• This record comes from PubMed

Human Milk Oligosaccharides Multivalently Presented on Defined Synthetic Neo-Glycoproteins Are Nanomolar Ligands of Tandem-Repeat Galectins

. 2025 Aug 11 ; 26 (8) : 4995-5009. [epub] 20250707

Language English Country United States Media print-electronic

Document type Journal Article

Galectins are small human proteins participating in inflammation processes, immune response, and cancerogenesis. Tandem-repeat galectins comprising Gal-4, Gal-8, and Gal-9 are a vital yet less studied part of the galectin fingerprint in cancer-related processes. The present work studies a library of prepared multivalent neo-glycoproteins decorated with poly-N-acetyllactosamine and human-milk-type oligosaccharides as ligands of this underexplored family of tandem-repeat galectins. A thorough binding evaluation by ELISA and biolayer interferometry was complemented with a detailed epitope mapping both from the galectin and the glycoconjugate viewpoints by nuclear magnetic resonance. The found interactions in the galectin binding site were correlated to in silico data from molecular modeling. The present work reveals pioneer information on the binding of tandem-repeat galectins to multivalent glycoconjugates carrying complex carbohydrate ligands and represents an invaluable starting point for the development of new high-affinity tailored ligands of tandem-repeat galectins, needed both for diagnosis and therapy.

See more in PubMed

Funasaka, T. ; Raz, A. ; Nangia-Makker, P. . Galectin-3 in Angiogenesis and Metastasis. Glycobiology; Oxford University Press: 2014; pp 886–891. 10.1093/glycob/cwu086. PubMed DOI PMC

Heine V., Dey C., Bojarová P., Křen V., Elling L.. Methods of in Vitro Study of Galectin-Glycomaterial Interaction. Biotechnol. Adv. 2022;58:107928. doi: 10.1016/j.biotechadv.2022.107928. PubMed DOI

Li P., Liu S., Lu M., Bandyopadhyay G., Oh D., Imamura T., Johnson A. M. F., Sears D., Shen Z., Cui B., Kong L., Hou S., Liang X., Iovino S., Watkins S. M., Ying W., Osborn O., Wollam J., Brenner M., Olefsky J. M.. Hematopoietic-Derived Galectin-3 Causes Cellular and Systemic Insulin Resistance. Cell. 2016;167(4):973–984.e12. doi: 10.1016/j.cell.2016.10.025. PubMed DOI PMC

Bänfer S., Jacob R.. Galectins. Curr. Biol. 2022;32(9):R406–R408. doi: 10.1016/j.cub.2022.03.065. PubMed DOI

Purić E., Nilsson U. J., Anderluh M.. Galectin-8 Inhibition and Functions in Immune Response and Tumor Biology. Med. Res. Rev. 2024;44(5):2236–2265. doi: 10.1002/med.22041. PubMed DOI

Carlsson S., Öberg C. T., Carlsson M. C., Sundin A., Nilsson U. J., Smith D., Cummings R. D., Almkvist J., Karlsson A., Leffler H.. Affinity of Galectin-8 and Its Carbohydrate Recognition Domains for Ligands in Solution and at the Cell Surface. Glycobiology. 2007;17(6):663–676. doi: 10.1093/glycob/cwm026. PubMed DOI

Solís D., Maté M. J., Lohr M., Ribeiro J. P., López-Merino L., André S., Buzamet E., Javier Cañada F., Kaltner H., Lensch M., Ruiz F. M., Haroske G., Wollina U., Kloor M., Kopitz J., Sáiz J. L., Menéndez M., Jiménez-Barbero J., Romero A., Gabius H. J.. N-Domain of Human Adhesion/Growth-Regulatory Galectin-9: Preference for Distinct Conformers and Non-Sialylated N-Glycans and Detection of Ligand-Induced Structural Changes in Crystal and Solution. Int. J. Biochem. Cell Biol. 2010;42(6):1019–1029. doi: 10.1016/j.biocel.2010.03.007. PubMed DOI

Bum-Erdene K., Leffler H., Nilsson U. J., Blanchard H.. Structural Characterization of Human Galectin-4 C-Terminal Domain: Elucidating the Molecular Basis for Recognition of Glycosphingolipids, Sulfated Saccharides and Blood Group Antigens. FEBS J. 2015;282(17):3348–3367. doi: 10.1111/febs.13348. PubMed DOI

Bum-Erdene K., Leffler H., Nilsson U. J., Blanchard H.. Structural Characterisation of Human Galectin-4 N-Terminal Carbohydrate Recognition Domain in Complex with Glycerol, Lactose, 3′-Sulfo-Lactose and 2′-Fucosyllactose. Sci. Rep. 2016;6:20289. doi: 10.1038/srep20289. PubMed DOI PMC

Quintana J. I., Delgado S., Núñez-Franco R., Cañada F. J., Jiménez-Osés G., Jiménez-Barbero J., Ardá A.. Galectin-4 N-Terminal Domain: Binding Preferences Toward A and B Antigens With Different Peripheral Core Presentations. Front. Chem. 2021;9:664097. doi: 10.3389/fchem.2021.664097. PubMed DOI PMC

Rosencrantz S., Tang J. S. J., Schulte-Osseili C., Böker A., Rosencrantz R. R.. Glycopolymers by RAFT Polymerization as Functional Surfaces for Galectin-3. Macromol. Chem. Phys. 2019;220(20):1900293. doi: 10.1002/macp.201900293. DOI

Heine V., Kremers T., Menzel N., Schnakenberg U., Elling L.. Electrochemical Impedance Spectroscopy Biosensor Enabling Kinetic Monitoring of Fucosyltransferase Activity. ACS Sens. 2021;6(3):1003–1011. doi: 10.1021/acssensors.0c02206. PubMed DOI

Zhou Y., Fujisawa S., Saito T., Isogai A.. Characterization of Concentration-Dependent Gelation Behavior of Aqueous 2,2,6,6-Tetramethylpiperidine-1-Oxyl-Cellulose Nanocrystal Dispersions Using Dynamic Light Scattering. Biomacromolecules. 2019;20(2):750–757. doi: 10.1021/acs.biomac.8b01689. PubMed DOI

Tavares M. R., Bláhová M., Sedláková L., Elling L., Pelantová H., Konefał R., Etrych T., Křen V., Bojarová P., Chytil P.. High-Affinity N-(2-Hydroxypropyl)­Methacrylamide Copolymers with Tailored N-Acetyllactosamine Presentation Discriminate between Galectins. Biomacromolecules. 2020;21(2):641–652. doi: 10.1021/acs.biomac.9b01370. PubMed DOI

Clauss Z. S., Kramer J. R.. Design, Synthesis and Biological Applications of Glycopolypeptides. Adv. Drug. Delivery Rev. 2021;169:152–167. doi: 10.1016/j.addr.2020.12.009. PubMed DOI

Kiessling L. L., Grim J. C.. Glycopolymer Probes of Signal Transduction. Chem. Soc. Rev. 2013;42(10):4476–4491. doi: 10.1039/c3cs60097a. PubMed DOI PMC

Restuccia A., Fettis M. M., Farhadi S. A., Molinaro M. D., Kane B., Hudalla G. A.. Evaluation of Self-Assembled Glycopeptide Nanofibers Modified with N,N′-Diacetyllactosamine for Selective Galectin-3 Recognition and Inhibition. ACS Biomater. Sci. Eng. 2018;4(10):3451–3459. doi: 10.1021/acsbiomaterials.8b00611. DOI

Bumba L., Laaf D., Spiwok V., Elling L., Křen V., Bojarová P.. Poly-N-Acetyllactosamine Neo-Glycoproteins as Nanomolar Ligands of Human Galectin-3: Binding Kinetics and Modeling. Int. J. Mol. Sci. 2018;19(2):372. doi: 10.3390/ijms19020372. PubMed DOI PMC

Heine V., Hovorková M., Vlachová M., Filipová M., Bumba L., Janoušková O., Hubálek M., Cvačka J., Petrásková L., Pelantová H., Křen V., Elling L., Bojarová P.. Immunoprotective Neo-Glycoproteins: Chemoenzymatic Synthesis of Multivalent Glycomimetics for Inhibition of Cancer-Related Galectin-3. Eur. J. Med. Chem. 2021;220:113500. doi: 10.1016/j.ejmech.2021.113500. PubMed DOI

Hovorková M., Červený J., Bumba L., Pelantová H., Cvačka J., Křen V., Renaudet O., Goyard D., Bojarová P.. Advanced High-Affinity Glycoconjugate Ligands of Galectins. Bioorg. Chem. 2023;131:106279. doi: 10.1016/j.bioorg.2022.106279. PubMed DOI

Ramaswamy S., Sleiman M. H., Masuyer G., Arbez-Gindre C., Micha-Screttas M., Calogeropoulou T., Steele B. R., Acharya K. R.. Structural Basis of Multivalent Galactose-Based Dendrimer Recognition by Human Galectin-7. FEBS J. 2015;282(2):372–387. doi: 10.1111/febs.13140. PubMed DOI

Laaf D., Bojarová P., Mikulová B., Pelantová H., Křen V., Elling L.. Two-Step Enzymatic Synthesis of β-d-N-Acetylgalactosamine-(1→4)-d-N-Acetylglucosamine (LacdiNAc) Chitooligomers for Deciphering Galectin Binding Behavior. Adv. Synth. Catal. 2017;359(12):2101–2108. doi: 10.1002/adsc.201700331. DOI

Quintana J. I., Massaro M., Cagnoni A. J., Nuñez-Franco R., Delgado S., Jiménez-Osés G., Mariño K. V., Rabinovich G. A., Jiménez-Barbero J., Ardá A.. Different Roles of the Heterodimer Architecture of Galectin-4 in Selective Recognition of Oligosaccharides and Lipopolysaccharides Having ABH Antigens. J. Biol. Chem. 2024;300(8):107577. doi: 10.1016/j.jbc.2024.107577. PubMed DOI PMC

Slámová K., Červený J., Mészáros Z., Friede T., Vrbata D., Křen V., Bojarová P.. Oligosaccharide Ligands of Galectin-4 and Its Subunits: Multivalency Scores Highly. Molecules. 2023;28(10):4039. doi: 10.3390/molecules28104039. PubMed DOI PMC

Konvalinková D., Dolníček F., Hovorková M., Červený J., Kundrát O., Pelantová H., Petrásková L., Cvačka J., Faizulina M., Varghese B., Kovaříček P., Křen V., Lhoták P., Bojarová P.. Glycocalix­[4]­Arenes and Their Affinity to a Library of Galectins: The Linker Matters. Org. Biomol. Chem. 2023;21(6):1294–1302. doi: 10.1039/D2OB02235D. PubMed DOI

Müllerová M., Hovorková M., Závodná T., ČervenkováŠt’ astná L., Krupková A., Hamala V., Nováková K., Topinka J., Bojarova P., Strašák T.. Lactose-Functionalized Carbosilane Glycodendrimers Are Highly Potent Multivalent Ligands for Galectin-9 Binding: Increased Glycan Affinity to Galectins Correlates with Aggregation Behavior. Biomacromolecules. 2023;24(11):4705–4717. doi: 10.1021/acs.biomac.3c00426. PubMed DOI PMC

Vrbata D., Červený J., Kulik N., Hovorková M., Balogová S., Vlachová M., Pelantová H., Křen V., Bojarová P.. Glycomimetic Inhibitors of Tandem-Repeat Galectins: Simple and Efficient. Bioorg. Chem. 2024;145:107231. doi: 10.1016/j.bioorg.2024.107231. PubMed DOI

Pal K. B., Mahanti M., Huang X., Persson S., Sundin A. P., Zetterberg F. R., Oredsson S., Leffler H., Nilsson U. J.. Quinoline–Galactose Hybrids Bind Selectively with High Affinity to a Galectin-8 N-Terminal Domain. Org. Biomol. Chem. 2018;16(34):6295–6305. doi: 10.1039/C8OB01354C. PubMed DOI

Bode L.. Human Milk Oligosaccharides: Every Baby Needs a Sugar Mama. Glycobiology. 2012;22(9):1147–1162. doi: 10.1093/glycob/cws074. PubMed DOI PMC

Moore R. E., Xu L. L., Townsend S. D.. Prospecting Human Milk Oligosaccharides as a Defense against Viral Infections. ACS Infect. Dis. 2021;7(2):254–263. doi: 10.1021/acsinfecdis.0c00807. PubMed DOI PMC

Mahanti M., Pal K. B., Sundin A. P., Leffler H., Nilsson U. J.. Epimers Switch Galectin-9 Domain Selectivity: 3 N-Aryl Galactosides Bind the C-Terminal and Gulosides Bind the N-Terminal. ACS Med. Chem. Lett. 2020;11(1):34–39. doi: 10.1021/acsmedchemlett.9b00396. PubMed DOI PMC

Kervefors G., Pal K. B., Tolnai G. L., Mahanti M., Leffler H., Nilsson U. J., Olofsson B.. Synthesis and Biological Studies of O3-Aryl Galactosides as Galectin Inhibitors. Helv. Chim. Acta. 2021;104(2):e2000220. doi: 10.1002/hlca.202000220. DOI

Quintana J. I., Atxabal U., Unione L., Ardá A., Jiménez-Barbero J.. Exploring Multivalent Carbohydrate–Protein Interactions by NMR. Chem. Soc. Rev. 2023;52(5):1591–1613. doi: 10.1039/D2CS00983H. PubMed DOI PMC

Vašíček T., Spiwok V., Červený J., Petrásková L., Bumba L., Vrbata D., Pelantová H., Křen V., Bojarová P.. Regioselective 3-O-Substitution of Unprotected Thiodigalactosides: Direct Route to Galectin Inhibitors. Chem.Eur. J. 2020;26(43):9620–9631. doi: 10.1002/chem.202002084. PubMed DOI

Bojarová P., Kulik N., Hovorková M., Slámová K., Pelantová H., Křen V.. The β-N-Acetylhexosaminidase in the Synthesis of Bioactive Glycans: Protein and Reaction Engineering. Molecules. 2019;24(3):599. doi: 10.3390/molecules24030599. PubMed DOI PMC

Quintana García, J. I. NMR and Molecular Recognition: The Interaction of Human Galectin-4 with the Histo Blood Group Antigens and with Pathogen-Associated Molecules. Doctoral Thesis, Universidad del País Vasco, Leioa, Bisacay, Spain, 2022; pp 66–91. https://addi.ehu.eus/bitstream/handle/10810/58536/Tesis_JM_Quintana_Garcia.pdf?sequence=1&isAllowed=y.

Gómez-Redondo M., Delgado S., Núñez-Franco R., Jiménez-Osés G., Ardá A., Jiménez-Barbero J., Gimeno A.. The Two Domains of Human Galectin-8 Bind Sialyl- and Fucose-Containing Oligosaccharides in an Independent Manner. A 3D View by Using NMR. RSC Chem. Biol. 2021;2(3):932–941. doi: 10.1039/D1CB00051A. PubMed DOI PMC

Berman H. M., Westbrook J., Feng Z., Gilliland G., Bhat T. N., Weissig H., Shindyalov I. N., Bourne P. E.. The Protein Data Bank. Nucleic Acids Res. 2000;28(1):235–242. doi: 10.1093/nar/28.1.235. PubMed DOI PMC

Yoshida H., Yamashita S., Teraoka M., Itoh A., Nakakita S. I., Nishi N., Kamitori S.. X-Ray Structure of a Protease-Resistant Mutant Form of Human Galectin-8 with Two Carbohydrate Recognition Domains. FEBS J. 2012;279(20):3937–3951. doi: 10.1111/j.1742-4658.2012.08753.x. PubMed DOI

Nagae M., Nishi N., Murata T., Usui T., Nakamura T., Wakatsuki S., Kato R.. Structural Analysis of the Recognition Mechanism of Poly-N-Acetyllactosamine by the Human Galectin-9 N-Terminal Carbohydrate Recognition Domain. Glycobiology. 2008;19(2):112–117. doi: 10.1093/glycob/cwn121. PubMed DOI

Yoshida H., Teraoka M., Nishi N., Nakakita S. I., Nakamura T., Hirashima M., Kamitori S.. X-Ray Structures of Human Galectin-9 C-Terminal Domain in Complexes with a Biantennary Oligosaccharide and Sialyllactose. J. Biol. Chem. 2010;285(47):36969–36976. doi: 10.1074/jbc.M110.163402. PubMed DOI PMC

Morris G. M., Huey R., Lindstrom W., Sanner M. F., Belew R. K., Goodsell D. S., Olson A. J.. AutoDock4 and AutoDockTools4: Automated Docking with Selective Receptor Flexibility. J. Comput. Chem. 2009;30(16):2785. doi: 10.1002/jcc.21256. PubMed DOI PMC

Bouysset C., Fiorucci S.. ProLIF: A Library to Encode Molecular Interactions as Fingerprints. J. Cheminform. 2021;13:72. doi: 10.1186/s13321-021-00548-6. PubMed DOI PMC

Trott O., Olson A. J.. AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading. J. Comput. Chem. 2010;31(2):455–461. doi: 10.1002/jcc.21334. PubMed DOI PMC

Heine V., Pelantová H., Bojarová P., Křen V., Elling L.. Targeted Fucosylation of Glycans with Engineered Bacterial Fucosyltransferase Variants. ChemCatChem. 2022;14(6):e202200037. doi: 10.1002/cctc.202200037. DOI

Sauerzapfe B., Namdjou D. J., Schumacher T., Linden N., Křenek K., Křen V., Elling L.. Characterization of Recombinant Fusion Constructs of Human β1,4-Galactosyltransferase 1 and the Lipase Pre-Propeptide from Staphylococcus Hyicus . J. Mol. Catal. B. Enzym. 2008;50(2–4):128–140. doi: 10.1016/j.molcatb.2007.09.009. DOI

Sauerzapfe B., Křenek K., Schmiedel J., Wakarchuk W. W., Pelantová H., Křen V., Elling L.. Chemo-Enzymatic Synthesis of Poly-N-Acetyllactosamine (Poly-LacNAc) Structures and Their Characterization for CGL2-Galectin-Mediated Binding of ECM Glycoproteins to Biomaterial Surfaces. Glycoconj. J. 2009;26(2):141–159. doi: 10.1007/s10719-008-9172-2. PubMed DOI

Henze M., You D. J., Kamerke C., Hoffmann N., Angkawidjaja C., Ernst S., Pietruszka J., Kanaya S., Elling L.. Rational Design of a Glycosynthase by the Crystal Structure of β-Galactosidase from Bacillus Circulans (BgaC) and Its Use for the Synthesis of N-Acetyllactosamine Type 1 Glycan Structures. J. Biotechnol. 2014;191:78–85. doi: 10.1016/j.jbiotec.2014.07.003. PubMed DOI

Kupper C. E., Rosencrantz R. R., Henßen B., Pelantová H., Thönes S., Drozdová A., Kren V., Elling L.. Chemo-Enzymatic Modification of Poly-N-Acetyllactosamine (LacNAc) Oligomers and N,N-Diacetyllactosamine (LacDiNAc) Based on Galactose Oxidase Treatment. Beilstein J. Org. Chem. 2012;8:712–725. doi: 10.3762/bjoc.8.80. PubMed DOI PMC

Chen X., Zaro J. L., Shen W. C.. Fusion Protein Linkers: Property, Design and Functionality. Adv. Drug. Delivery Rev. 2013;65(10):1357–1369. doi: 10.1016/j.addr.2012.09.039. PubMed DOI PMC

Angulo J., Ardá A., Bertuzzi S., Canales A., Ereño-Orbea J., Gimeno A., Gomez-Redondo M., Muñoz-García J. C., Oquist P., Monaco S., Poveda A., Unione L., Jiménez-Barbero J.. NMR Investigations of Glycan Conformation, Dynamics, and Interactions. Prog. Nucl. Magn. Reson. Spectrosc. 2024;144–145:97–152. doi: 10.1016/j.pnmrs.2024.10.002. PubMed DOI

Valverde P., Quintana J. I., Santos J. I., Ardá A., Jiménez-Barbero J.. Novel NMR Avenues to Explore the Conformation and Interactions of Glycans. ACS Omega. 2019;4(9):13618–13630. doi: 10.1021/acsomega.9b01901. PubMed DOI PMC

Mayer M., Meyer B., Park K. C., Meunier S. J., Zanini D., Roy R., Lett C., Romanowska A., Meyer B., Mayer D.-C. M.. Characterization of Ligand Binding by Saturation Transfer Difference NMR Spectroscopy. Angew. Chem., Int. Ed. 1999;38(12):1784–1788. doi: 10.1002/(SICI)1521-3773(19990614)38:12<1784::AID-ANIE1784>3.0.CO;2-Q. PubMed DOI

Meyer B., Peters T.. NMR Spectroscopy Techniques for Screening and Identifying Ligand Binding to Protein Receptors. Angew. Chem., Int. Ed. 2003;42(8):864–890. doi: 10.1002/anie.200390233. PubMed DOI

Bohari M. H., Yu X., Zick Y., Blanchard H.. Structure-Based Rationale for Differential Recognition of Lacto- and Neolacto- Series Glycosphingolipids by the N-Terminal Domain of Human Galectin-8. Sci. Rep. 2016;6:39556. doi: 10.1038/srep39556. PubMed DOI PMC

Hajduk P. J., Olejniczak E. T., Fesik S. W.. One-Dimensional Relaxation- and Diffusion-Edited NMR Methods for Screening Compounds That Bind to Macromolecules. J. Am. Chem. Soc. 1997;119(50):12257–12261. doi: 10.1021/ja9715962. DOI

Bernardi A., Potenza D., Capelli A. M., García-Herrero A., Cañada F. J., Jiménez-Barbero J.. Second-Generation Mimics of Ganglioside GM1 Oligosaccharide: A Three-Dimensional View of Their Interactions with Bacterial Enterotoxins by NMR and Computational Methods. Chem.Eur. J. 2002;8(20):4597–4612. doi: 10.1002/1521-3765(20021018)8:20<4597::AID-CHEM4597>3.0.CO;2-U. PubMed DOI

Keys A. M., Kastner D. W., Kiessling L. L., Kulik H. J.. The Energetic Landscape of CH−π Interactions in Protein–Carbohydrate Binding. Chem. Sci. 2025;16(4):1746–1761. doi: 10.1039/D4SC06246A. PubMed DOI PMC

Kiessling L. L., Diehl R. C.. CH-Π Interactions in Glycan Recognition. ACS Chem. Biol. 2021;16(10):1884–1893. doi: 10.1021/acschembio.1c00413. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...