status. Kinetic modeling of the site-specific glycosylation of the apo-porcine submaxillary mucin tandem repeat by UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferases T1 and T2. J Biol Chem. 277:49850–49862. PubMed
Hagopian A, Westall FC, Whitehead JS, Eylar EH. 1971. Glycosylation of the A1 protein from myelin by a polypeptide N-acetylgalactosaminyltransferase. Identification of the receptor sequence. J Biol Chem. 246:2519–2523. PubMed
Hang HC, Yu C, Kato DL, Bertozzi CR. 2003. A metabolic labeling approach toward proteomic analysis of mucin-type O-linked glycosylation. Proc Natl Acad Sci U S A. 100:14846–14851. PubMed PMC
Hanisch FG. 2001. O-glycosylation of the mucin type. Biol Chem. 382:143–149. PubMed
Hanisch FG, Jovanovic M, Peter-Katalinic J. 2001a. Glycoprotein identification and localization of O-glycosylation sites by mass spectrometric analysis of deglycosylated/alkylaminylated peptide fragments. Anal Biochem. 290:47–59. PubMed
Hanisch FG, Muller S, Hassan H, Clausen H, Zachara N, Gooley AA, Paulsen H, Alving K, Peter-Katalinic J. 1999. Dynamic epigenetic regulation of initial O-glycosylation by UDP-N-acetylgalactosamine:peptide N-acetylgalactosaminyltransferases. Site-specific glycosylation of MUC1 repeat peptide influences the substrate qualities at adjacent or distant Ser/Thr positions. J Biol Chem. 274:9946–9954. PubMed
Hanisch FG, Reis CA, Clausen H, Paulsen H. 2001b. Evidence for glycosylation-dependent activities of polypeptide N-acetylgalactosaminyltransferases rGalNAc-T2 and -T4 on mucin glycopeptides. Glycobiology. 11:731–740. PubMed
Hargett AA, Renfrow MB. 2019. Glycosylation of viral surface proteins probed by mass spectrometry. Curr Opin Virol. 36:56–66. PubMed PMC
Hargett AA, Wei Q, Knoppova B, Hall S, Huang ZQ, Prakash A, Green TJ, Moldoveanu Z, Raska M, Novak J, et al. 2019. Defining HIV-1 envelope N-glycan microdomains through site-specific heterogeneity profiles. J Virol. 93:e01177–18. PubMed PMC
Hennebicq S, Tetaert D, Soudan B, Boersma A, Briand G, Richet C, Gagnon J, Degand P. 1998. Influence of the amino acid sequence on the MUC5AC motif peptide O-glycosylation by human gastric UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase(s). Glycoconj J. 15:275–282. PubMed
Hiki Y, Odani H, Takahashi M, Yasuda Y, Nishimoto A, Iwase H, Shinzato T, Kobayashi Y, Maeda K. 2001. Mass spectrometry proves under-O-glycosylation of glomerular IgA1 in IgA nephropathy. Kidney Int. 59:1077–1085. PubMed
Horynova M, Takahashi K, Hall S, Renfrow MB, Novak J, Raska M. 2012. Production of N-acetylgalactosaminyl-transferase 2 (GalNAc-T2) fused with secretory signal Igkappa in insect cells. Protein Expr Purif. 81:175–180. PubMed PMC
Iida S, Takeuchi H, Hassan H, Clausen H, Irimura T. 1999. Incorporation of N-acetylgalactosamine into consecutive threonine residues in MUC2 tandem repeat by recombinant human N-acetyl-D-galactosamine transferase-T1, T2 and T3. FEBS Lett. 449:230–234. PubMed
Iida S, Takeuchi H, Kato K, Yamamoto K, Irimura T. 2000. Order and maximum incorporation of N-acetyl-D-galactosamine into threonine residues of MUC2 core peptide with microsome fraction of human-colon-carcinoma LS174T cells. Biochem J. 347:535–542. PubMed PMC
Iwasaki H, Zhang Y, Tachibana K, Gotoh M, Kikuchi N, Kwon YD, Togayachi A, Kudo T, Kubota T, Narimatsu H. 2003. Initiation of O-glycan synthesis in IgA1 hinge region is determined by a single enzyme, UDP-N-acetyl-α-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase 2. J Biol Chem. 278:5613–5621. PubMed
Kato K, Takeuchi H, Kanoh A, Mandel U, Hassan H, Clausen H, Irimura T. 2001a. N-acetylgalactosamine incorporation into a peptide containing consecutive threonine residues by UDP-N-acetyl-D-galactosaminide:polypeptide N-acetylgalactosaminyltransferases. Glycobiology. 11:821–829. PubMed
Kato K, Takeuchi H, Miyahara N, Kanoh A, Hassan H, Clausen H, Irimura T. 2001b. Distinct orders of GalNAc incorporation into a peptide with consecutive threonines. Biochem Biophys Res Commun. 287:110–115. PubMed
Kiryluk K, Li Y, Moldoveanu Z, Suzuki H, Reily C, Hou P, Xie J, Mladkova N, Prakash S, Fischman C, et al. 2017. GWAS for serum galactose-deficient IgA1 implicates critical genes of the O-glycosylation pathway. PLoS Genet. 13:e1006609. PubMed PMC
Knoppova B, Reily C, Maillard N, Rizk DV, Moldoveanu Z, Mestecky J, Raska M, Renfrow MB, Julian BA, Novak J. 2016. The origin and activities of IgA1-containing immune complexes in IgA nephropathy. Front Immunol. 7:117. PubMed PMC
Marth JD, Grewal PK. 2008. Mammalian glycosylation in immunity. Nat Rev Immunol. 8:874–887. PubMed PMC
Mattu TS, Pleass RJ, Willis AC, Kilian M, Wormald MR, Lellouch AC, Rudd PM, Woof JM, Dwek RA. 1998. The glycosylation and structure of human serum IgA1, Fab, and Fc regions and the role of N-glycosylation on Fcα receptor interactions. J Biol Chem. 273:2260–2272. PubMed
Mestecky J, Kilian M. 1985. Immunoglobulin A (IgA). Methods Enzymol. 116:37–75. PubMed
Mestecky J, Tomana M, Crowley-Nowick PA, Moldoveanu Z, Julian BA, Jackson S. 1993. Defective galactosylation and clearance of IgA1 molecules as a possible etiopathogenic factor in IgA nephropathy. Contrib Nephrol. 104:172–182. PubMed
Moldoveanu Z, Wyatt RJ, Lee JY, Tomana M, Julian BA, Mestecky J, Huang WQ, Anreddy SR, Hall S, Hastings MC, et al. 2007. Patients with IgA nephropathy have increased serum galactose-deficient IgA1 levels. Kidney Int. 71:1148–1154. PubMed
Moore JS, Kulhavy R, Tomana M, Moldoveanu Z, Suzuki H, Brown R, Hall S, Kilian M, Poulsen K, Mestecky J, et al. 2007. Reactivities of N-acetylgalactosamine-specific lectins with human IgA1 proteins. Mol Immunol. 44:2598–2604. PubMed PMC
Muller S, Hanisch FG. 2002. Recombinant MUC1 probe authentically reflects cell-specific O-glycosylation profiles of endogenous breast cancer mucin. High density and prevalent core 2-based glycosylation. J Biol Chem. 277:26103–26112. PubMed
Novak J, Julian BA, Mestecky J, Renfrow MB. 2012. Glycosylation of IgA1 and pathogenesis of IgA nephropathy. Semin Immunopathol. 34:365–382. PubMed
Novak J, Julian BA, Tomana M, Mesteck J. 2001. Progress in molecular and genetic studies of IgA nephropathy. J Clin Immunol. 21:310–327. PubMed
Nwosu CC, Seipert RR, Strum JS, Hua SS, An HJ, Zivkovic AM, German BJ, Lebrilla CB. 2011. Simultaneous and extensive site-specific N- and O-glycosylation analysis in protein mixtures. J Proteome Res. 10:2612–2624. PubMed PMC
O'Connell BC, Hagen FK, Tabak LA. 1992. The influence of flanking sequence on the O-glycosylation of threonine in vitro. J Biol Chem. 267:25010–25018. PubMed
Ohyama Y, Nakajima K, Renfrow MB, Novak J, Takahashi K. 2020. Mass spectrometry for the identification and analysis of highly complex glycosylation of therapeutic or pathogenic proteins. Expert Rev Proteomics. 17:275–296. PubMed PMC
Parry S, Hanisch FG, Leir SH, Sutton-Smith M, Morris HR, Dell A, Harris A. 2006. N-glycosylation of the MUC1 mucin in epithelial cells and secretions. Glycobiology. 16:623–634. PubMed
Pedersen JW, Bennett EP, Schjoldager KT, Meldal M, Holmér AP, Blixt O, Cló E, Levery SB, Clausen H, Wandall HH. 2011. Lectin domains of polypeptide GalNAc transferases exhibit glycopeptide binding specificity. J Biol Chem. 286:32684–32696. PubMed PMC
Peter-Katalinic J. 2005. Methods in enzymology: O-glycosylation of proteins. Methods Enzymol. 405:139–171. PubMed
Pratt MR, Hang HC, Ten Hagen KG, Rarick J, Gerken TA, Tabak LA, Bertozzi CR. 2004. Deconvoluting the functions of polypeptide N-α-acetylgalactosaminyltransferase family members by glycopeptide substrate profiling. Chem Biol. 11:1009–1016. PubMed
Raman J, Fritz TA, Gerken TA, Jamison O, Live D, Liu M, Tabak LA. 2008. The catalytic and lectin domains of UDP-GalNAc:polypeptide α-N-acetylgalactosaminyltransferase function in concert to direct glycosylation site selection. J Biol Chem. 283:22942–22951. PubMed PMC
Raska M, Moldoveanu Z, Suzuki H, Brown R, Kulhavy R, Andrasi J, Hall S, Vu HL, Carlsson F, Lindahl G, et al. 2007. Identification and characterization of CMP-NeuAc:GalNAc-IgA1 α2,6-sialyltransferase in IgA1-producing cells. J Mol Biol. 369:69–78. PubMed PMC
Reily C, Stewart TJ, Renfrow MB, Novak J. 2019. Glycosylation in health and disease. Nat Rev Nephrol. 15:346–366. PubMed PMC
Renfrow MB, Cooper HJ, Tomana M, Kulhavy R, Hiki Y, Toma K, Emmett MR, Mestecky J, Marshall AG, Novak J. 2005. Determination of aberrant O-glycosylation in the IgA1 hinge region by electron capture dissociation Fourier transform-ion cyclotron resonance mass spectrometry. J Biol Chem. 280:19136–19145. PubMed
Renfrow MB, Mackay CL, Chalmers MJ, Julian BA, Mestecky J, Kilian M, Poulsen K, Emmett MR, Marshall AG, Novak J. 2007. Analysis of O-glycan heterogeneity in IgA1 myeloma proteins by Fourier transform ion cyclotron resonance mass spectrometry: implications for IgA nephropathy. Anal Bioanal Chem. 389:1397–1407. PubMed
Revoredo L, Wang S, Bennett EP, Clausen H, Moremen KW, Jarvis DL, Ten Hagen KG, Tabak LA, Gerken TA. 2016. Mucin-type O-glycosylation is controlled by short- and long-range glycopeptide substrate recognition that varies among members of the polypeptide GalNAc transferase family. Glycobiology. 26:360–376. PubMed PMC
Rizk DV, Saha MK, Hall S, Novak L, Brown R, Huang ZQ, Fatima H, Julian BA, Novak J. 2019. Glomerular immunodeposits of patients with IgA nephropathy are enriched for IgG autoantibodies specific for galactose-deficient IgA1. J Am Soc Nephrol. 30:2017–2026. PubMed PMC
Roth J. 1987. Subcellular organization of glycosylation in mammalian cells. Biochim Biophys Acta. 906:405–436. PubMed
Rottger S, White J, Wandall HH, Olivo JC, Stark A, Bennett EP, Whitehouse C, Berger EG, Clausen H, Nilsson T. 1998. Localization of three human polypeptide GalNAc-transferases in HeLa cells suggests initiation of O-linked glycosylation throughout the Golgi apparatus. J Cell Sci. 111(Pt 1):45–60. PubMed
Schjoldager KT, Narimatsu Y, Joshi HJ, Clausen H. 2020. Global view of human protein glycosylation pathways and functions. Nat Rev Mol Cell Biol. 21:729–749. PubMed
Sheta R, Woo CM, Roux-Dalvai F, Fournier F, Bourassa S, Droit A, Bertozzi CR, Bachvarov D. 2016. A metabolic labeling approach for glycoproteomic analysis reveals altered glycoprotein expression upon GALNT3 knockdown in ovarian cancer cells. J Proteomics. 145:91–102. PubMed PMC
Soudan B, Hennebicq S, Tetaert D, Boersma A, Richet C, Demeyer D, Briand G, Degand P. 1999. Capillary zone electrophoresis and MALDI-mass spectrometry for the monitoring of in vitro O-glycosylation of a threonine/serine-rich MUC5AC hexadecapeptide. J Chromatogr B Biomed Sci Appl. 729:65–74. PubMed
Stadie TR, Chai W, Lawson AM, Byfield PG, Hanisch FG. 1995. Studies on the order and site specificity of GalNAc transfer to MUC1 tandem repeats by UDP-GalNAc: polypeptide N-acetylgalactosaminyltransferase from milk or mammary carcinoma cells. Eur J Biochem. 229:140–147. PubMed
Stewart TJ, Takahashi K, Whitaker RH, Raska M, Placzek WJ, Novak J, Renfrow MB. 2019. IgA1 hinge-region clustered glycan fidelity is established early during semi-ordered glycosylation by GalNAc-T2. Glycobiology. 29:543–556. PubMed PMC
Stuchlova Horynova M, Vrablikova A, Stewart TJ, Takahashi K, Czernekova L, Yamada K, Suzuki H, Julian BA, Renfrow MB, Novak J, et al. 2015. N-acetylgalactosaminide α2,6-sialyltransferase II is a candidate enzyme for sialylation of galactose-deficient IgA1, the key autoantigen in IgA nephropathy. Nephrol Dial Transplant. 30:234–238. PubMed PMC
Suzuki H, Fan R, Zhang Z, Brown R, Hall S, Julian BA, Chatham WW, Suzuki Y, Wyatt RJ, Moldoveanu Z, et al. 2009. Aberrantly glycosylated IgA1 in IgA nephropathy patients is recognized by IgG antibodies with restricted heterogeneity. J Clin Invest. 119:1668–1677. PubMed PMC
Suzuki H, Moldoveanu Z, Hall S, Brown R, Vu HL, Novak L, Julian BA, Tomana M, Wyatt RJ, Edberg JC, et al. 2008. IgA1-secreting cell lines from patients with IgA nephropathy produce aberrantly glycosylated IgA1. J Clin Invest. 118:629–639. PubMed PMC
Suzuki H, Raska M, Yamada K, Moldoveanu Z, Julian BA, Wyatt RJ, Tomino Y, Gharavi AG, Novak J. 2014. Cytokines alter IgA1 O-glycosylation by dysregulating C1GalT1 and ST6GalNAc-II enzymes. J Biol Chem. 289:5330–5339. PubMed PMC
Syka JE, Coon JJ, Schroeder MJ, Shabanowitz J, Hunt DF. 2004. Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proc Natl Acad Sci U S A. 101:9528–9533. PubMed PMC
Takahashi K, Raska M, Stuchlova Horynova M, Hall SD, Poulsen K, Kilian M, Hiki Y, Yuzawa Y, Moldoveanu Z, Julian BA, et al. 2014. Enzymatic sialylation of IgA1 O-glycans: Implications for studies of IgA nephropathy. PLoS One. 9:e99026. PubMed PMC
Takahashi K, Smith AD, Poulsen K, Kilian M, Julian BA, Mestecky J, Novak J, Renfrow MB. 2012. Naturally occurring structural isomers in serum IgA1 O-glycosylation. J Proteome Res. 11:692–702. PubMed PMC
Takahashi K, Wall SB, Suzuki H, ADt S, Hall S, Poulsen K, Kilian M, Mobley JA, Julian BA, Mestecky J, et al. 2010. Clustered O-glycans of IgA1: defining macro- and microheterogeneity by use of electron capture/transfer dissociation. Mol Cell Proteomics. 9:2545–2557. PubMed PMC
Takeuchi H, Kato K, Hassan H, Clausen H, Irimura T. 2002. O-GalNAc incorporation into a cluster acceptor site of three consecutive threonines. Distinct specificity of GalNAc-transferase isoforms. Eur J Biochem. 269:6173–6183. PubMed
Ten Hagen KG, Bedi GS, Tetaert D, Kingsley PD, Hagen FK, Balys MM, Beres TM, Degand P, Tabak LA. 2001. Cloning and characterization of a ninth member of the UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase family, ppGaNTase-T9. J Biol Chem. 276:17395–17404. PubMed
Ten Hagen KG, Fritz TA, Tabak LA. 2003. All in the family: the UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferases. Glycobiology. 13:1R–16R. PubMed
Ten Hagen KG, Tetaert D, Hagen FK, Richet C, Beres TM, Gagnon J, Balys MM, VanWuyckhuyse B, Bedi GS, Degand P, et al. 1999. Characterization of a UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase that displays glycopeptide N-acetylgalactosaminyltransferase activity. J Biol Chem. 274:27867–27874. PubMed
Tomana M, Matousovic K, Julian BA, Radl J, Konecny K, Mestecky J. 1997. Galactose-deficient IgA1 in sera of IgA nephropathy patients is present in complexes with IgG. Kidney Int. 52:509–516. PubMed
Tomana M, Novak J, Julian BA, Matousovic K, Konecny K, Mestecky J. 1999. Circulating immune complexes in IgA nephropathy consist of IgA1 with galactose-deficient hinge region and antiglycan antibodies. J Clin Invest. 104:73–81. PubMed PMC
Wada Y, Dell A, Haslam SM, Tissot B, Canis K, Azadi P, Backstrom M, Costello CE, Hansson GC, Hiki Y, et al. 2010. Comparison of methods for profiling O-glycosylation: human proteome organisation human disease glycomics/proteome initiative multi-institutional study of IgA1. Mol Cell Proteomics. 9:719–727. PubMed PMC
Wandall HH, Hassan H, Mirgorodskaya E, Kristensen AK, Roepstorff P, Bennett EP, Nielsen PA, Hollingsworth MA, Burchell J, Taylor-Papadimitriou J, et al. 1997. Substrate specificities of three members of the human UDP-N-acetyl-α-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase family, GalNAc-T1, −T2, and -T3. J Biol Chem. 272:23503–23514. PubMed
Wandall HH, Irazoqui F, Tarp MA, Bennett EP, Mandel U, Takeuchi H, Kato K, Irimura T, Suryanarayanan G, Hollingsworth MA, et al. 2007. The lectin domains of polypeptide GalNAc-transferases exhibit carbohydrate-binding specificity for GalNAc: lectin binding to GalNAc-glycopeptide substrates is required for high density GalNAc-O-glycosylation. Glycobiology. 17:374–387. PubMed
Wragg S, Hagen FK, Tabak LA. 1995. Kinetic analysis of a recombinant UDP-N-acetyl-D-galactosamine: polypeptide N-acetylgalactosaminyltransferase. J Biol Chem. 270:16947–16954. PubMed
Xiao J, Wang M, Xiong D, Wang Y, Li Q, Zhou J, Chen Q. 2017. TGF-β1 mimics the effect of IL-4 on the glycosylation of IgA1 by downregulating core 1 β1,3-galactosyltransferase and Cosmc. Mol Med Rep. 15:969–974. PubMed
Xing Y, Li L, Zhang Y, Wang F, He D, Liu Y, Jia J, Yan T, Lin S. 2020. C1GALT1 expression is associated with galactosylation of IgA1 in peripheral B lymphocyte in immunoglobulin a nephropathy. BMC Nephrol. 21:18. PubMed PMC
Yanagawa H, Suzuki H, Suzuki Y, Kiryluk K, Gharavi AG, Matsuoka K, Makita Y, Julian BA, Novak J, Tomino Y. 2014. A panel of serum biomarkers differentiates IgA nephropathy from other renal diseases. PLoS One. 9:e98081. PubMed PMC
Yang Y, Liu F, Franc V, Halim LA, Schellekens H, Heck AJ. 2016. Hybrid mass spectrometry approaches in glycoprotein analysis and their usage in scoring biosimilarity. Nat Commun. 7:13397. PubMed PMC
Yang Z, Wang S, Halim A, Schulz MA, Frodin M, Rahman SH, Vester-Christensen MB, Behrens C, Kristensen C, Vakhrushev SY, et al. 2015. Engineered CHO cells for production of diverse, homogeneous glycoproteins. Nat Biotechnol. 33:842–844. PubMed