Quantitative assessment of successive carbohydrate additions to the clustered O-glycosylation sites of IgA1 by glycosyltransferases

. 2021 Jun 03 ; 31 (5) : 540-556.

Jazyk angličtina Země Velká Británie, Anglie Médium print

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33295603

Grantová podpora
R01 GM098539 NIGMS NIH HHS - United States
R01 AI162236 NIAID NIH HHS - United States
R01 DK078244 NIDDK NIH HHS - United States
F31 DK109599 NIDDK NIH HHS - United States
R01 DK082753 NIDDK NIH HHS - United States
R56 DK078244 NIDDK NIH HHS - United States

Mucin-type O-glycosylation occurs on many proteins that transit the Golgi apparatus. These glycans impact structure and function of many proteins and have important roles in cellular biosynthetic processes, signaling and differentiation. Although recent technological advances have enhanced our ability to profile glycosylation of glycoproteins, limitations in the understanding of the biosynthesis of these glycan structures remain. Some of these limitations stem from the difficulty to track the biosynthetic process of mucin-type O-glycosylation, especially when glycans occur in dense clusters in repeat regions of proteins, such as the mucins or immunoglobulin A1 (IgA1). Here, we describe a series of nano-liquid chromatography (LC)-mass spectrometry (MS) analyses that demonstrate the range of glycosyltransferase enzymatic activities involved in the biosynthesis of clustered O-glycans on IgA1. By utilizing nano-LC-MS relative quantitation of in vitro reaction products, our results provide unique insights into the biosynthesis of clustered IgA1 O-glycans. We have developed a workflow to determine glycoform-specific apparent rates of a human UDP-N-acetylgalactosamine:polypeptide N-acetylgalactosaminyltrasnfersase (GalNAc-T EC 2.4.1.41) and demonstrated how pre-existing glycans affect subsequent activity of glycosyltransferases, such as core 1 galactosyltransferase and α2,3- and α2,6-specific sialyltransferases, in successive additions in the biosynthesis of clustered O-glycans. In the context of IgA1, these results have potential to provide insight into the molecular mechanisms implicated in the pathogenesis of IgA nephropathy, an autoimmune renal disease involving aberrant IgA1 O-glycosylation. In a broader sense, these methods and workflows are applicable to the studies of the concerted and competing functions of other glycosyltransferases that initiate and extend mucin-type core 1 clustered O-glycosylation.

Zobrazit více v PubMed

Allen  AC, Bailey  EM, Brenchley  PE, Buck  KS, Barratt  J, Feehally  J. 2001. Mesangial IgA1 in IgA nephropathy exhibits aberrant O-glycosylation: observations in three patients. Kidney Int. 60:969–973. PubMed

Baenziger  J, Kornfeld  S. 1974. Structure of the carbohydrate units of IgA1 immunoglobulin. II. Structure of the O-glycosidically linked oligosaccharide units. J Biol Chem. 249:7270–7281. PubMed

Bennett  EP, Mandel  U, Clausen  H, Gerken  TA, Fritz  TA, Tabak  LA. 2012. Control of mucin-type O-glycosylation: a classification of the polypeptide GalNAc-transferase gene family. Glycobiology. 22:736–756. PubMed PMC

Berrow  NS, Alderton  D, Sainsbury  S, Nettleship  J, Assenberg  R, Rahman  N, Stuart  DI, Owens  RJ. 2007. A versatile ligation-independent cloning method suitable for high-throughput expression screening applications. Nucleic Acids Res. 35:e45. PubMed PMC

Bevc  S, Konc  J, Stojan  J, Hodoscek  M, Penca  M, Praprotnik  M, Janezic  D. 2011. ENZO: a web tool for derivation and evaluation of kinetic models of enzyme catalyzed reactions. PLoS One. 6:e22265. PubMed PMC

Boehm  MK, Woof  JM, Kerr  MA, Perkins  SJ. 1999. The Fab and Fc fragments of IgA1 exhibit a different arrangement from that in IgG: a study by X-ray and neutron solution scattering and homology modelling. J Mol Biol. 286:1421–1447. PubMed

Brockhausen  I, Toki  D, Brockhausen  J, Peters  S, Bielfeldt  T, Kleen  A, Paulsen  H, Meldal  M, Hagen  F, Tabak  LA. 1996. Specificity of O-glycosylation by bovine colostrum UDP-GalNAc: polypeptide α-N-acetylgalactosaminyltransferase using synthetic glycopeptide substrates. Glycoconj J. 13:849–856. PubMed

Brockhausen  I, Yang  J, Lehotay  M, Ogata  S, Itzkowitz  S. 2001. Pathways of mucin O-glycosylation in normal and malignant rat colonic epithelial cells reveal a mechanism for cancer-associated Sialyl-Tn antigen expression. Biol Chem. 382:219–232. PubMed

Dube  DH, Prescher  JA, Quang  CN, Bertozzi  CR. 2006. Probing mucin-type O-linked glycosylation in living animals. Proc Natl Acad Sci U S A. 103:4819–4824. PubMed PMC

Elhammer  A, Kornfeld  S. 1986. Purification and characterization of UDP-N-acetylgalactosamine: polypeptide N-acetylgalactosaminyltransferase from bovine colostrum and murine lymphoma BW5147 cells. J Biol Chem. 261:5249–5255. PubMed

Franc  V, Yang  Y, Heck  AJ. 2017. Proteoform profile mapping of the human serum complement component C9 revealing unexpected new features of N-, O-, and C-glycosylation. Anal Chem. 89:3483–3491. PubMed PMC

Fritz  TA, Raman  J, Tabak  LA. 2006. Dynamic association between the catalytic and lectin domains of human UDP-GalNAc:polypeptide α-N-acetylgalactosaminyltransferase-2. J Biol Chem. 281:8613–8619. PubMed

Gasteiger  E, Hoogland  C, Gattiker  A, Duvaud  S, Wilkins  MR, Appel  RD, Bairoch  A. 2005. Protein Identification and Analysis Tools on the ExPASy Server. In: Walker  JM, editor. Protein Identification and Analysis Tools on the ExPASy Server. Totowa, NJ: Humana Press. p. 571–607.

Gerken  TA. 2004. Kinetic modeling confirms the biosynthesis of mucin core 1 β-Gal(1-3) α-GalNAc-O-Ser/Thr O-glycan structures are modulated by neighboring glycosylation effects. Biochemistry. 43:4137–4142. PubMed

Gerken  TA, Owens  CL, Pasumarthy  M. 1998. Site-specific core 1 O-glycosylation pattern of the porcine submaxillary gland mucin tandem repeat. Evidence for the modulation of glycan length by peptide sequence. J Biol Chem. 273:26580–26588. PubMed

Gerken  TA, Zhang  J, Levine  J, Elhammer  A. 2002. Mucin core O-glycosylation is modulated by neighboring residue glycosylation status. Kinetic modeling of the site-specific glycosylation of the apo-porcine submaxillary mucin tandem repeat by UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferases T1 and T2. J Biol Chem. 277:49850–49862. PubMed

Hagopian  A, Westall  FC, Whitehead  JS, Eylar  EH. 1971. Glycosylation of the A1 protein from myelin by a polypeptide N-acetylgalactosaminyltransferase. Identification of the receptor sequence. J Biol Chem. 246:2519–2523. PubMed

Hang  HC, Yu  C, Kato  DL, Bertozzi  CR. 2003. A metabolic labeling approach toward proteomic analysis of mucin-type O-linked glycosylation. Proc Natl Acad Sci U S A. 100:14846–14851. PubMed PMC

Hanisch  FG. 2001. O-glycosylation of the mucin type. Biol Chem. 382:143–149. PubMed

Hanisch  FG, Jovanovic  M, Peter-Katalinic  J. 2001a. Glycoprotein identification and localization of O-glycosylation sites by mass spectrometric analysis of deglycosylated/alkylaminylated peptide fragments. Anal Biochem. 290:47–59. PubMed

Hanisch  FG, Muller  S, Hassan  H, Clausen  H, Zachara  N, Gooley  AA, Paulsen  H, Alving  K, Peter-Katalinic  J. 1999. Dynamic epigenetic regulation of initial O-glycosylation by UDP-N-acetylgalactosamine:peptide N-acetylgalactosaminyltransferases. Site-specific glycosylation of MUC1 repeat peptide influences the substrate qualities at adjacent or distant Ser/Thr positions. J Biol Chem. 274:9946–9954. PubMed

Hanisch  FG, Reis  CA, Clausen  H, Paulsen  H. 2001b. Evidence for glycosylation-dependent activities of polypeptide N-acetylgalactosaminyltransferases rGalNAc-T2 and -T4 on mucin glycopeptides. Glycobiology. 11:731–740. PubMed

Hargett  AA, Renfrow  MB. 2019. Glycosylation of viral surface proteins probed by mass spectrometry. Curr Opin Virol. 36:56–66. PubMed PMC

Hargett  AA, Wei  Q, Knoppova  B, Hall  S, Huang  ZQ, Prakash  A, Green  TJ, Moldoveanu  Z, Raska  M, Novak  J, et al.  2019. Defining HIV-1 envelope N-glycan microdomains through site-specific heterogeneity profiles. J Virol. 93:e01177–18. PubMed PMC

Hennebicq  S, Tetaert  D, Soudan  B, Boersma  A, Briand  G, Richet  C, Gagnon  J, Degand  P. 1998. Influence of the amino acid sequence on the MUC5AC motif peptide O-glycosylation by human gastric UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase(s). Glycoconj J. 15:275–282. PubMed

Hiki  Y, Odani  H, Takahashi  M, Yasuda  Y, Nishimoto  A, Iwase  H, Shinzato  T, Kobayashi  Y, Maeda  K. 2001. Mass spectrometry proves under-O-glycosylation of glomerular IgA1 in IgA nephropathy. Kidney Int. 59:1077–1085. PubMed

Horynova  M, Takahashi  K, Hall  S, Renfrow  MB, Novak  J, Raska  M. 2012. Production of N-acetylgalactosaminyl-transferase 2 (GalNAc-T2) fused with secretory signal Igkappa in insect cells. Protein Expr Purif. 81:175–180. PubMed PMC

Iida  S, Takeuchi  H, Hassan  H, Clausen  H, Irimura  T. 1999. Incorporation of N-acetylgalactosamine into consecutive threonine residues in MUC2 tandem repeat by recombinant human N-acetyl-D-galactosamine transferase-T1, T2 and T3. FEBS Lett. 449:230–234. PubMed

Iida  S, Takeuchi  H, Kato  K, Yamamoto  K, Irimura  T. 2000. Order and maximum incorporation of N-acetyl-D-galactosamine into threonine residues of MUC2 core peptide with microsome fraction of human-colon-carcinoma LS174T cells. Biochem J. 347:535–542. PubMed PMC

Iwasaki  H, Zhang  Y, Tachibana  K, Gotoh  M, Kikuchi  N, Kwon  YD, Togayachi  A, Kudo  T, Kubota  T, Narimatsu  H. 2003. Initiation of O-glycan synthesis in IgA1 hinge region is determined by a single enzyme, UDP-N-acetyl-α-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase 2. J Biol Chem. 278:5613–5621. PubMed

Kato  K, Takeuchi  H, Kanoh  A, Mandel  U, Hassan  H, Clausen  H, Irimura  T. 2001a. N-acetylgalactosamine incorporation into a peptide containing consecutive threonine residues by UDP-N-acetyl-D-galactosaminide:polypeptide N-acetylgalactosaminyltransferases. Glycobiology. 11:821–829. PubMed

Kato  K, Takeuchi  H, Miyahara  N, Kanoh  A, Hassan  H, Clausen  H, Irimura  T. 2001b. Distinct orders of GalNAc incorporation into a peptide with consecutive threonines. Biochem Biophys Res Commun. 287:110–115. PubMed

Kiryluk  K, Li  Y, Moldoveanu  Z, Suzuki  H, Reily  C, Hou  P, Xie  J, Mladkova  N, Prakash  S, Fischman  C, et al.  2017. GWAS for serum galactose-deficient IgA1 implicates critical genes of the O-glycosylation pathway. PLoS Genet. 13:e1006609. PubMed PMC

Knoppova  B, Reily  C, Maillard  N, Rizk  DV, Moldoveanu  Z, Mestecky  J, Raska  M, Renfrow  MB, Julian  BA, Novak  J. 2016. The origin and activities of IgA1-containing immune complexes in IgA nephropathy. Front Immunol. 7:117. PubMed PMC

Marth  JD, Grewal  PK. 2008. Mammalian glycosylation in immunity. Nat Rev Immunol. 8:874–887. PubMed PMC

Mattu  TS, Pleass  RJ, Willis  AC, Kilian  M, Wormald  MR, Lellouch  AC, Rudd  PM, Woof  JM, Dwek  RA. 1998. The glycosylation and structure of human serum IgA1, Fab, and Fc regions and the role of N-glycosylation on Fcα receptor interactions. J Biol Chem. 273:2260–2272. PubMed

Mestecky  J, Kilian  M. 1985. Immunoglobulin A (IgA). Methods Enzymol. 116:37–75. PubMed

Mestecky  J, Tomana  M, Crowley-Nowick  PA, Moldoveanu  Z, Julian  BA, Jackson  S. 1993. Defective galactosylation and clearance of IgA1 molecules as a possible etiopathogenic factor in IgA nephropathy. Contrib Nephrol. 104:172–182. PubMed

Moldoveanu  Z, Wyatt  RJ, Lee  JY, Tomana  M, Julian  BA, Mestecky  J, Huang  WQ, Anreddy  SR, Hall  S, Hastings  MC, et al.  2007. Patients with IgA nephropathy have increased serum galactose-deficient IgA1 levels. Kidney Int. 71:1148–1154. PubMed

Moore  JS, Kulhavy  R, Tomana  M, Moldoveanu  Z, Suzuki  H, Brown  R, Hall  S, Kilian  M, Poulsen  K, Mestecky  J, et al.  2007. Reactivities of N-acetylgalactosamine-specific lectins with human IgA1 proteins. Mol Immunol. 44:2598–2604. PubMed PMC

Muller  S, Hanisch  FG. 2002. Recombinant MUC1 probe authentically reflects cell-specific O-glycosylation profiles of endogenous breast cancer mucin. High density and prevalent core 2-based glycosylation. J Biol Chem. 277:26103–26112. PubMed

Novak  J, Julian  BA, Mestecky  J, Renfrow  MB. 2012. Glycosylation of IgA1 and pathogenesis of IgA nephropathy. Semin Immunopathol. 34:365–382. PubMed

Novak  J, Julian  BA, Tomana  M, Mesteck  J. 2001. Progress in molecular and genetic studies of IgA nephropathy. J Clin Immunol. 21:310–327. PubMed

Nwosu  CC, Seipert  RR, Strum  JS, Hua  SS, An  HJ, Zivkovic  AM, German  BJ, Lebrilla  CB. 2011. Simultaneous and extensive site-specific N- and O-glycosylation analysis in protein mixtures. J Proteome Res. 10:2612–2624. PubMed PMC

O'Connell  BC, Hagen  FK, Tabak  LA. 1992. The influence of flanking sequence on the O-glycosylation of threonine in vitro. J Biol Chem. 267:25010–25018. PubMed

Ohyama  Y, Nakajima  K, Renfrow  MB, Novak  J, Takahashi  K. 2020. Mass spectrometry for the identification and analysis of highly complex glycosylation of therapeutic or pathogenic proteins. Expert Rev Proteomics. 17:275–296. PubMed PMC

Parry  S, Hanisch  FG, Leir  SH, Sutton-Smith  M, Morris  HR, Dell  A, Harris  A. 2006. N-glycosylation of the MUC1 mucin in epithelial cells and secretions. Glycobiology. 16:623–634. PubMed

Pedersen  JW, Bennett  EP, Schjoldager  KT, Meldal  M, Holmér  AP, Blixt  O, Cló  E, Levery  SB, Clausen  H, Wandall  HH. 2011. Lectin domains of polypeptide GalNAc transferases exhibit glycopeptide binding specificity. J Biol Chem. 286:32684–32696. PubMed PMC

Peter-Katalinic  J. 2005. Methods in enzymology: O-glycosylation of proteins. Methods Enzymol. 405:139–171. PubMed

Pratt  MR, Hang  HC, Ten Hagen  KG, Rarick  J, Gerken  TA, Tabak  LA, Bertozzi  CR. 2004. Deconvoluting the functions of polypeptide N-α-acetylgalactosaminyltransferase family members by glycopeptide substrate profiling. Chem Biol. 11:1009–1016. PubMed

Raman  J, Fritz  TA, Gerken  TA, Jamison  O, Live  D, Liu  M, Tabak  LA. 2008. The catalytic and lectin domains of UDP-GalNAc:polypeptide α-N-acetylgalactosaminyltransferase function in concert to direct glycosylation site selection. J Biol Chem. 283:22942–22951. PubMed PMC

Raska  M, Moldoveanu  Z, Suzuki  H, Brown  R, Kulhavy  R, Andrasi  J, Hall  S, Vu  HL, Carlsson  F, Lindahl  G, et al.  2007. Identification and characterization of CMP-NeuAc:GalNAc-IgA1 α2,6-sialyltransferase in IgA1-producing cells. J Mol Biol. 369:69–78. PubMed PMC

Reily  C, Stewart  TJ, Renfrow  MB, Novak  J. 2019. Glycosylation in health and disease. Nat Rev Nephrol. 15:346–366. PubMed PMC

Renfrow  MB, Cooper  HJ, Tomana  M, Kulhavy  R, Hiki  Y, Toma  K, Emmett  MR, Mestecky  J, Marshall  AG, Novak  J. 2005. Determination of aberrant O-glycosylation in the IgA1 hinge region by electron capture dissociation Fourier transform-ion cyclotron resonance mass spectrometry. J Biol Chem. 280:19136–19145. PubMed

Renfrow  MB, Mackay  CL, Chalmers  MJ, Julian  BA, Mestecky  J, Kilian  M, Poulsen  K, Emmett  MR, Marshall  AG, Novak  J. 2007. Analysis of O-glycan heterogeneity in IgA1 myeloma proteins by Fourier transform ion cyclotron resonance mass spectrometry: implications for IgA nephropathy. Anal Bioanal Chem. 389:1397–1407. PubMed

Revoredo  L, Wang  S, Bennett  EP, Clausen  H, Moremen  KW, Jarvis  DL, Ten Hagen  KG, Tabak  LA, Gerken  TA. 2016. Mucin-type O-glycosylation is controlled by short- and long-range glycopeptide substrate recognition that varies among members of the polypeptide GalNAc transferase family. Glycobiology. 26:360–376. PubMed PMC

Rizk  DV, Saha  MK, Hall  S, Novak  L, Brown  R, Huang  ZQ, Fatima  H, Julian  BA, Novak  J. 2019. Glomerular immunodeposits of patients with IgA nephropathy are enriched for IgG autoantibodies specific for galactose-deficient IgA1. J Am Soc Nephrol. 30:2017–2026. PubMed PMC

Roth  J. 1987. Subcellular organization of glycosylation in mammalian cells. Biochim Biophys Acta. 906:405–436. PubMed

Rottger  S, White  J, Wandall  HH, Olivo  JC, Stark  A, Bennett  EP, Whitehouse  C, Berger  EG, Clausen  H, Nilsson  T. 1998. Localization of three human polypeptide GalNAc-transferases in HeLa cells suggests initiation of O-linked glycosylation throughout the Golgi apparatus. J Cell Sci. 111(Pt 1):45–60. PubMed

Schjoldager  KT, Narimatsu  Y, Joshi  HJ, Clausen  H. 2020. Global view of human protein glycosylation pathways and functions. Nat Rev Mol Cell Biol. 21:729–749. PubMed

Sheta  R, Woo  CM, Roux-Dalvai  F, Fournier  F, Bourassa  S, Droit  A, Bertozzi  CR, Bachvarov  D. 2016. A metabolic labeling approach for glycoproteomic analysis reveals altered glycoprotein expression upon GALNT3 knockdown in ovarian cancer cells. J Proteomics. 145:91–102. PubMed PMC

Soudan  B, Hennebicq  S, Tetaert  D, Boersma  A, Richet  C, Demeyer  D, Briand  G, Degand  P. 1999. Capillary zone electrophoresis and MALDI-mass spectrometry for the monitoring of in vitro O-glycosylation of a threonine/serine-rich MUC5AC hexadecapeptide. J Chromatogr B Biomed Sci Appl. 729:65–74. PubMed

Stadie  TR, Chai  W, Lawson  AM, Byfield  PG, Hanisch  FG. 1995. Studies on the order and site specificity of GalNAc transfer to MUC1 tandem repeats by UDP-GalNAc: polypeptide N-acetylgalactosaminyltransferase from milk or mammary carcinoma cells. Eur J Biochem. 229:140–147. PubMed

Stewart  TJ, Takahashi  K, Whitaker  RH, Raska  M, Placzek  WJ, Novak  J, Renfrow  MB. 2019. IgA1 hinge-region clustered glycan fidelity is established early during semi-ordered glycosylation by GalNAc-T2. Glycobiology. 29:543–556. PubMed PMC

Stuchlova Horynova  M, Vrablikova  A, Stewart  TJ, Takahashi  K, Czernekova  L, Yamada  K, Suzuki  H, Julian  BA, Renfrow  MB, Novak  J, et al.  2015. N-acetylgalactosaminide α2,6-sialyltransferase II is a candidate enzyme for sialylation of galactose-deficient IgA1, the key autoantigen in IgA nephropathy. Nephrol Dial Transplant. 30:234–238. PubMed PMC

Suzuki  H, Fan  R, Zhang  Z, Brown  R, Hall  S, Julian  BA, Chatham  WW, Suzuki  Y, Wyatt  RJ, Moldoveanu  Z, et al.  2009. Aberrantly glycosylated IgA1 in IgA nephropathy patients is recognized by IgG antibodies with restricted heterogeneity. J Clin Invest. 119:1668–1677. PubMed PMC

Suzuki  H, Moldoveanu  Z, Hall  S, Brown  R, Vu  HL, Novak  L, Julian  BA, Tomana  M, Wyatt  RJ, Edberg  JC, et al.  2008. IgA1-secreting cell lines from patients with IgA nephropathy produce aberrantly glycosylated IgA1. J Clin Invest. 118:629–639. PubMed PMC

Suzuki  H, Raska  M, Yamada  K, Moldoveanu  Z, Julian  BA, Wyatt  RJ, Tomino  Y, Gharavi  AG, Novak  J. 2014. Cytokines alter IgA1 O-glycosylation by dysregulating C1GalT1 and ST6GalNAc-II enzymes. J Biol Chem. 289:5330–5339. PubMed PMC

Syka  JE, Coon  JJ, Schroeder  MJ, Shabanowitz  J, Hunt  DF. 2004. Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proc Natl Acad Sci U S A. 101:9528–9533. PubMed PMC

Takahashi  K, Raska  M, Stuchlova Horynova  M, Hall  SD, Poulsen  K, Kilian  M, Hiki  Y, Yuzawa  Y, Moldoveanu  Z, Julian  BA, et al.  2014. Enzymatic sialylation of IgA1 O-glycans: Implications for studies of IgA nephropathy. PLoS One. 9:e99026. PubMed PMC

Takahashi  K, Smith  AD, Poulsen  K, Kilian  M, Julian  BA, Mestecky  J, Novak  J, Renfrow  MB. 2012. Naturally occurring structural isomers in serum IgA1 O-glycosylation. J Proteome Res. 11:692–702. PubMed PMC

Takahashi  K, Wall  SB, Suzuki  H, ADt  S, Hall  S, Poulsen  K, Kilian  M, Mobley  JA, Julian  BA, Mestecky  J, et al.  2010. Clustered O-glycans of IgA1: defining macro- and microheterogeneity by use of electron capture/transfer dissociation. Mol Cell Proteomics. 9:2545–2557. PubMed PMC

Takeuchi  H, Kato  K, Hassan  H, Clausen  H, Irimura  T. 2002. O-GalNAc incorporation into a cluster acceptor site of three consecutive threonines. Distinct specificity of GalNAc-transferase isoforms. Eur J Biochem. 269:6173–6183. PubMed

Ten Hagen  KG, Bedi  GS, Tetaert  D, Kingsley  PD, Hagen  FK, Balys  MM, Beres  TM, Degand  P, Tabak  LA. 2001. Cloning and characterization of a ninth member of the UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase family, ppGaNTase-T9. J Biol Chem. 276:17395–17404. PubMed

Ten Hagen  KG, Fritz  TA, Tabak  LA. 2003. All in the family: the UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferases. Glycobiology. 13:1R–16R. PubMed

Ten Hagen  KG, Tetaert  D, Hagen  FK, Richet  C, Beres  TM, Gagnon  J, Balys  MM, VanWuyckhuyse  B, Bedi  GS, Degand  P, et al.  1999. Characterization of a UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase that displays glycopeptide N-acetylgalactosaminyltransferase activity. J Biol Chem. 274:27867–27874. PubMed

Tomana  M, Matousovic  K, Julian  BA, Radl  J, Konecny  K, Mestecky  J. 1997. Galactose-deficient IgA1 in sera of IgA nephropathy patients is present in complexes with IgG. Kidney Int. 52:509–516. PubMed

Tomana  M, Novak  J, Julian  BA, Matousovic  K, Konecny  K, Mestecky  J. 1999. Circulating immune complexes in IgA nephropathy consist of IgA1 with galactose-deficient hinge region and antiglycan antibodies. J Clin Invest. 104:73–81. PubMed PMC

Wada  Y, Dell  A, Haslam  SM, Tissot  B, Canis  K, Azadi  P, Backstrom  M, Costello  CE, Hansson  GC, Hiki  Y, et al.  2010. Comparison of methods for profiling O-glycosylation: human proteome organisation human disease glycomics/proteome initiative multi-institutional study of IgA1. Mol Cell Proteomics. 9:719–727. PubMed PMC

Wandall  HH, Hassan  H, Mirgorodskaya  E, Kristensen  AK, Roepstorff  P, Bennett  EP, Nielsen  PA, Hollingsworth  MA, Burchell  J, Taylor-Papadimitriou  J, et al.  1997. Substrate specificities of three members of the human UDP-N-acetyl-α-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase family, GalNAc-T1, −T2, and -T3. J Biol Chem. 272:23503–23514. PubMed

Wandall  HH, Irazoqui  F, Tarp  MA, Bennett  EP, Mandel  U, Takeuchi  H, Kato  K, Irimura  T, Suryanarayanan  G, Hollingsworth  MA, et al.  2007. The lectin domains of polypeptide GalNAc-transferases exhibit carbohydrate-binding specificity for GalNAc: lectin binding to GalNAc-glycopeptide substrates is required for high density GalNAc-O-glycosylation. Glycobiology. 17:374–387. PubMed

Wragg  S, Hagen  FK, Tabak  LA. 1995. Kinetic analysis of a recombinant UDP-N-acetyl-D-galactosamine: polypeptide N-acetylgalactosaminyltransferase. J Biol Chem. 270:16947–16954. PubMed

Xiao  J, Wang  M, Xiong  D, Wang  Y, Li  Q, Zhou  J, Chen  Q. 2017. TGF-β1 mimics the effect of IL-4 on the glycosylation of IgA1 by downregulating core 1 β1,3-galactosyltransferase and Cosmc. Mol Med Rep. 15:969–974. PubMed

Xing  Y, Li  L, Zhang  Y, Wang  F, He  D, Liu  Y, Jia  J, Yan  T, Lin  S. 2020. C1GALT1 expression is associated with galactosylation of IgA1 in peripheral B lymphocyte in immunoglobulin a nephropathy. BMC Nephrol. 21:18. PubMed PMC

Yanagawa  H, Suzuki  H, Suzuki  Y, Kiryluk  K, Gharavi  AG, Matsuoka  K, Makita  Y, Julian  BA, Novak  J, Tomino  Y. 2014. A panel of serum biomarkers differentiates IgA nephropathy from other renal diseases. PLoS One. 9:e98081. PubMed PMC

Yang  Y, Liu  F, Franc  V, Halim  LA, Schellekens  H, Heck  AJ. 2016. Hybrid mass spectrometry approaches in glycoprotein analysis and their usage in scoring biosimilarity. Nat Commun. 7:13397. PubMed PMC

Yang  Z, Wang  S, Halim  A, Schulz  MA, Frodin  M, Rahman  SH, Vester-Christensen  MB, Behrens  C, Kristensen  C, Vakhrushev  SY, et al.  2015. Engineered CHO cells for production of diverse, homogeneous glycoproteins. Nat Biotechnol. 33:842–844. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...