Glycopolymer Inhibitors of Galectin-3 Suppress the Markers of Tissue Remodeling in Pulmonary Hypertension
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
38829964
PubMed Central
PMC11181325
DOI
10.1021/acs.jmedchem.4c00341
Knihovny.cz E-zdroje
- MeSH
- arteria pulmonalis účinky léků metabolismus MeSH
- biologické markery MeSH
- fibroblasty účinky léků metabolismus MeSH
- galektin 3 * antagonisté a inhibitory metabolismus MeSH
- krysa rodu Rattus MeSH
- kultivované buňky MeSH
- lidé MeSH
- plicní hypertenze * farmakoterapie metabolismus MeSH
- polymery chemie farmakologie MeSH
- tkáňová distribuce MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- lidé MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- biologické markery MeSH
- galektin 3 * MeSH
- polymery MeSH
Pulmonary hypertension is a cardiovascular disease with a low survival rate. The protein galectin-3 (Gal-3) binding β-galactosides of cellular glycoproteins plays an important role in the onset and development of this disease. Carbohydrate-based drugs that target Gal-3 represent a new therapeutic strategy in the treatment of pulmonary hypertension. Here, we present the synthesis of novel hydrophilic glycopolymer inhibitors of Gal-3 based on a polyoxazoline chain decorated with carbohydrate ligands. Biolayer interferometry revealed a high binding affinity of these glycopolymers to Gal-3 in the subnanomolar range. In the cell cultures of cardiac fibroblasts and pulmonary artery smooth muscle cells, the most potent glycopolymer 18 (Lac-high) caused a decrease in the expression of markers of tissue remodeling in pulmonary hypertension. The glycopolymers were shown to penetrate into the cells. In a biodistribution and pharmacokinetics study in rats, the glycopolymers accumulated in heart and lung tissues, which are most affected by pulmonary hypertension.
Zobrazit více v PubMed
Johannes L.; Jacob R.; Leffler H. Galectins at a glance. J. Cell Sci. 2018, 131 (9), jcs208884.10.1242/jcs.208884. PubMed DOI
Gál P.; Vasilenko T.; Kováč I.; Čoma M.; Jakubčo J.; Jakubčová M.; Perželova V.; Urban L.; Kolář M.; Sabol F.; et al. Human galectin-3: molecular switch of gene expression in dermal fibroblasts in vitro and of skin collagen organization in open wounds and tensile strength in incisions in vivo. Mol. Med. Rep. 2021, 23 (2), 99.10.3892/mmr.2020.11738. PubMed DOI PMC
Iacobini C.; Blasetti Fantauzzi C.; Bedini R.; Pecci R.; Bartolazzi A.; Amadio B.; Pesce C.; Pugliese G.; Menini S. Galectin-3 is essential for proper bone cell differentiation and activity, bone remodeling and biomechanical competence in mice. Metabolism 2018, 83, 149–158. 10.1016/j.metabol.2018.02.001. PubMed DOI
Nangia-Makker P.; Honjo Y.; Sarvis R.; Akahani S.; Hogan V.; Pienta K. J.; Raz A. Galectin-3 induces endothelial cell morphogenesis and angiogenesis. Am. J. Pathol. 2000, 156 (3), 899–909. 10.1016/S0002-9440(10)64959-0. PubMed DOI PMC
Laaf D.; Bojarová P.; Pelantová H.; Křen V.; Elling L. Tailored multivalent neo-glycoproteins: synthesis, evaluation, and application of a library of galectin-3-binding glycan ligands. Bioconjugate Chem. 2017, 28 (11), 2832–2840. 10.1021/acs.bioconjchem.7b00520. PubMed DOI
Barman S. A.; Li X.; Haigh S.; Kondrikov D.; Mahboubi K.; Bordan Z.; Stepp D. W.; Zhou J.; Wang Y.; Weintraub D. S.; et al. Galectin-3 is expressed in vascular smooth muscle cells and promotes pulmonary hypertension through changes in proliferation, apoptosis, and fibrosis. Am. J. Physiol. Lung Cell Mol. Physiol. 2019, 316 (5), L784–L797. 10.1152/ajplung.00186.2018. PubMed DOI PMC
Hara A.; Niwa M.; Kanayama T.; Noguchi K.; Niwa A.; Matsuo M.; Kuroda T.; Hatano Y.; Okada H.; Tomita H. Galectin-3: A potential prognostic and diagnostic marker for heart disease and detection of early stage pathology. Biomolecules 2020, 10 (9), 1277.10.3390/biom10091277. PubMed DOI PMC
Tian L.; Chen K.; Cao J.; Han Z.; Wang Y.; Gao L.; Fan Y.; Wang C. Galectin-3 induces the phenotype transformation of human vascular smooth muscle cells via the canonical Wnt signaling. Mol. Med. Rep. 2017, 15 (6), 3840–3846. 10.3892/mmr.2017.6429. PubMed DOI
Hoeper M. M.; Humbert M.; Souza R.; Idrees M.; Kawut S. M.; Sliwa-Hahnle K.; Jing Z. C.; Gibbs J. S. A global view of pulmonary hypertension. Lancet Respir. Med. 2016, 4 (4), 306–322. 10.1016/S2213-2600(15)00543-3. PubMed DOI
Mazurek J. A.; Horne B. D.; Saeed W.; Sardar M. R.; Zolty R. Galectin-3 levels are elevated and predictive of mortality in pulmonary hypertension. Heart Lung Circ. 2017, 26 (11), 1208–1215. 10.1016/j.hlc.2016.12.012. PubMed DOI
Luo H.; Liu B.; Zhao L.; He J.; Li T.; Zha L.; Li X.; Qi Q.; Liu Y.; Yu Z. Galectin-3 mediates pulmonary vascular remodeling in hypoxia-induced pulmonary arterial hypertension. J. Am. Soc. Hypertens. 2017, 11 (10), 673–683.e3. 10.1016/j.jash.2017.07.009. PubMed DOI
He J.; Li X.; Luo H.; Li T.; Zhao L.; Qi Q.; Liu Y.; Yu Z. Galectin-3 mediates the pulmonary arterial hypertension-induced right ventricular remodeling through interacting with NADPH oxidase 4. J. Am. Soc. Hypertens. 2017, 11 (5), 275–289 e2. 10.1016/j.jash.2017.03.008. PubMed DOI
Li T.; Zha L.; Luo H.; Li S.; Zhao L.; He J.; Li X.; Qi Q.; Liu Y.; Yu Z. Galectin-3 mediates endothelial-to-mesenchymal transition in pulmonary arterial hypertension. Aging Dis. 2019, 10 (4), 731–745. 10.14336/AD.2018.1001. PubMed DOI PMC
Hao M.; Li M.; Li W. Galectin-3 inhibition ameliorates hypoxia-induced pulmonary artery hypertension. Mol. Med. Rep. 2017, 15 (1), 160–168. 10.3892/mmr.2016.6020. PubMed DOI PMC
Meijers W. C.; Lopez-Andres N.; de Boer R. A. Galectin-3, cardiac function, and fibrosis. Am. J. Pathol. 2016, 186 (8), 2232–2234. 10.1016/j.ajpath.2016.05.002. PubMed DOI
Bumba L.; Laaf D.; Spiwok V.; Elling L.; Křen V.; Bojarová P. Poly-N-acetyllactosamine neo-glycoproteins as nanomolar ligands of human galectin-3: binding kinetics and modeling. Int. J. Mol. Sci. 2018, 19 (2), 372.10.3390/ijms19020372. PubMed DOI PMC
Vrbata D.; Filipová M.; Tavares M. R.; Červený J.; Vlachová M.; Šírová M.; Pelantová H.; Petrásková L.; Bumba L.; Konefał R.; Etrych T.; Křen V.; Chytil P.; Bojarová P. Glycopolymers decorated with 3-O-substituted thiodigalactosides as potent multivalent inhibitors of galectin-3. J. Med. Chem. 2022, 65 (5), 3866–3878. 10.1021/acs.jmedchem.1c01625. PubMed DOI
Müllerová M.; Hovorková M.; Závodná T.; Št́astná L. C.; Krupková A.; Hamala V.; Nováková K.; Topinka J.; Bojarová P.; Strašák T. Lactose-functionalized carbosilane glycodendrimers are highly potent multivalent ligands for galectin-9 binding: increased glycan affinity to galectins correlates with aggregation behavior. Biomacromolecules 2023, 24 (11), 4705–4717. 10.1021/acs.biomac.3c00426. PubMed DOI PMC
Vašíček T.; Spiwok V.; Červený J.; Petrásková L.; Bumba L.; Vrbata D.; Pelantová H.; Křen V.; Bojarová P. Regioselective 3-O-substitution of unprotected thiodigalactosides: direct route to galectin inhibitors. Chem. -Eur. J. 2020, 26 (43), 9620–9631. 10.1002/chem.202002084. PubMed DOI
Filipová M.; Bojarová P.; Rodrigues Tavares M.; Bumba L.; Elling L.; Chytil P.; Gunár K.; Křen V.; Etrych T.; Janoušková O. Glycopolymers for efficient inhibition of galectin-3: in vitro proof of efficacy using suppression of T lymphocyte apoptosis and tumor cell migration. Biomacromolecules 2020, 21 (8), 3122–3133. 10.1021/acs.biomac.0c00515. PubMed DOI
Tavares M. R.; Bláhová M.; Sedláková L.; Elling L.; Pelantová H.; Konefał R.; Etrych T.; Křen V.; Bojarová P.; Chytil P. High-affinity N-(2-hydroxypropyl)methacrylamide copolymers with tailored N-acetyllactosamine presentation discriminate between galectins. Biomacromolecules 2020, 21 (2), 641–652. 10.1021/acs.biomac.9b01370. PubMed DOI
Hovorková M.; Červený J.; Bumba L.; Pelantová H.; Cvačka J.; Křen V.; Renaudet O.; Goyard D.; Bojarová P. Advanced high-affinity glycoconjugate ligands of galectins. Bioorg. Chem. 2023, 131, 106279.10.1016/j.bioorg.2022.106279. PubMed DOI
Heine V.; Hovorková M.; Vlachová M.; Filipová M.; Bumba L.; Janoušková O.; Hubálek M.; Cvačka J.; Petrásková L.; Pelantová H.; et al. Immunoprotective neo-glycoproteins: Chemoenzymatic synthesis of multivalent glycomimetics for inhibition of cancer-related galectin-3. Eur. J. Med. Chem. 2021, 220, 113500.10.1016/j.ejmech.2021.113500. PubMed DOI
Jana S.; Uchman M. Poly(2-oxazoline)-based stimulus-responsive (co)polymers: an overview of their design, solution properties, surface-chemistries and applications. Prog. Polym. Sci. 2020, 106, 101252.10.1016/j.progpolymsci.2020.101252. DOI
Boerman M. A.; Roozen E. A.; Franssen G. M.; Bender J. C. M. E.; Hoogenboom R.; Leeuwenburgh S. C. G.; Laverman P.; van Hest J. C. M.; van Goor H.; Lanao R. P. F. Degradation and excretion of poly(2-oxazoline) based hemostatic materials. Materialia 2020, 12, 100763.10.1016/j.mtla.2020.100763. DOI
Groborz O.; Kolouchová K.; Pankrác J.; Keša P.; Kadlec J.; Krunclová T.; Pierzynová A.; Šrámek J.; Hovořáková M.; Dalecká L.; et al. Pharmacokinetics of intramuscularly administered thermoresponsive polymers. Adv. Healthcare Mater. 2022, 11 (22), 2201344.10.1002/adhm.202201344. PubMed DOI PMC
Sedláček O.; de la Rosa V. R.; Hoogenboom R. Poly(2-oxazoline)-protein conjugates. Eur. Polym. J. 2019, 120, 109246.10.1016/j.eurpolymj.2019.109246. DOI
Xu X. W.; Jerca V. V.; Hoogenboom R. Bioinspired double network hydrogels: from covalent double network hydrogels via hybrid double network hydrogels to physical double network hydrogels. Mater. Horiz. 2021, 8 (4), 1173–1188. 10.1039/D0MH01514H. PubMed DOI
Humphries J.; Pizzi D.; Sonderegger S. E.; Fletcher N. L.; Houston Z. H.; Bell C. A.; Kempe K.; Thurecht K. J. Hyperbranched poly(2-oxazoline)s and poly(ethylene glycol): a structure-activity comparison of biodistribution. Biomacromolecules 2020, 21 (8), 3318–3331. 10.1021/acs.biomac.0c00765. PubMed DOI
Wyffels L.; Verbrugghen T.; Monnery B. D.; Glassner M.; Stroobants S.; Hoogenboom R.; Staelens S. μPET imaging of the pharmacokinetic behavior of medium and high molar mass Zr-labeled poly(2-ethyl-2-oxazoline) in comparison to poly(ethylene glycol). J. Controlled Release 2016, 235, 63–71. 10.1016/j.jconrel.2016.05.048. PubMed DOI
Rajput V. K.; Leffler H.; Nilsson U. J.; Mukhopadhyay B. Synthesis and evaluation of iminocoumaryl and coumaryl derivatized glycosides as galectin antagonists. Bioorg. Med. Chem. Lett. 2014, 24 (15), 3516–3520. 10.1016/j.bmcl.2014.05.063. PubMed DOI
Rajput V. K.; MacKinnon A.; Mandal S.; Collins P.; Blanchard H.; Leffler H.; Sethi T.; Schambye H.; Mukhopadhyay B.; Nilsson U. J. A selective galactose-coumarin-derived galectin-3 inhibitor demonstrates involvement of galectin-3-glycan interactions in a pulmonary fibrosis model. J. Med. Chem. 2016, 59 (17), 8141–8147. 10.1021/acs.jmedchem.6b00957. PubMed DOI
Vlachová M.; Tran V. N.; Červený J.; Dolníček F.; Petrásková L.; Pelantová H.; Kundrát O.; Cvačka J.; Bosáková Z.; Křen V.; et al. Galectin-targeting glycocalix[4]arenes can enter the cells. Chem. Commun. 2023, 59 (69), 10404–10407. 10.1039/D3CC02905K. PubMed DOI
Lu J.; Liang L. N.; Weck M. Micelle-based nanoreactors containing Ru-porphyrin for the epoxidation of terminal olefins in water. J. Mol. Catal. A: Chem. 2016, 417, 122–125. 10.1016/j.molcata.2016.02.033. DOI
Park J. S.; Kataoka K. Comprehensive and accurate control of thermosensitivity of poly(2-alkyl-2-oxazoline)s via well-defined gradient or random copolymerization. Macromolecules 2007, 40 (10), 3599–3609. 10.1021/ma0701181. DOI
Barman S. A.; Chen F.; Li X. Y.; Haigh S.; Stepp D. W.; Kondrikov D.; Mahboubi K.; Bordan Z.; Traber P.; Su Y. C.; Fulton D. J. R. Galectin-3 promotes vascular remodeling and contributes to pulmonary hypertension. Am. J. Resp. Crit. Care Med. 2018, 197 (11), 1488–1492. 10.1164/rccm.201711-2308LE. PubMed DOI PMC
Bauer M.; Lautenschlaeger C.; Kempe K.; Tauhardt L.; Schubert U. S.; Fischer D. Poly(2-ethyl-2-oxazoline) as alternative for the stealth polymer poly(ethylene glycol): comparison of in vitro cytotoxicity and hemocompatibility. Macromol. Biosci. 2012, 12 (7), 986–998. 10.1002/mabi.201200017. PubMed DOI
Bauer M.; Schroeder S.; Tauhardt L.; Kempe K.; Schubert U. S.; Fischer D. In vitro hemocompatibility and cytotoxicity study of poly(2-methyl-2-oxazoline) for biomedical applications. J. Polym. Sci. A Polym. Chem. 2013, 51 (8), 1816–1821. 10.1002/pola.26564. DOI
Hoogenboom R.; Fijten M. W. M.; Thijs H. M. L.; Van Lankvelt B. M.; Schubert U. S. Microwave-assisted synthesis and properties of a series of poly(2-alkyl-2-oxazoline)s. Des. Monomers Polym. 2005, 8 (6), 659–671. 10.1163/156855505774597704. DOI
Hanna A.; Humeres C.; Frangogiannis N. G. The role of Smad signaling cascades in cardiac fibrosis. Cell. Signal 2021, 77, 109826.10.1016/j.cellsig.2020.109826. PubMed DOI PMC
Tielemans B.; Delcroix M.; Belge C.; Quarck R. TGF and BMPRII signalling pathways in the pathogenesis of pulmonary arterial hypertension. Drug Discovery Today 2019, 24 (3), 703–716. 10.1016/j.drudis.2018.12.001. PubMed DOI
Zhang R. S.; Qin X. F.; Kong F. D.; Chen P. W.; Pan G. J. Improving cellular uptake of therapeutic entities through interaction with components of cell membrane. Drug Delivery 2019, 26 (1), 328–342. 10.1080/10717544.2019.1582730. PubMed DOI PMC
Sedláček O.; Monnery B. D.; Mattová J.; Kučka J.; Pánek J.; Janoušková O.; Hocherl A.; Verbraeken B.; Vergaelen M.; Zadinova M.; Hoogenboom R.; Hruby M. Poly(2-ethyl-2-oxazoline) conjugates with doxorubicin for cancer therapy: and evaluation and direct comparison to poly[N-(2-hydroxypropyl)methacrylamide] analogues. Biomaterials 2017, 146, 1–12. 10.1016/j.biomaterials.2017.09.003. PubMed DOI
Cao X.; Du X. J.; Jiao H.; An Q. L.; Chen R. X.; Fang P. F.; Wang J.; Yu B. Carbohydrate-based drugs launched during 2000–2021. Acta Pharm. Sin. B 2022, 12 (10), 3783–3821. 10.1016/j.apsb.2022.05.020. PubMed DOI PMC
Hirani N.; MacKinnon A. C.; Nicol L.; Ford P.; Schambye H.; Pedersen A.; Nilsson U. J.; Leffler H.; Sethi T.; Tantawi S.; et al. Target inhibition of galectin-3 by inhaled TD139 in patients with idiopathic pulmonary fibrosis. Eur. Respir. J. 2021, 57 (5), 2002559.10.1183/13993003.02559-2020. PubMed DOI PMC
Knop K.; Hoogenboom R.; Fischer D.; Schubert U. S. Poly(ethylene glycol) in drug delivery: pros and cons as well as potential alternatives. Angew. Chem., Int. Ed. 2010, 49 (36), 6288–6308. 10.1002/anie.200902672. PubMed DOI
Park E. I.; Manzella S. M.; Baenziger J. U. Rapid clearance of sialylated glycoproteins by the asialoglycoprotein receptor. J. Biol. Chem. 2003, 278 (7), 4597–4602. 10.1074/jbc.M210612200. PubMed DOI
Nelemans L. C.; Gurevich L. Drug delivery with polymeric nanocarriers-cellular uptake mechanisms. Materials 2020, 13 (2), 366.10.3390/ma13020366. PubMed DOI PMC
Konvalinková D.; Dolníček F.; Hovorková M.; Červený J.; Kundrát O.; Pelantová H.; Petrásková L.; Cvačka J.; Faizulina M.; Varghese B.; et al. Glycocalix[4]arenes and their affinity to a library of galectins: the linker matters. Org. Biomol. Chem. 2023, 21 (6), 1294–1302. 10.1039/D2OB02235D. PubMed DOI
Floreková L.; Flasík R.; Stankovičová H.; Gáplovský A. Efficient Synthesis of 3-methyl-2H-chromen-2-one: classic versus microwave conditions. Synth. Commun. 2011, 41 (10), 1514–1519. 10.1080/00397911.2010.487174. DOI
Kolář F.; Ježková J.; Balková P.; Břeh J.; Neckář J.; Novák F.; Nováková O.; Tomášová H.; Srbová M.; Ošt’ádal B.; et al. Role of oxidative stress in PKC-delta upregulation and cardioprotection induced by chronic intermittent hypoxia. Am. J. Physiol. Heart Circ. Physiol. 2007, 292 (1), H224–230. 10.1152/ajpheart.00689.2006. PubMed DOI
Bačáková L.; Pellicciari C.; Bottone M. G.; Lisá V.; Mareš V. A sex-related difference in the hypertrophic versus hyperplastic response of vascular smooth muscle cells to repeated passaging in culture. Histol. Histopathol. 2001, 16 (3), 675–684. 10.14670/HH-16.675. PubMed DOI