Human Milk Oligosaccharides Multivalently Presented on Defined Synthetic Neo-Glycoproteins Are Nanomolar Ligands of Tandem-Repeat Galectins
Language English Country United States Media print-electronic
Document type Journal Article
PubMed
40620135
PubMed Central
PMC12344693
DOI
10.1021/acs.biomac.5c00377
Knihovny.cz E-resources
- MeSH
- Galectins * chemistry metabolism MeSH
- Glycoproteins * chemistry metabolism MeSH
- Humans MeSH
- Ligands MeSH
- Milk, Human * chemistry MeSH
- Oligosaccharides * chemistry metabolism MeSH
- Tandem Repeat Sequences MeSH
- Binding Sites MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Galectins * MeSH
- Glycoproteins * MeSH
- Ligands MeSH
- Oligosaccharides * MeSH
- poly-N-acetyllactosamine MeSH Browser
- Polysaccharides MeSH
Galectins are small human proteins participating in inflammation processes, immune response, and cancerogenesis. Tandem-repeat galectins comprising Gal-4, Gal-8, and Gal-9 are a vital yet less studied part of the galectin fingerprint in cancer-related processes. The present work studies a library of prepared multivalent neo-glycoproteins decorated with poly-N-acetyllactosamine and human-milk-type oligosaccharides as ligands of this underexplored family of tandem-repeat galectins. A thorough binding evaluation by ELISA and biolayer interferometry was complemented with a detailed epitope mapping both from the galectin and the glycoconjugate viewpoints by nuclear magnetic resonance. The found interactions in the galectin binding site were correlated to in silico data from molecular modeling. The present work reveals pioneer information on the binding of tandem-repeat galectins to multivalent glycoconjugates carrying complex carbohydrate ligands and represents an invaluable starting point for the development of new high-affinity tailored ligands of tandem-repeat galectins, needed both for diagnosis and therapy.
See more in PubMed
Funasaka, T. ; Raz, A. ; Nangia-Makker, P. . Galectin-3 in Angiogenesis and Metastasis. Glycobiology; Oxford University Press: 2014; pp 886–891. 10.1093/glycob/cwu086. PubMed DOI PMC
Heine V., Dey C., Bojarová P., Křen V., Elling L.. Methods of in Vitro Study of Galectin-Glycomaterial Interaction. Biotechnol. Adv. 2022;58:107928. doi: 10.1016/j.biotechadv.2022.107928. PubMed DOI
Li P., Liu S., Lu M., Bandyopadhyay G., Oh D., Imamura T., Johnson A. M. F., Sears D., Shen Z., Cui B., Kong L., Hou S., Liang X., Iovino S., Watkins S. M., Ying W., Osborn O., Wollam J., Brenner M., Olefsky J. M.. Hematopoietic-Derived Galectin-3 Causes Cellular and Systemic Insulin Resistance. Cell. 2016;167(4):973–984.e12. doi: 10.1016/j.cell.2016.10.025. PubMed DOI PMC
Bänfer S., Jacob R.. Galectins. Curr. Biol. 2022;32(9):R406–R408. doi: 10.1016/j.cub.2022.03.065. PubMed DOI
Purić E., Nilsson U. J., Anderluh M.. Galectin-8 Inhibition and Functions in Immune Response and Tumor Biology. Med. Res. Rev. 2024;44(5):2236–2265. doi: 10.1002/med.22041. PubMed DOI
Carlsson S., Öberg C. T., Carlsson M. C., Sundin A., Nilsson U. J., Smith D., Cummings R. D., Almkvist J., Karlsson A., Leffler H.. Affinity of Galectin-8 and Its Carbohydrate Recognition Domains for Ligands in Solution and at the Cell Surface. Glycobiology. 2007;17(6):663–676. doi: 10.1093/glycob/cwm026. PubMed DOI
Solís D., Maté M. J., Lohr M., Ribeiro J. P., López-Merino L., André S., Buzamet E., Javier Cañada F., Kaltner H., Lensch M., Ruiz F. M., Haroske G., Wollina U., Kloor M., Kopitz J., Sáiz J. L., Menéndez M., Jiménez-Barbero J., Romero A., Gabius H. J.. N-Domain of Human Adhesion/Growth-Regulatory Galectin-9: Preference for Distinct Conformers and Non-Sialylated N-Glycans and Detection of Ligand-Induced Structural Changes in Crystal and Solution. Int. J. Biochem. Cell Biol. 2010;42(6):1019–1029. doi: 10.1016/j.biocel.2010.03.007. PubMed DOI
Bum-Erdene K., Leffler H., Nilsson U. J., Blanchard H.. Structural Characterization of Human Galectin-4 C-Terminal Domain: Elucidating the Molecular Basis for Recognition of Glycosphingolipids, Sulfated Saccharides and Blood Group Antigens. FEBS J. 2015;282(17):3348–3367. doi: 10.1111/febs.13348. PubMed DOI
Bum-Erdene K., Leffler H., Nilsson U. J., Blanchard H.. Structural Characterisation of Human Galectin-4 N-Terminal Carbohydrate Recognition Domain in Complex with Glycerol, Lactose, 3′-Sulfo-Lactose and 2′-Fucosyllactose. Sci. Rep. 2016;6:20289. doi: 10.1038/srep20289. PubMed DOI PMC
Quintana J. I., Delgado S., Núñez-Franco R., Cañada F. J., Jiménez-Osés G., Jiménez-Barbero J., Ardá A.. Galectin-4 N-Terminal Domain: Binding Preferences Toward A and B Antigens With Different Peripheral Core Presentations. Front. Chem. 2021;9:664097. doi: 10.3389/fchem.2021.664097. PubMed DOI PMC
Rosencrantz S., Tang J. S. J., Schulte-Osseili C., Böker A., Rosencrantz R. R.. Glycopolymers by RAFT Polymerization as Functional Surfaces for Galectin-3. Macromol. Chem. Phys. 2019;220(20):1900293. doi: 10.1002/macp.201900293. DOI
Heine V., Kremers T., Menzel N., Schnakenberg U., Elling L.. Electrochemical Impedance Spectroscopy Biosensor Enabling Kinetic Monitoring of Fucosyltransferase Activity. ACS Sens. 2021;6(3):1003–1011. doi: 10.1021/acssensors.0c02206. PubMed DOI
Zhou Y., Fujisawa S., Saito T., Isogai A.. Characterization of Concentration-Dependent Gelation Behavior of Aqueous 2,2,6,6-Tetramethylpiperidine-1-Oxyl-Cellulose Nanocrystal Dispersions Using Dynamic Light Scattering. Biomacromolecules. 2019;20(2):750–757. doi: 10.1021/acs.biomac.8b01689. PubMed DOI
Tavares M. R., Bláhová M., Sedláková L., Elling L., Pelantová H., Konefał R., Etrych T., Křen V., Bojarová P., Chytil P.. High-Affinity N-(2-Hydroxypropyl)Methacrylamide Copolymers with Tailored N-Acetyllactosamine Presentation Discriminate between Galectins. Biomacromolecules. 2020;21(2):641–652. doi: 10.1021/acs.biomac.9b01370. PubMed DOI
Clauss Z. S., Kramer J. R.. Design, Synthesis and Biological Applications of Glycopolypeptides. Adv. Drug. Delivery Rev. 2021;169:152–167. doi: 10.1016/j.addr.2020.12.009. PubMed DOI
Kiessling L. L., Grim J. C.. Glycopolymer Probes of Signal Transduction. Chem. Soc. Rev. 2013;42(10):4476–4491. doi: 10.1039/c3cs60097a. PubMed DOI PMC
Restuccia A., Fettis M. M., Farhadi S. A., Molinaro M. D., Kane B., Hudalla G. A.. Evaluation of Self-Assembled Glycopeptide Nanofibers Modified with N,N′-Diacetyllactosamine for Selective Galectin-3 Recognition and Inhibition. ACS Biomater. Sci. Eng. 2018;4(10):3451–3459. doi: 10.1021/acsbiomaterials.8b00611. DOI
Bumba L., Laaf D., Spiwok V., Elling L., Křen V., Bojarová P.. Poly-N-Acetyllactosamine Neo-Glycoproteins as Nanomolar Ligands of Human Galectin-3: Binding Kinetics and Modeling. Int. J. Mol. Sci. 2018;19(2):372. doi: 10.3390/ijms19020372. PubMed DOI PMC
Heine V., Hovorková M., Vlachová M., Filipová M., Bumba L., Janoušková O., Hubálek M., Cvačka J., Petrásková L., Pelantová H., Křen V., Elling L., Bojarová P.. Immunoprotective Neo-Glycoproteins: Chemoenzymatic Synthesis of Multivalent Glycomimetics for Inhibition of Cancer-Related Galectin-3. Eur. J. Med. Chem. 2021;220:113500. doi: 10.1016/j.ejmech.2021.113500. PubMed DOI
Hovorková M., Červený J., Bumba L., Pelantová H., Cvačka J., Křen V., Renaudet O., Goyard D., Bojarová P.. Advanced High-Affinity Glycoconjugate Ligands of Galectins. Bioorg. Chem. 2023;131:106279. doi: 10.1016/j.bioorg.2022.106279. PubMed DOI
Ramaswamy S., Sleiman M. H., Masuyer G., Arbez-Gindre C., Micha-Screttas M., Calogeropoulou T., Steele B. R., Acharya K. R.. Structural Basis of Multivalent Galactose-Based Dendrimer Recognition by Human Galectin-7. FEBS J. 2015;282(2):372–387. doi: 10.1111/febs.13140. PubMed DOI
Laaf D., Bojarová P., Mikulová B., Pelantová H., Křen V., Elling L.. Two-Step Enzymatic Synthesis of β-d-N-Acetylgalactosamine-(1→4)-d-N-Acetylglucosamine (LacdiNAc) Chitooligomers for Deciphering Galectin Binding Behavior. Adv. Synth. Catal. 2017;359(12):2101–2108. doi: 10.1002/adsc.201700331. DOI
Quintana J. I., Massaro M., Cagnoni A. J., Nuñez-Franco R., Delgado S., Jiménez-Osés G., Mariño K. V., Rabinovich G. A., Jiménez-Barbero J., Ardá A.. Different Roles of the Heterodimer Architecture of Galectin-4 in Selective Recognition of Oligosaccharides and Lipopolysaccharides Having ABH Antigens. J. Biol. Chem. 2024;300(8):107577. doi: 10.1016/j.jbc.2024.107577. PubMed DOI PMC
Slámová K., Červený J., Mészáros Z., Friede T., Vrbata D., Křen V., Bojarová P.. Oligosaccharide Ligands of Galectin-4 and Its Subunits: Multivalency Scores Highly. Molecules. 2023;28(10):4039. doi: 10.3390/molecules28104039. PubMed DOI PMC
Konvalinková D., Dolníček F., Hovorková M., Červený J., Kundrát O., Pelantová H., Petrásková L., Cvačka J., Faizulina M., Varghese B., Kovaříček P., Křen V., Lhoták P., Bojarová P.. Glycocalix[4]Arenes and Their Affinity to a Library of Galectins: The Linker Matters. Org. Biomol. Chem. 2023;21(6):1294–1302. doi: 10.1039/D2OB02235D. PubMed DOI
Müllerová M., Hovorková M., Závodná T., ČervenkováŠt’ astná L., Krupková A., Hamala V., Nováková K., Topinka J., Bojarova P., Strašák T.. Lactose-Functionalized Carbosilane Glycodendrimers Are Highly Potent Multivalent Ligands for Galectin-9 Binding: Increased Glycan Affinity to Galectins Correlates with Aggregation Behavior. Biomacromolecules. 2023;24(11):4705–4717. doi: 10.1021/acs.biomac.3c00426. PubMed DOI PMC
Vrbata D., Červený J., Kulik N., Hovorková M., Balogová S., Vlachová M., Pelantová H., Křen V., Bojarová P.. Glycomimetic Inhibitors of Tandem-Repeat Galectins: Simple and Efficient. Bioorg. Chem. 2024;145:107231. doi: 10.1016/j.bioorg.2024.107231. PubMed DOI
Pal K. B., Mahanti M., Huang X., Persson S., Sundin A. P., Zetterberg F. R., Oredsson S., Leffler H., Nilsson U. J.. Quinoline–Galactose Hybrids Bind Selectively with High Affinity to a Galectin-8 N-Terminal Domain. Org. Biomol. Chem. 2018;16(34):6295–6305. doi: 10.1039/C8OB01354C. PubMed DOI
Bode L.. Human Milk Oligosaccharides: Every Baby Needs a Sugar Mama. Glycobiology. 2012;22(9):1147–1162. doi: 10.1093/glycob/cws074. PubMed DOI PMC
Moore R. E., Xu L. L., Townsend S. D.. Prospecting Human Milk Oligosaccharides as a Defense against Viral Infections. ACS Infect. Dis. 2021;7(2):254–263. doi: 10.1021/acsinfecdis.0c00807. PubMed DOI PMC
Mahanti M., Pal K. B., Sundin A. P., Leffler H., Nilsson U. J.. Epimers Switch Galectin-9 Domain Selectivity: 3 N-Aryl Galactosides Bind the C-Terminal and Gulosides Bind the N-Terminal. ACS Med. Chem. Lett. 2020;11(1):34–39. doi: 10.1021/acsmedchemlett.9b00396. PubMed DOI PMC
Kervefors G., Pal K. B., Tolnai G. L., Mahanti M., Leffler H., Nilsson U. J., Olofsson B.. Synthesis and Biological Studies of O3-Aryl Galactosides as Galectin Inhibitors. Helv. Chim. Acta. 2021;104(2):e2000220. doi: 10.1002/hlca.202000220. DOI
Quintana J. I., Atxabal U., Unione L., Ardá A., Jiménez-Barbero J.. Exploring Multivalent Carbohydrate–Protein Interactions by NMR. Chem. Soc. Rev. 2023;52(5):1591–1613. doi: 10.1039/D2CS00983H. PubMed DOI PMC
Vašíček T., Spiwok V., Červený J., Petrásková L., Bumba L., Vrbata D., Pelantová H., Křen V., Bojarová P.. Regioselective 3-O-Substitution of Unprotected Thiodigalactosides: Direct Route to Galectin Inhibitors. Chem.Eur. J. 2020;26(43):9620–9631. doi: 10.1002/chem.202002084. PubMed DOI
Bojarová P., Kulik N., Hovorková M., Slámová K., Pelantová H., Křen V.. The β-N-Acetylhexosaminidase in the Synthesis of Bioactive Glycans: Protein and Reaction Engineering. Molecules. 2019;24(3):599. doi: 10.3390/molecules24030599. PubMed DOI PMC
Quintana García, J. I. NMR and Molecular Recognition: The Interaction of Human Galectin-4 with the Histo Blood Group Antigens and with Pathogen-Associated Molecules. Doctoral Thesis, Universidad del País Vasco, Leioa, Bisacay, Spain, 2022; pp 66–91. https://addi.ehu.eus/bitstream/handle/10810/58536/Tesis_JM_Quintana_Garcia.pdf?sequence=1&isAllowed=y.
Gómez-Redondo M., Delgado S., Núñez-Franco R., Jiménez-Osés G., Ardá A., Jiménez-Barbero J., Gimeno A.. The Two Domains of Human Galectin-8 Bind Sialyl- and Fucose-Containing Oligosaccharides in an Independent Manner. A 3D View by Using NMR. RSC Chem. Biol. 2021;2(3):932–941. doi: 10.1039/D1CB00051A. PubMed DOI PMC
Berman H. M., Westbrook J., Feng Z., Gilliland G., Bhat T. N., Weissig H., Shindyalov I. N., Bourne P. E.. The Protein Data Bank. Nucleic Acids Res. 2000;28(1):235–242. doi: 10.1093/nar/28.1.235. PubMed DOI PMC
Yoshida H., Yamashita S., Teraoka M., Itoh A., Nakakita S. I., Nishi N., Kamitori S.. X-Ray Structure of a Protease-Resistant Mutant Form of Human Galectin-8 with Two Carbohydrate Recognition Domains. FEBS J. 2012;279(20):3937–3951. doi: 10.1111/j.1742-4658.2012.08753.x. PubMed DOI
Nagae M., Nishi N., Murata T., Usui T., Nakamura T., Wakatsuki S., Kato R.. Structural Analysis of the Recognition Mechanism of Poly-N-Acetyllactosamine by the Human Galectin-9 N-Terminal Carbohydrate Recognition Domain. Glycobiology. 2008;19(2):112–117. doi: 10.1093/glycob/cwn121. PubMed DOI
Yoshida H., Teraoka M., Nishi N., Nakakita S. I., Nakamura T., Hirashima M., Kamitori S.. X-Ray Structures of Human Galectin-9 C-Terminal Domain in Complexes with a Biantennary Oligosaccharide and Sialyllactose. J. Biol. Chem. 2010;285(47):36969–36976. doi: 10.1074/jbc.M110.163402. PubMed DOI PMC
Morris G. M., Huey R., Lindstrom W., Sanner M. F., Belew R. K., Goodsell D. S., Olson A. J.. AutoDock4 and AutoDockTools4: Automated Docking with Selective Receptor Flexibility. J. Comput. Chem. 2009;30(16):2785. doi: 10.1002/jcc.21256. PubMed DOI PMC
Bouysset C., Fiorucci S.. ProLIF: A Library to Encode Molecular Interactions as Fingerprints. J. Cheminform. 2021;13:72. doi: 10.1186/s13321-021-00548-6. PubMed DOI PMC
Trott O., Olson A. J.. AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading. J. Comput. Chem. 2010;31(2):455–461. doi: 10.1002/jcc.21334. PubMed DOI PMC
Heine V., Pelantová H., Bojarová P., Křen V., Elling L.. Targeted Fucosylation of Glycans with Engineered Bacterial Fucosyltransferase Variants. ChemCatChem. 2022;14(6):e202200037. doi: 10.1002/cctc.202200037. DOI
Sauerzapfe B., Namdjou D. J., Schumacher T., Linden N., Křenek K., Křen V., Elling L.. Characterization of Recombinant Fusion Constructs of Human β1,4-Galactosyltransferase 1 and the Lipase Pre-Propeptide from Staphylococcus Hyicus . J. Mol. Catal. B. Enzym. 2008;50(2–4):128–140. doi: 10.1016/j.molcatb.2007.09.009. DOI
Sauerzapfe B., Křenek K., Schmiedel J., Wakarchuk W. W., Pelantová H., Křen V., Elling L.. Chemo-Enzymatic Synthesis of Poly-N-Acetyllactosamine (Poly-LacNAc) Structures and Their Characterization for CGL2-Galectin-Mediated Binding of ECM Glycoproteins to Biomaterial Surfaces. Glycoconj. J. 2009;26(2):141–159. doi: 10.1007/s10719-008-9172-2. PubMed DOI
Henze M., You D. J., Kamerke C., Hoffmann N., Angkawidjaja C., Ernst S., Pietruszka J., Kanaya S., Elling L.. Rational Design of a Glycosynthase by the Crystal Structure of β-Galactosidase from Bacillus Circulans (BgaC) and Its Use for the Synthesis of N-Acetyllactosamine Type 1 Glycan Structures. J. Biotechnol. 2014;191:78–85. doi: 10.1016/j.jbiotec.2014.07.003. PubMed DOI
Kupper C. E., Rosencrantz R. R., Henßen B., Pelantová H., Thönes S., Drozdová A., Kren V., Elling L.. Chemo-Enzymatic Modification of Poly-N-Acetyllactosamine (LacNAc) Oligomers and N,N-Diacetyllactosamine (LacDiNAc) Based on Galactose Oxidase Treatment. Beilstein J. Org. Chem. 2012;8:712–725. doi: 10.3762/bjoc.8.80. PubMed DOI PMC
Chen X., Zaro J. L., Shen W. C.. Fusion Protein Linkers: Property, Design and Functionality. Adv. Drug. Delivery Rev. 2013;65(10):1357–1369. doi: 10.1016/j.addr.2012.09.039. PubMed DOI PMC
Angulo J., Ardá A., Bertuzzi S., Canales A., Ereño-Orbea J., Gimeno A., Gomez-Redondo M., Muñoz-García J. C., Oquist P., Monaco S., Poveda A., Unione L., Jiménez-Barbero J.. NMR Investigations of Glycan Conformation, Dynamics, and Interactions. Prog. Nucl. Magn. Reson. Spectrosc. 2024;144–145:97–152. doi: 10.1016/j.pnmrs.2024.10.002. PubMed DOI
Valverde P., Quintana J. I., Santos J. I., Ardá A., Jiménez-Barbero J.. Novel NMR Avenues to Explore the Conformation and Interactions of Glycans. ACS Omega. 2019;4(9):13618–13630. doi: 10.1021/acsomega.9b01901. PubMed DOI PMC
Mayer M., Meyer B., Park K. C., Meunier S. J., Zanini D., Roy R., Lett C., Romanowska A., Meyer B., Mayer D.-C. M.. Characterization of Ligand Binding by Saturation Transfer Difference NMR Spectroscopy. Angew. Chem., Int. Ed. 1999;38(12):1784–1788. doi: 10.1002/(SICI)1521-3773(19990614)38:12<1784::AID-ANIE1784>3.0.CO;2-Q. PubMed DOI
Meyer B., Peters T.. NMR Spectroscopy Techniques for Screening and Identifying Ligand Binding to Protein Receptors. Angew. Chem., Int. Ed. 2003;42(8):864–890. doi: 10.1002/anie.200390233. PubMed DOI
Bohari M. H., Yu X., Zick Y., Blanchard H.. Structure-Based Rationale for Differential Recognition of Lacto- and Neolacto- Series Glycosphingolipids by the N-Terminal Domain of Human Galectin-8. Sci. Rep. 2016;6:39556. doi: 10.1038/srep39556. PubMed DOI PMC
Hajduk P. J., Olejniczak E. T., Fesik S. W.. One-Dimensional Relaxation- and Diffusion-Edited NMR Methods for Screening Compounds That Bind to Macromolecules. J. Am. Chem. Soc. 1997;119(50):12257–12261. doi: 10.1021/ja9715962. DOI
Bernardi A., Potenza D., Capelli A. M., García-Herrero A., Cañada F. J., Jiménez-Barbero J.. Second-Generation Mimics of Ganglioside GM1 Oligosaccharide: A Three-Dimensional View of Their Interactions with Bacterial Enterotoxins by NMR and Computational Methods. Chem.Eur. J. 2002;8(20):4597–4612. doi: 10.1002/1521-3765(20021018)8:20<4597::AID-CHEM4597>3.0.CO;2-U. PubMed DOI
Keys A. M., Kastner D. W., Kiessling L. L., Kulik H. J.. The Energetic Landscape of CH−π Interactions in Protein–Carbohydrate Binding. Chem. Sci. 2025;16(4):1746–1761. doi: 10.1039/D4SC06246A. PubMed DOI PMC
Kiessling L. L., Diehl R. C.. CH-Π Interactions in Glycan Recognition. ACS Chem. Biol. 2021;16(10):1884–1893. doi: 10.1021/acschembio.1c00413. PubMed DOI PMC