Regioselective 3-O-Substitution of Unprotected Thiodigalactosides: Direct Route to Galectin Inhibitors
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
LTC18038
Ministerstvo Školství, Mládeže a Tělovýchovy
LTC19038
Ministerstvo Školství, Mládeže a Tělovýchovy
LM2018133
Ministerstvo Školství, Mládeže a Tělovýchovy
LM2018140
Ministerstvo Školství, Mládeže a Tělovýchovy
LM2015047
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
32368810
DOI
10.1002/chem.202002084
Knihovny.cz E-zdroje
- Klíčová slova
- carbohydrates, glycomimetics, glycosides, inhibitors, molecular modeling,
- MeSH
- galaktosa MeSH
- galektin 1 chemie metabolismus MeSH
- galektin 3 chemie metabolismus MeSH
- galektiny chemie metabolismus MeSH
- krevní proteiny MeSH
- lidé MeSH
- molekulární modely MeSH
- sacharidy chemie MeSH
- thiogalaktosidy chemie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- galaktosa MeSH
- galektin 1 MeSH
- galektin 3 MeSH
- galektiny MeSH
- krevní proteiny MeSH
- LGALS3 protein, human MeSH Prohlížeč
- sacharidy MeSH
- thiodigalactoside MeSH Prohlížeč
- thiogalaktosidy MeSH
The synthesis of tailored bioactive carbohydrates usually comprises challenging (de)protection steps, which lowers synthetic yields and increases time demands. We present here a regioselective single-step introduction of benzylic substituents at 3-hydroxy groups of β-d-galactopyranosyl-(1→1)-thio-β-d-galactopyranoside (TDG) employing dibutyltin oxide in good yields. These glycomimetics act as inhibitors of galectins-human lectins, which are biomedically attractive targets for therapeutic inhibition in, for example, cancerogenesis. The affinity of the prepared glycomimetics to galectin-1 and galectin-3 was studied in enzyme-linked immunosorbent (ELISA)-type assays and their potential to inhibit galectin binding on the cell surface was shown. We used our original in vivo biotinylated galectin constructs for easy detection by flow cytometry. The results of the biological experiments were compared with data from molecular modeling with both galectins. The present work reveals a facile and elegant synthetic route for the preparation of TDG-derived glycomimetics that exhibit differing selectivity and affinity to galectins depending on the choice of 3-O-substitution.
Zobrazit více v PubMed
P. Bojarová, V. Křen, Biomater. Sci. 2016, 4, 1142-1160.
D. Laaf, P. Bojarová, L. Elling, V. Křen, Trends Biotechnol. 2019, 37, 402-415.
K. Wdowiak, T. Francuz, E. Gallego-Colon, N. Ruiz-Agamez, M. Kubeczko, I. Grochoła, J. Wojnar, Int. J. Mol. Sci. 2018, 19, 210.
V. Sundblad, L. G. Morosi, J. R. Geffner, G. A. Rabinovich, Immunol. 2017, 199, 3721-3730.
N. Suthahar, W. C. Meijers, H. H. W. Silljé, J. E. Ho, F.-T. Liu, R. A. de Boer, Theranostics 2018, 8, 593-609.
J. Hirabayashi, T. Hashidate, Y. Arata, N. Nishi, T. Nakamura, M. Hirashima, T. Urashima, T. Oka, M. Futai, W. E. G. Muller, F. Yagi, K. Kasai, Biochim. Biophys. Acta Gen. Subj. 2002, 1572, 232-254.
L. Bumba, D. Laaf, V. Spiwok, L. Elling, V. Křen, P. Bojarová, Int. J. Mol. Sci. 2018, 19, 372.
D. Laaf, P. Bojarová, H. Pelantová, V. Křen, L. Elling, Bioconjugate Chem. 2017, 28, 2832-2840;
D. Laaf, H. Steffens, H. Pelantová, P. Bojarová, V. Křen, L. Elling, Adv. Synth. Catal. 2017, 359, 4015-4024.
A. David, Isr. J. Chem. 2010, 50, 204-219.
P. Sörme, P. Arnoux, B. Kahl-Knutsson, H. Leffler, J. M. Rini, U. J. Nilsson, J. Am. Chem. Soc. 2005, 127, 1737-1743;
T. Delaine, I. Cumpstey, L. Ingrassia, M. Le Mercier, P. Okechukwu, H. Leffler, R. Kiss, U. J. Nilsson, J. Med. Chem. 2008, 51, 8109-8114;
U. Nilsson, WO2009/139719, 2009.
T. Delaine, P. Collins, A. MacKinnon, G. Sharma, J. Stegmayr, V. K. Rajput, S. Mandal, I. Cumstey, A. Larumbe, B. A. Salameh, B. Kahl-Knutsson, H. van Hattum, M. van Scherpenzeel, R. J. Pieters, T. Sethi, H. Schambye, S. Oredsson, H. Leffler, H. Blanchard, U. J. Nilsson, ChemBioChem 2016, 17, 1759-1770.
I. Cumpstey, A. Sundin, H. Leffler, U. J. Nilsson, Angew. Chem. Int. Ed. 2005, 44, 5110-5112;
Angew. Chem. 2005, 117, 5240-5242.
B. A. Salameh, I. Cumpstey, A. Sundin, H. Leffler, U. J. Nilsson, Bioorg. Med. Chem. 2010, 18, 5367-5378.
V. K. Rajput, A. MacKinnon, S. Mandal, P. Collins, H. Blanchard, H. Leffler, T. Sethi, H. Schambye, B. Mukhopadhyay, U. J. Nilsson, J. Med. Chem. 2016, 59, 8141.
T. J. Hsieh, H. Y. Lin, Z. Tu, T. C. Lin, S. C. Wu, Y. Y. Tseng, F. T. Liu, S. T. Hsu, C. H. Lin, Sci. Rep. 2016, 6, 29457.
S. Mandal, U. J. Nilsson, Org. Biomol. Chem. 2014, 12, 4816-4819.
D. Giguère, R. Patnam, M. Bellefleur, C. St-Pierre, S. Sato, R. Roy, Chem. Commun. 2006, 2379-2381.
S. David, A. Thieffry, A. Veyrières, J. Chem. Soc. Perkin. Trans.1 1981, 1796-1801;
G. Yang, F. Kong, S. Zhou, Carbohydr. Res. 1991, 211, 179-182.
M. Giordano, A. Iadonisi, Tetrahedron Lett. 2013, 54, 1550-1552;
M. Giordano, A. Iadonisi, J. Org. Chem. 2014, 79, 213-222.
L. Ballell, J. A. F. Joosten, F. A. el Maate, R. M. J. Liskamp, R. J. Pieters, Tetrahedron Lett. 2004, 45, 6685-6687.
V. K. Zishiri, R. Hunter, P. J. Smith, D. Taylor, R. Summers, K. Kirk, R. E. Martin, T. J. Egan, Eur. J. Med. Chem. 2011, 46, 1729-1742.
G. N. Wang, S. André, H.-J. Gabius, P. V. Murphy, Org. Biomol. Chem. 2012, 10, 6893-6907.
K. Peterson, R. Kumar, O. Stenstrom, P. Verma, P. R. Verma, M. Hakansson, B. Kahl-Knutsson, F. Zetterberg, H. Leffler, M. Akke, D. T. Logan, U. J. Nilsson, J. Med. Chem. 2018, 61, 1164-1175.
K. A. Stannard, P. M. Collins, K. Ito, E. M. Sullivan, S. A. Scott, E. Gabutero, I. D. Grice, P. Low, U. J. Nilsson, H. Leffler, H. Blanchard, S. J. Ralph, Cancer Lett. 2010, 299, 95-110.
C. Møller, M. S. Plesset, Phys. Rev. 1934, 46, 618-622.
M. R. Tavares, M. Bláhová, L. Sedláková, L. Elling, H. Pelantová, R. Konefał, T. Etrych, V. Křen, P. Bojarová, P. Chytil, Biomacromolecules 2020, 21, 641-652.
R. A. Friesner, R. B. Murphy, M. P. Repasky, L. L. Frye, J. R. Greenwood, T. A. Halgren, P. C. Sanschagrin, D. T. Mainz, J. Med. Chem. 2006, 49, 6177-6196.
M. J. Abraham, T. Murtola, R. Schulz, S. Páll, J. C. Smith, B. Hess, E. Lindahl, SoftwareX 2015, 1-2, 19-25.
A. Šali, T. L. Blundell, J. Mol. Biol. 1993, 234, 779-815.
K. Lindorff-Larsen, S. Piana, K. Palmo, P. Maragakis, J. L. Klepeis, R. O. Dror, D. E. Shaw, Proteins Struct. Funct. Bioinf. 2010, 78, 1950-1958.
K. N. Kirschner, A. B. Yongye, S. M. Tschampel, J. González-Outeiriño, C. R. Daniels, B. L. Foley, R. J. Woods, J. Comput. Chem. 2008, 29, 622-655.
J. Wang, R. M. Wolf, J. W. Caldwell, P. A. Kollman, D. A. Case, J. Comput. Chem. 2004, 25, 1157-1174.
A. Jakalian, D. B. Jack, C. I. Bayly, J. Comput. Chem. 2002, 23, 1623-1641.
S. F. Boys, F. Bernardi, Mol. Phys. 1970, 19, 553-566.
Gaussian 09, Revision A.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.