IgA1 hinge-region clustered glycan fidelity is established early during semi-ordered glycosylation by GalNAc-T2
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
R01 GM098539
NIGMS NIH HHS - United States
R01 DK078244
NIDDK NIH HHS - United States
F31 DK109599
NIDDK NIH HHS - United States
R01 DK082753
NIDDK NIH HHS - United States
T32 NS048039
NINDS NIH HHS - United States
P30 CA013148
NCI NIH HHS - United States
PubMed
30759204
PubMed Central
PMC6583770
DOI
10.1093/glycob/cwz007
PII: 5318693
Knihovny.cz E-zdroje
- Klíčová slova
- O-glycosylation, GalNAc-transferase, IgA1 hinge region, clustered glycosylation, restricted glycan heterogeneity,
- MeSH
- biokatalýza MeSH
- glykosylace MeSH
- imunoglobulin A metabolismus MeSH
- lidé MeSH
- N-acetylgalaktosaminyltransferasy metabolismus MeSH
- polypeptid-N-acetylgalaktosaminyltransferasa MeSH
- polysacharidy biosyntéza chemie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- imunoglobulin A MeSH
- N-acetylgalaktosaminyltransferasy MeSH
- polypeptid-N-acetylgalaktosaminyltransferasa MeSH
- polysacharidy MeSH
GalNAc-type O-glycans are often added to proteins post-translationally in a clustered manner in repeat regions of proteins, such as mucins and IgA1. Observed IgA1 glycosylation patterns show that glycans occur at similar sites with similar structures. It is not clear how the sites and number of glycans added to IgA1, or other proteins, can follow a conservative process. GalNAc-transferases initiate GalNAc-type glycosylation. In IgA nephropathy, an autoimmune disease, the sites and O-glycan structures of IgA1 hinge-region are altered, giving rise to a glycan autoantigen. To better understand how GalNAc-transferases determine sites and densities of clustered O-glycans, we used IgA1 hinge-region (HR) segment as a probe. Using LC-MS, we demonstrated a semi-ordered process of glycosylation by GalNAc-T2 towards the IgA1 HR. The catalytic domain was responsible for selection of four initial sites based on amino-acid sequence recognition. Both catalytic and lectin domains were involved in multiple second site-selections, each dependent on initial site-selection. Our data demonstrated that multiple start-sites and follow-up pathways were key to increasing the number of glycans added. The lectin domain predominately enhanced IgA1 HR glycan density by increasing synthesis pathway exploration by GalNAc-T2. Our data indicated a link between site-specific glycan addition and clustered glycan density that defines a mechanism of how conserved clustered O-glycosylation patterns and glycoform populations of IgA1 can be controlled by GalNAc-T2. Together, these findings characterized a correlation between glycosylation pathway diversity and glycosylation density, revealing mechanisms by which a single GalNAc-T isozyme can limit and define glycan heterogeneity in a disease-relevant context.
Department of Immunology Palacky University and University Hospital Olomouc Czech Republic
Department of Microbiology University of Alabama at Birmingham Birmingham AL USA
Department of Nephrology Fujita Health University Toyoake Japan
Zobrazit více v PubMed
Baenziger J, Kornfeld S. 1974. Structure of the carbohydrate units of IgA1 immunoglobulin. II. Structure of the PubMed
Bennett EP, Mandel U, Clausen H, Gerken TA, Fritz TA, Tabak LA. 2012. Control of mucin-type PubMed PMC
Berrow NS, Alderton D, Sainsbury S, Nettleship J, Assenberg R, Rahman N, Stuart DI, Owens RJ. 2007. A versatile ligation-independent cloning method suitable for high-throughput expression screening applications. Nucleic Acids Res. 35:e45. PubMed PMC
Clausen H, Bennett EP. 1996. A family of UDP-GalNAc: polypeptide N-acetylgalactosaminyl-transferases control the initiation of mucin-type PubMed
Field MC, Dwek RA, Edge CJ, Rademacher TW. 1989. PubMed
Franc V, Rehulka P, Raus M, Stulik J, Novak J, Renfrow MB, Sebela M. 2013. Elucidating heterogeneity of IgA1 hinge-region PubMed PMC
Fritz TA, Hurley JH, Trinh LB, Shiloach J, Tabak LA. 2004. The beginnings of mucin biosynthesis: the crystal structure of UDP-GalNAc:polypeptide α- PubMed PMC
Fritz TA, Raman J, Tabak LA. 2006. Dynamic association between the catalytic and lectin domains of human UDP-GalNAc:polypeptide alpha- PubMed
Gerken TA. 2004. Kinetic modeling confirms the biosynthesis of mucin core 1 (β-Gal(1-3) α-GalNAc- PubMed
Gerken TA, Gilmore M, Zhang J. 2002. Determination of the site-specific oligosaccharide distribution of the PubMed
Gerken TA, Jamison O, Perrine CL, Collette JC, Moinova H, Ravi L, Markowitz SD, Shen W, Patel H, Tabak LA. 2011. Emerging paradigms for the initiation of mucin-type protein PubMed PMC
Gerken TA, Owens CL, Pasumarthy M. 1998. Site-specific core 1 PubMed
Gerken TA, Raman J, Fritz TA, Jamison O. 2006. Identification of common and unique peptide substrate preferences for the UDP-GalNAc:polypeptide alpha- PubMed
Gerken TA, Revoredo L, Thome JJ, Tabak LA, Vester-Christensen MB, Clausen H, Gahlay GK, Jarvis DL, Johnson RW, Moniz HA et al. 2013. The lectin domain of the polypeptide GalNAc transferase family of glycosyltransferases (ppGalNAc Ts) acts as a switch directing glycopeptide substrate glycosylation in an N- or C-terminal direction, further controlling mucin type PubMed PMC
Gerken TA, Ten Hagen KG, Jamison O. 2008. Conservation of peptide acceptor preferences between Drosophila and mammalian polypeptide-GalNAc transferase ortholog pairs. Glycobiology. 18:861–870. PubMed PMC
Hagen FK, Van Wuyckhuyse B, Tabak LA. 1993. Purification, cloning, and expression of a bovine UDP-GalNAc: polypeptide PubMed
Hanisch FG. 2001. PubMed
Iida S, Takeuchi H, Hassan H, Clausen H, Irimura T. 1999. Incorporation of N-acetylgalactosamine into consecutive threonine residues in MUC2 tandem repeat by recombinant human PubMed
Iida S, Takeuchi H, Kato K, Yamamoto K, Irimura T. 2000. Order and maximum incorporation of PubMed PMC
Iwasaki H, Zhang Y, Tachibana K, Gotoh M, Kikuchi N, Kwon YD, Togayachi A, Kudo T, Kubota T, Narimatsu H. 2003. Initiation of PubMed
Ji S, Samara NL, Revoredo L, Zhang L, Tran DT, Muirhead K, Tabak LA, Ten Hagen KG. 2018. A molecular switch orchestrates enzyme specificity and secretory granule morphology. Nat Commun. 9:3508. PubMed PMC
Ju T, Cummings RD. 2005. Protein glycosylation: chaperone mutation in Tn syndrome. Nature. 437:1252. PubMed
Kato K, Takeuchi H, Kanoh A, Mandel U, Hassan H, Clausen H, Irimura T. 2001. N-acetylgalactosamine incorporation into a peptide containing consecutive threonine residues by UDP- PubMed
Kato K, Takeuchi H, Miyahara N, Kanoh A, Hassan H, Clausen H, Irimura T. 2001. Distinct orders of GalNAc incorporation into a peptide with consecutive threonines. Biochem Biophys Res Commun. 287:110–115. PubMed
Kiryluk K, Li Y, Moldoveanu Z, Suzuki H, Reily C, Hou P, Xie J, Mladkova N, Prakash S, Fischman C et al. 2017. GWAS for serum galactose-deficient IgA1 implicates critical genes of the PubMed PMC
Knoppova B, Reily C, Maillard N, Rizk DV, Moldoveanu Z, Mestecky J, Raska M, Renfrow MB, Julian BA, Novak J. 2016. The origin and activities of IgA1-containing immune complexes in IgA nephropathy. Front Immunol. 7:117. PubMed PMC
Kong Y, Joshi HJ, Schjoldager KT, Madsen TD, Gerken TA, Vester-Christensen MB, Wandall HH, Bennett EP, Levery SB, Vakhrushev SY et al. 2015. Probing polypeptide GalNAc-transferase isoform substrate specificities by in vitro analysis. Glycobiology. 25:55–65. PubMed PMC
Lai KN, Tang SC, Schena FP, Novak J, Tomino Y, Fogo AB, Glassock RJ. 2016. IgA nephropathy. Nat Rev Dis Primers. 2:16001. PubMed
Lira-Navarrete E, de Las Rivas M, Companon I, Pallares MC, Kong Y, Iglesias-Fernandez J, Bernardes GJ, Peregrina JM, Rovira C, Bernado P et al. 2015. Dynamic interplay between catalytic and lectin domains of GalNAc-transferases modulates protein PubMed PMC
Lorenz V, Ditamo Y, Cejas RB, Carrizo ME, Bennett EP, Clausen H, Nores GA, Irazoqui FJ. 2016. Extrinsic functions of lectin domains in PubMed PMC
Malycha F, Eggermann T, Hristov M, Schena FP, Mertens PR, Zerres K, Floege J, Eitner F. 2009. No evidence for a role of PubMed
Mattu TS, Pleass RJ, Willis AC, Kilian M, Wormald MR, Lellouch AC, Rudd PM, Woof JM, Dwek RA. 1998. The glycosylation and structure of human serum IgA1, Fab, and Fc regions and the role of PubMed
Mestecky J, Tomana M, Crowley-Nowick PA, Moldoveanu Z, Julian BA, Jackson S. 1993. Defective galactosylation and clearance of IgA1 molecules as a possible etiopathogenic factor in IgA nephropathy. Contrib Nephrol. 104:172–182. PubMed
Nilsson T, Au CE, Bergeron JJ. 2009. Sorting out glycosylation enzymes in the Golgi apparatus. FEBS Lett. 583:3764–3769. PubMed
Novak J, Julian BA, Mestecky J, Renfrow MB. 2012. Glycosylation of IgA1 and pathogenesis of IgA nephropathy. Semin Immunopathol. 34:365–382. PubMed
Novak J, Moldoveanu Z, Renfrow MB, Yanagihara T, Suzuki H, Raska M, Hall S, Brown R, Huang WQ, Goepfert A et al. 2007. IgA nephropathy and Henoch-Schoenlein purpura nephritis: aberrant glycosylation of IgA1, formation of IgA1-containing immune complexes, and activation of mesangial cells. Contrib Nephrol. 157:134–138. PubMed
Novak J, Rizk D, Takahashi K, Zhang X, Bian Q, Ueda H, Ueda Y, Reily C, Lai LY, Hao C et al. 2015. New insights into the pathogenesis of IgA nephropathy. Kidney Dis (Basel). 1:8–18. PubMed PMC
Novak J, Takahashi K, Suzuki H, Reily C, Stewart T, Ueda H, Yamada K, Moldoveanu Z, Hastings M, Wyatt C et al. 2016. Heterogeneity of aberrant
Novak J, Tomana M, Kilian M, Coward L, Kulhavy R, Barnes S, Mestecky J. 2000. Heterogeneity of PubMed
O’Connell BC, Hagen FK, Tabak LA. 1992. The influence of flanking sequence on the PubMed
Paroutis P, Touret N, Grinstein S. 2004. The pH of the secretory pathway: measurement, determinants, and regulation. Physiology (Bethesda). 19:207–215. PubMed
Pedersen JW, Bennett EP, Schjoldager KT, Meldal M, Holmer AP, Blixt O, Clo E, Levery SB, Clausen H, Wandall HH. 2011. Lectin domains of polypeptide GalNAc transferases exhibit glycopeptide binding specificity. J Biol Chem. 286:32684–32696. PubMed PMC
Perrine CL, Ganguli A, Wu P, Bertozzi CR, Fritz TA, Raman J, Tabak LA, Gerken TA. 2009. Glycopeptide-preferring polypeptide GalNAc transferase 10 (ppGalNAc T10), involved in mucin-type PubMed PMC
Placzek WJ, Yanagawa H, Makita Y, Renfrow MB, Julian BA, Rizk DV, Suzuki Y, Novak J, Suzuki H. 2018. Serum galactose-deficient-IgA1 and IgG autoantibodies correlate in patients with IgA nephropathy. PLoS One. 13:e0190967. PubMed PMC
Pratt MR, Hang HC, Ten Hagen KG, Rarick J, Gerken TA, Tabak LA, Bertozzi CR. 2004. Deconvoluting the functions of polypeptide PubMed
Raman J, Fritz TA, Gerken TA, Jamison O, Live D, Liu M, Tabak LA. 2008. The catalytic and lectin domains of UDP-GalNAc:polypeptide α- PubMed PMC
Renfrow MB, Cooper HJ, Tomana M, Kulhavy R, Hiki Y, Toma K, Emmett MR, Mestecky J, Marshall AG, Novak J. 2005. Determination of aberrant PubMed
Renfrow MB, Mackay CL, Chalmers MJ, Julian BA, Mestecky J, Kilian M, Poulsen K, Emmett MR, Marshall AG, Novak J. 2007. Analysis of PubMed
Revoredo L, Wang S, Bennett EP, Clausen H, Moremen KW, Jarvis DL, Ten Hagen KG, Tabak LA, Gerken TA. 2016. Mucin-type PubMed PMC
Rivas ML, Lira-Navarrete E, Daniel EJP, Companon I, Coelho H, Diniz A, Jimenez-Barbero J, Peregrina JM, Clausen H, Corzana F et al. 2017. The interdomain flexible linker of the polypeptide GalNAc transferases dictates their long-range glycosylation preferences. Nat Commun. 8:1959. PubMed PMC
Suzuki H, Fan R, Zhang Z, Brown R, Hall S, Julian BA, Chatham WW, Suzuki Y, Wyatt RJ, Moldoveanu Z et al. 2009. Aberrantly glycosylated IgA1 in IgA nephropathy patients is recognized by IgG antibodies with restricted heterogeneity. J Clin Invest. 119:1668–1677. PubMed PMC
Suzuki H, Kiryluk K, Novak J, Moldoveanu Z, Herr AB, Renfrow MB, Wyatt RJ, Scolari F, Mestecky J, Gharavi AG et al. 2011. The pathophysiology of IgA nephropathy. J Am Soc Nephrol. 22:1795–1803. PubMed PMC
Takahashi K, Smith AD, Poulsen K, Kilian M, Julian BA, Mestecky J, Novak J, Renfrow MB. 2012. Naturally occurring structural isomers in serum IgA1 PubMed PMC
Takahashi K, Wall SB, Suzuki H, Smith AD, Hall S, Poulsen K, Kilian M, Mobley JA, Julian BA, Mestecky J et al. 2010. Clustered PubMed PMC
Takeuchi H, Kato K, Hassan H, Clausen H, Irimura T. 2002. PubMed
Ten Hagen KG, Fritz TA, Tabak LA. 2003. All in the family: the UDP-GalNAc:polypeptide PubMed
Tomana M, Niedermeier W, Mestecky J, Skvaril F. 1976. The differences in carbohydrate composition between the subclasses of IgA immunoglobulins. Immunochemistry. 13:325–328. PubMed
Tomana M, Novak J, Julian BA, Matousovic K, Konecny K, Mestecky J. 1999. Circulating immune complexes in IgA nephropathy consist of IgA1 with galactose-deficient hinge region and antiglycan antibodies. J Clin Invest. 104:73–81. PubMed PMC
Van Klinken BJ, Dekker J, Buller HA, Einerhand AW. 1995. Mucin gene structure and expression: protection vs. adhesion. Am J Physiol. 269:G613–G627. PubMed
Wandall HH, Hassan H, Mirgorodskaya E, Kristensen AK, Roepstorff P, Bennett EP, Nielsen PA, Hollingsworth MA, Burchell J, Taylor-Papadimitriou J et al. 1997. Substrate specificities of three members of the human UDP- PubMed
Wandall HH, Irazoqui F, Tarp MA, Bennett EP, Mandel U, Takeuchi H, Kato K, Irimura T, Suryanarayanan G, Hollingsworth MA et al. 2007. The lectin domains of polypeptide GalNAc-transferases exhibit carbohydrate-binding specificity for GalNAc: lectin binding to GalNAc-glycopeptide substrates is required for high density GalNAc- PubMed
Young WW., Jr. 2004. Organization of Golgi glycosyltransferases in membranes: complexity via complexes. J Membr Biol. 198:1–13. PubMed