IgA1 hinge-region clustered glycan fidelity is established early during semi-ordered glycosylation by GalNAc-T2

. 2019 Jul 01 ; 29 (7) : 543-556.

Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid30759204

Grantová podpora
R01 GM098539 NIGMS NIH HHS - United States
R01 DK078244 NIDDK NIH HHS - United States
F31 DK109599 NIDDK NIH HHS - United States
R01 DK082753 NIDDK NIH HHS - United States
T32 NS048039 NINDS NIH HHS - United States
P30 CA013148 NCI NIH HHS - United States

GalNAc-type O-glycans are often added to proteins post-translationally in a clustered manner in repeat regions of proteins, such as mucins and IgA1. Observed IgA1 glycosylation patterns show that glycans occur at similar sites with similar structures. It is not clear how the sites and number of glycans added to IgA1, or other proteins, can follow a conservative process. GalNAc-transferases initiate GalNAc-type glycosylation. In IgA nephropathy, an autoimmune disease, the sites and O-glycan structures of IgA1 hinge-region are altered, giving rise to a glycan autoantigen. To better understand how GalNAc-transferases determine sites and densities of clustered O-glycans, we used IgA1 hinge-region (HR) segment as a probe. Using LC-MS, we demonstrated a semi-ordered process of glycosylation by GalNAc-T2 towards the IgA1 HR. The catalytic domain was responsible for selection of four initial sites based on amino-acid sequence recognition. Both catalytic and lectin domains were involved in multiple second site-selections, each dependent on initial site-selection. Our data demonstrated that multiple start-sites and follow-up pathways were key to increasing the number of glycans added. The lectin domain predominately enhanced IgA1 HR glycan density by increasing synthesis pathway exploration by GalNAc-T2. Our data indicated a link between site-specific glycan addition and clustered glycan density that defines a mechanism of how conserved clustered O-glycosylation patterns and glycoform populations of IgA1 can be controlled by GalNAc-T2. Together, these findings characterized a correlation between glycosylation pathway diversity and glycosylation density, revealing mechanisms by which a single GalNAc-T isozyme can limit and define glycan heterogeneity in a disease-relevant context.

Zobrazit více v PubMed

Baenziger J, Kornfeld S. 1974. Structure of the carbohydrate units of IgA1 immunoglobulin. II. Structure of the O-glycosidically linked oligosaccharide units. J Biol Chem. 249:7270–7281. PubMed

Bennett EP, Mandel U, Clausen H, Gerken TA, Fritz TA, Tabak LA. 2012. Control of mucin-type O-glycosylation: a classification of the polypeptide GalNAc-transferase gene family. Glycobiology. 22:736–756. PubMed PMC

Berrow NS, Alderton D, Sainsbury S, Nettleship J, Assenberg R, Rahman N, Stuart DI, Owens RJ. 2007. A versatile ligation-independent cloning method suitable for high-throughput expression screening applications. Nucleic Acids Res. 35:e45. PubMed PMC

Clausen H, Bennett EP. 1996. A family of UDP-GalNAc: polypeptide N-acetylgalactosaminyl-transferases control the initiation of mucin-type O-linked glycosylation. Glycobiology. 6:635–646. PubMed

Field MC, Dwek RA, Edge CJ, Rademacher TW. 1989. O-linked oligosaccharides from human serum immunoglobulin A1. Biochem Soc Trans. 17:1034–1035. PubMed

Franc V, Rehulka P, Raus M, Stulik J, Novak J, Renfrow MB, Sebela M. 2013. Elucidating heterogeneity of IgA1 hinge-region O-glycosylation by use of MALDI-TOF/TOF mass spectrometry: role of cysteine alkylation during sample processing. J Proteomics. 92:299–312. PubMed PMC

Fritz TA, Hurley JH, Trinh LB, Shiloach J, Tabak LA. 2004. The beginnings of mucin biosynthesis: the crystal structure of UDP-GalNAc:polypeptide α-N-acetylgalactosaminyltransferase-T1. Proc Natl Acad Sci USA. 101:15307–15312. PubMed PMC

Fritz TA, Raman J, Tabak LA. 2006. Dynamic association between the catalytic and lectin domains of human UDP-GalNAc:polypeptide alpha-N-acetylgalactosaminyltransferase-2. J Biol Chem. 281:8613–8619. PubMed

Gerken TA. 2004. Kinetic modeling confirms the biosynthesis of mucin core 1 (β-Gal(1-3) α-GalNAc-O-Ser/Thr) O-glycan structures are modulated by neighboring glycosylation effects. Biochemistry. 43:4137–4142. PubMed

Gerken TA, Gilmore M, Zhang J. 2002. Determination of the site-specific oligosaccharide distribution of the O-glycans attached to the porcine submaxillary mucin tandem repeat. Further evidence for the modulation of O-glycans side chain structures by peptide sequence. J Biol Chem. 277:7736–7751. PubMed

Gerken TA, Jamison O, Perrine CL, Collette JC, Moinova H, Ravi L, Markowitz SD, Shen W, Patel H, Tabak LA. 2011. Emerging paradigms for the initiation of mucin-type protein O-glycosylation by the polypeptide GalNAc transferase family of glycosyltransferases. J Biol Chem. 286:14493–14507. PubMed PMC

Gerken TA, Owens CL, Pasumarthy M. 1998. Site-specific core 1 O-glycosylation pattern of the porcine submaxillary gland mucin tandem repeat. Evidence for the modulation of glycan length by peptide sequence. J Biol Chem. 273:26580–26588. PubMed

Gerken TA, Raman J, Fritz TA, Jamison O. 2006. Identification of common and unique peptide substrate preferences for the UDP-GalNAc:polypeptide alpha-N-acetylgalactosaminyltransferases T1 and T2 derived from oriented random peptide substrates. J Biol Chem. 281:32403–32416. PubMed

Gerken TA, Revoredo L, Thome JJ, Tabak LA, Vester-Christensen MB, Clausen H, Gahlay GK, Jarvis DL, Johnson RW, Moniz HA et al. . 2013. The lectin domain of the polypeptide GalNAc transferase family of glycosyltransferases (ppGalNAc Ts) acts as a switch directing glycopeptide substrate glycosylation in an N- or C-terminal direction, further controlling mucin type O-glycosylation. J Biol Chem. 288:19900–19914. PubMed PMC

Gerken TA, Ten Hagen KG, Jamison O. 2008. Conservation of peptide acceptor preferences between Drosophila and mammalian polypeptide-GalNAc transferase ortholog pairs. Glycobiology. 18:861–870. PubMed PMC

Hagen FK, Van Wuyckhuyse B, Tabak LA. 1993. Purification, cloning, and expression of a bovine UDP-GalNAc: polypeptide N-acetyl-galactosaminyltransferase. J Biol Chem. 268:18960–18965. PubMed

Hanisch FG. 2001. O-glycosylation of the mucin type. Biol Chem. 382:143–149. PubMed

Iida S, Takeuchi H, Hassan H, Clausen H, Irimura T. 1999. Incorporation of N-acetylgalactosamine into consecutive threonine residues in MUC2 tandem repeat by recombinant human N-acetyl-D-galactosamine transferase-T1, T2 and T3. FEBS Lett. 449:230–234. PubMed

Iida S, Takeuchi H, Kato K, Yamamoto K, Irimura T. 2000. Order and maximum incorporation of N-acetyl-D-galactosamine into threonine residues of MUC2 core peptide with microsome fraction of human-colon-carcinoma LS174T cells. Biochem J. 347:535–542. PubMed PMC

Iwasaki H, Zhang Y, Tachibana K, Gotoh M, Kikuchi N, Kwon YD, Togayachi A, Kudo T, Kubota T, Narimatsu H. 2003. Initiation of O-glycan synthesis in IgA1 hinge region is determined by a single enzyme, UDP-N-acetyl-α-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase 2. J Biol Chem. 278:5613–5621. PubMed

Ji S, Samara NL, Revoredo L, Zhang L, Tran DT, Muirhead K, Tabak LA, Ten Hagen KG. 2018. A molecular switch orchestrates enzyme specificity and secretory granule morphology. Nat Commun. 9:3508. PubMed PMC

Ju T, Cummings RD. 2005. Protein glycosylation: chaperone mutation in Tn syndrome. Nature. 437:1252. PubMed

Kato K, Takeuchi H, Kanoh A, Mandel U, Hassan H, Clausen H, Irimura T. 2001. N-acetylgalactosamine incorporation into a peptide containing consecutive threonine residues by UDP-N-acetyl-D-galactosaminide:polypeptide N-acetylgalactosaminyltransferases. Glycobiology. 11:821–829. PubMed

Kato K, Takeuchi H, Miyahara N, Kanoh A, Hassan H, Clausen H, Irimura T. 2001. Distinct orders of GalNAc incorporation into a peptide with consecutive threonines. Biochem Biophys Res Commun. 287:110–115. PubMed

Kiryluk K, Li Y, Moldoveanu Z, Suzuki H, Reily C, Hou P, Xie J, Mladkova N, Prakash S, Fischman C et al. . 2017. GWAS for serum galactose-deficient IgA1 implicates critical genes of the O-glycosylation pathway. PLoS Genet. 13:e1006609. PubMed PMC

Knoppova B, Reily C, Maillard N, Rizk DV, Moldoveanu Z, Mestecky J, Raska M, Renfrow MB, Julian BA, Novak J. 2016. The origin and activities of IgA1-containing immune complexes in IgA nephropathy. Front Immunol. 7:117. PubMed PMC

Kong Y, Joshi HJ, Schjoldager KT, Madsen TD, Gerken TA, Vester-Christensen MB, Wandall HH, Bennett EP, Levery SB, Vakhrushev SY et al. . 2015. Probing polypeptide GalNAc-transferase isoform substrate specificities by in vitro analysis. Glycobiology. 25:55–65. PubMed PMC

Lai KN, Tang SC, Schena FP, Novak J, Tomino Y, Fogo AB, Glassock RJ. 2016. IgA nephropathy. Nat Rev Dis Primers. 2:16001. PubMed

Lira-Navarrete E, de Las Rivas M, Companon I, Pallares MC, Kong Y, Iglesias-Fernandez J, Bernardes GJ, Peregrina JM, Rovira C, Bernado P et al. . 2015. Dynamic interplay between catalytic and lectin domains of GalNAc-transferases modulates protein O-glycosylation. Nat Commun. 6:6937. PubMed PMC

Lorenz V, Ditamo Y, Cejas RB, Carrizo ME, Bennett EP, Clausen H, Nores GA, Irazoqui FJ. 2016. Extrinsic functions of lectin domains in O-N-Acetylgalactosamine glycan biosynthesis. J Biol Chem. 291:25339–25350. PubMed PMC

Malycha F, Eggermann T, Hristov M, Schena FP, Mertens PR, Zerres K, Floege J, Eitner F. 2009. No evidence for a role of cosmc-chaperone mutations in European IgA nephropathy patients. Nephrol Dial Transplant. 24:321–324. PubMed

Mattu TS, Pleass RJ, Willis AC, Kilian M, Wormald MR, Lellouch AC, Rudd PM, Woof JM, Dwek RA. 1998. The glycosylation and structure of human serum IgA1, Fab, and Fc regions and the role of N-glycosylation on Fcα receptor interactions. J Biol Chem. 273:2260–2272. PubMed

Mestecky J, Tomana M, Crowley-Nowick PA, Moldoveanu Z, Julian BA, Jackson S. 1993. Defective galactosylation and clearance of IgA1 molecules as a possible etiopathogenic factor in IgA nephropathy. Contrib Nephrol. 104:172–182. PubMed

Nilsson T, Au CE, Bergeron JJ. 2009. Sorting out glycosylation enzymes in the Golgi apparatus. FEBS Lett. 583:3764–3769. PubMed

Novak J, Julian BA, Mestecky J, Renfrow MB. 2012. Glycosylation of IgA1 and pathogenesis of IgA nephropathy. Semin Immunopathol. 34:365–382. PubMed

Novak J, Moldoveanu Z, Renfrow MB, Yanagihara T, Suzuki H, Raska M, Hall S, Brown R, Huang WQ, Goepfert A et al. . 2007. IgA nephropathy and Henoch-Schoenlein purpura nephritis: aberrant glycosylation of IgA1, formation of IgA1-containing immune complexes, and activation of mesangial cells. Contrib Nephrol. 157:134–138. PubMed

Novak J, Rizk D, Takahashi K, Zhang X, Bian Q, Ueda H, Ueda Y, Reily C, Lai LY, Hao C et al. . 2015. New insights into the pathogenesis of IgA nephropathy. Kidney Dis (Basel). 1:8–18. PubMed PMC

Novak J, Takahashi K, Suzuki H, Reily C, Stewart T, Ueda H, Yamada K, Moldoveanu Z, Hastings M, Wyatt C et al. . 2016. Heterogeneity of aberrant O-glycosylation of IgA1 in IgA nephropathy In: Tomino Y, editor. Pathogenesis and Treatment in IgA Nephropathy. Tokyo, Japan: Springer Japan; p. 53–68.

Novak J, Tomana M, Kilian M, Coward L, Kulhavy R, Barnes S, Mestecky J. 2000. Heterogeneity of O-glycosylation in the hinge region of human IgA1. Mol Immunol. 37:1047–1056. PubMed

O’Connell BC, Hagen FK, Tabak LA. 1992. The influence of flanking sequence on the O-glycosylation of threonine in vitro. J Biol Chem. 267:25010–25018. PubMed

Paroutis P, Touret N, Grinstein S. 2004. The pH of the secretory pathway: measurement, determinants, and regulation. Physiology (Bethesda). 19:207–215. PubMed

Pedersen JW, Bennett EP, Schjoldager KT, Meldal M, Holmer AP, Blixt O, Clo E, Levery SB, Clausen H, Wandall HH. 2011. Lectin domains of polypeptide GalNAc transferases exhibit glycopeptide binding specificity. J Biol Chem. 286:32684–32696. PubMed PMC

Perrine CL, Ganguli A, Wu P, Bertozzi CR, Fritz TA, Raman J, Tabak LA, Gerken TA. 2009. Glycopeptide-preferring polypeptide GalNAc transferase 10 (ppGalNAc T10), involved in mucin-type O-glycosylation, has a unique GalNAc-O-Ser/Thr-binding site in its catalytic domain not found in ppGalNAc T1 or T2. J Biol Chem. 284:20387–20397. PubMed PMC

Placzek WJ, Yanagawa H, Makita Y, Renfrow MB, Julian BA, Rizk DV, Suzuki Y, Novak J, Suzuki H. 2018. Serum galactose-deficient-IgA1 and IgG autoantibodies correlate in patients with IgA nephropathy. PLoS One. 13:e0190967. PubMed PMC

Pratt MR, Hang HC, Ten Hagen KG, Rarick J, Gerken TA, Tabak LA, Bertozzi CR. 2004. Deconvoluting the functions of polypeptide N-α-acetylgalactosaminyltransferase family members by glycopeptide substrate profiling. Chem Biol. 11:1009–1016. PubMed

Raman J, Fritz TA, Gerken TA, Jamison O, Live D, Liu M, Tabak LA. 2008. The catalytic and lectin domains of UDP-GalNAc:polypeptide α-N-Acetylgalactosaminyltransferase function in concert to direct glycosylation site selection. J Biol Chem. 283:22942–22951. PubMed PMC

Renfrow MB, Cooper HJ, Tomana M, Kulhavy R, Hiki Y, Toma K, Emmett MR, Mestecky J, Marshall AG, Novak J. 2005. Determination of aberrant O-glycosylation in the IgA1 hinge region by electron capture dissociation fourier transform-ion cyclotron resonance mass spectrometry. J Biol Chem. 280:19136–19145. PubMed

Renfrow MB, Mackay CL, Chalmers MJ, Julian BA, Mestecky J, Kilian M, Poulsen K, Emmett MR, Marshall AG, Novak J. 2007. Analysis of O-glycan heterogeneity in IgA1 myeloma proteins by Fourier transform ion cyclotron resonance mass spectrometry: implications for IgA nephropathy. Anal Bioanal Chem. 389:1397–1407. PubMed

Revoredo L, Wang S, Bennett EP, Clausen H, Moremen KW, Jarvis DL, Ten Hagen KG, Tabak LA, Gerken TA. 2016. Mucin-type O-glycosylation is controlled by short- and long-range glycopeptide substrate recognition that varies among members of the polypeptide GalNAc transferase family. Glycobiology. 26:360–376. PubMed PMC

Rivas ML, Lira-Navarrete E, Daniel EJP, Companon I, Coelho H, Diniz A, Jimenez-Barbero J, Peregrina JM, Clausen H, Corzana F et al. . 2017. The interdomain flexible linker of the polypeptide GalNAc transferases dictates their long-range glycosylation preferences. Nat Commun. 8:1959. PubMed PMC

Suzuki H, Fan R, Zhang Z, Brown R, Hall S, Julian BA, Chatham WW, Suzuki Y, Wyatt RJ, Moldoveanu Z et al. . 2009. Aberrantly glycosylated IgA1 in IgA nephropathy patients is recognized by IgG antibodies with restricted heterogeneity. J Clin Invest. 119:1668–1677. PubMed PMC

Suzuki H, Kiryluk K, Novak J, Moldoveanu Z, Herr AB, Renfrow MB, Wyatt RJ, Scolari F, Mestecky J, Gharavi AG et al. . 2011. The pathophysiology of IgA nephropathy. J Am Soc Nephrol. 22:1795–1803. PubMed PMC

Takahashi K, Smith AD, Poulsen K, Kilian M, Julian BA, Mestecky J, Novak J, Renfrow MB. 2012. Naturally occurring structural isomers in serum IgA1 O-glycosylation. J Proteome Res. 11:692–702. PubMed PMC

Takahashi K, Wall SB, Suzuki H, Smith AD, Hall S, Poulsen K, Kilian M, Mobley JA, Julian BA, Mestecky J et al. . 2010. Clustered O-glycans of IgA1: defining macro- and microheterogeneity by use of electron capture/transfer dissociation. Mol Cell Proteomics. 9:2545–2557. PubMed PMC

Takeuchi H, Kato K, Hassan H, Clausen H, Irimura T. 2002. O-GalNAc incorporation into a cluster acceptor site of three consecutive threonines. Eur J Biochem. 269:6173–6183. PubMed

Ten Hagen KG, Fritz TA, Tabak LA. 2003. All in the family: the UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferases. Glycobiology. 13:1R–16R. PubMed

Tomana M, Niedermeier W, Mestecky J, Skvaril F. 1976. The differences in carbohydrate composition between the subclasses of IgA immunoglobulins. Immunochemistry. 13:325–328. PubMed

Tomana M, Novak J, Julian BA, Matousovic K, Konecny K, Mestecky J. 1999. Circulating immune complexes in IgA nephropathy consist of IgA1 with galactose-deficient hinge region and antiglycan antibodies. J Clin Invest. 104:73–81. PubMed PMC

Van Klinken BJ, Dekker J, Buller HA, Einerhand AW. 1995. Mucin gene structure and expression: protection vs. adhesion. Am J Physiol. 269:G613–G627. PubMed

Wandall HH, Hassan H, Mirgorodskaya E, Kristensen AK, Roepstorff P, Bennett EP, Nielsen PA, Hollingsworth MA, Burchell J, Taylor-Papadimitriou J et al. . 1997. Substrate specificities of three members of the human UDP-N-acetyl-α-D-galactosamine:Polypeptide N-acetylgalactosaminyltransferase family, GalNAc-T1, -T2, and -T3. J Biol Chem. 272:23503–23514. PubMed

Wandall HH, Irazoqui F, Tarp MA, Bennett EP, Mandel U, Takeuchi H, Kato K, Irimura T, Suryanarayanan G, Hollingsworth MA et al. . 2007. The lectin domains of polypeptide GalNAc-transferases exhibit carbohydrate-binding specificity for GalNAc: lectin binding to GalNAc-glycopeptide substrates is required for high density GalNAc-O-glycosylation. Glycobiology. 17:374–387. PubMed

Young WW., Jr. 2004. Organization of Golgi glycosyltransferases in membranes: complexity via complexes. J Membr Biol. 198:1–13. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace