Pharmacokinetics of Intramuscularly Administered Thermoresponsive Polymers

. 2022 Nov ; 11 (22) : e2201344. [epub] 20221107

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36153823

Aqueous solutions of some polymers exhibit a lower critical solution temperature (LCST); that is, they form phase-separated aggregates when heated above a threshold temperature. Such polymers found many promising (bio)medical applications, including in situ thermogelling with controlled drug release, polymer-supported radiotherapy (brachytherapy), immunotherapy, and wound dressing, among others. Yet, despite the extensive research on medicinal applications of thermoresponsive polymers, their biodistribution and fate after administration remained unknown. Thus, herein, they studied the pharmacokinetics of four different thermoresponsive polyacrylamides after intramuscular administration in mice. In vivo, these thermoresponsive polymers formed depots that subsequently dissolved with a two-phase kinetics (depot maturation, slow redissolution) with half-lives 2 weeks to 5 months, as depot vitrification prolonged their half-lives. Additionally, the decrease of TCP of a polymer solution increased the density of the intramuscular depot. Moreover, they detected secondary polymer depots in the kidneys and liver; these secondary depots also followed two-phase kinetics (depot maturation and slow dissolution), with half-lives 8 to 38 days (kidneys) and 15 to 22 days (liver). Overall, these findings may be used to tailor the properties of thermoresponsive polymers to meet the demands of their medicinal applications. Their methods may become a benchmark for future studies of polymer biodistribution.

Zobrazit více v PubMed

Aseyev V., Tenhu H., Winnik F. M., in Self Organized Nanostructures of Amphiphilic Block Copolymers II, (Eds: Müller A. H. E., Borisov O.), Springer, Berlin, Heidelberg: 2010, vol. 242, p. 29.

Mano J. F., Adv. Eng. Mater. 2008, 10, 515.

Chung J. E., Yokoyama M., Aoyagi T., Sakurai Y., Okano T., J. Controlled Release 1998, 53, 119. PubMed

Ward M. A., Georgiou T. K., Polymers 2011, 3, 1215.

Schmaljohann D., Adv. Drug Delivery Rev. 2006, 58, 1655. PubMed

Takezawa T., Mori Y., Yoshizato K., Nat. Biotechnol. 1990, 8, 854. PubMed

Tang Y., Oak M., Mandke R., Layek B., Sharma G., Singh J., in Active Implants and Scaffolds for Tissue Regeneration, (Ed: Zilberman M.), Springer, Berlin, Heidelberg: 2011, pp. 457–479.

Cally O., Young D. J., Loh X. J. C., in Biodegradable Thermogels, Royal Society of Chemistry, Cambridge, United Kingrom: 2018, pp 1–22.

Ruel‐Gariépy E., Leroux J.‐C., Eur. J. Pharm. Biopharm. 2004, 58, 409. PubMed

Kopeček J., Biomaterials 2007, 28, 5185. PubMed PMC

Zhu J., Marchant R. E., Expert Rev. Med. Devices 2011, 8, 607. PubMed PMC

Kolouchova K., Jirak D., Groborz O., Sedlacek O., Ziolkowska N., Vit M., Sticova E., Galisova A., Svec P., Trousil J., Hajek M., Hruby M., J. Controlled Release 2020, 327, 50. PubMed

Hruby M., Kucka J., Lebeda O., Mackova H., Babic M., Konak C., Studenovsky M., Sikora A., Kozempel J., Ulbrich K., J. Controlled Release 2007, 119, 25. PubMed

Šácha P., Knedlík T., Schimer J., Tykvart J., Parolek J., Navrátil V., Dvořáková P., Sedlák F., Ulbrich K., Strohalm J., Majer P., Šubr V.­R., Konvalinka J., Angew. Chem., Int. Ed. 2016, 55, 2356. PubMed PMC

Sung Y. K., Kim S. W., Biomater. Res. 2020, 24, 12. PubMed PMC

Lan M., Zhao S., Liu W., Lee C. S., Zhang W., Wang P., Adv. Healthcare Mater. 2019, 8, 1900132. PubMed

Loukotová L., Kučka J., Rabyk M., Höcherl A., Venclíková K., Janoušková O., Páral P., Kolářová V., Heizer T., Šefc L., Štěpánek P., Hrubý M., J. Controlled Release 2017, 268, 78. PubMed

Pacifici N., Bolandparvaz A., Lewis J. S., Adv. Ther. 2020, 3, 2000129. PubMed PMC

Chen C.‐H., Chen S.‐H., Mao S.‐H., Tsai M.‐J., Chou P.‐Y., Liao C.‐H., Chen J.‐P., Carbohydr. Polym. 2017, 173, 721. PubMed

Wu D.‐Q., Zhu J., Han H., Zhang J.‐Z., Wu F.‐F., Qin X.‐H., Yu J.‐Y., Acta Biomater. 2018, 65, 305. PubMed

Elloumi‐Hannachi I., Yamato M., Okano T., J. Intern. Med. 2010, 267, 54. PubMed

Ekerdt B. L., Fuentes C. M., Lei Y., Adil M. M., Ramasubramanian A., Segalman R. A., Schaffer D. V., Adv. Healthcare Mater. 2018, 7, 1800225. PubMed PMC

Doberenz F., Zeng K., Willems C., Zhang K., Groth T., J. Mater. Chem. B 2020, 8, 607. PubMed

Van Vlierberghe S., Dubruel P., Schacht E., Biomacromolecules 2011, 12, 1387. PubMed

Scoccimarro E., Young D. J., Loh X. J., in Biodegradable Thermogels, Royal Society of Chemistry, Cambridge, United Kingrom: 2018, Vol. 5, pp. 87–101.

Talebian S., Mehrali M., Taebnia N., Pennisi C. P., Kadumudi F. B., Foroughi J., Hasany M., Nikkhah M., Akbari M., Orive G., Dolatshahiâ Pirouz A., Adv. Sci. 2019, 6, 1801664. PubMed PMC

Liechty W. B., Kryscio D. R., Slaughter B. V., Peppas N. A., Annu. Rev. Chem. Biomol. Eng. 2010, 1, 149. PubMed PMC

Kim Y. J., Choi S., Koh J. J., Lee M., Ko K. S., Kim S. W., Pharm. Res. 2001, 18, 548. PubMed

Chen S., Pederson D., Oak M., Singh J., J. Pharm. Sci. 2010, 99, 3381. PubMed PMC

Zentner G. M., Rathi R., Shih C., Mcrea J. C., Seo M.‐H., Oh H., Rhee B. G, Mestecky J., Moldoveanu Z., Morgan M., Weitman S., J. Controlled Release 2001, 72, 203. PubMed

Clinical studies of ReGel/OncoGel (copolymer of poly(lactide‐co‐glycolide) and poly(ethylene glycol)) showed that injectable thermogelling can provide high local concentrations of drugs (e.g., paclitaxel) while avoiding their systemic applications, decreasing the side effects of therapy.[ 35 , 36 ] Nevertheless, such an approach is ill‐suited for cancer therapy: single‐agent chemotherapy is obsolete for its low therapeutic efficacy.[ 84 , 85 ] Thus, clinical trials of ReGel/OncoGel in oncology were discontinued for their low treatment efficacy, but injectable thermogelling systems may be still used in other therapies aimed at prolonged drug release, e.g. local or systemic hormonal therapy.[ 7 ]

Tyler B., Fowers K. D., Li K. W., Recinos V. R., Caplan J. M., Hdeib A., Grossman R., Basaldella L., Bekelis K., Pradilla G., Legnani F., Brem H., JNS 2010, 113, 210. PubMed

Elstad N. L., Fowers K. D., Adv. Drug Delivery Rev. 2009, 61, 785. PubMed

Vukelja S. J., Anthony S. P., Arseneau J. C., Berman B. S., Casey Cunningham C., Nemunaitis J. J., Samlowski W. E., Fowers K. D., Anti‐Cancer Drugs 2007, 18, 283. PubMed

Aaron DuVall G., Tarabar D., Seidel R. H., Elstad N. L., Fowers K. D., Anti‐Cancer Drugs 2009, 20, 89. PubMed

Prasad A., Young D. J., Loh X. J., in Biodegradable Thermogels, Royal Society of Chemistry, Cambridge, United Kingrom: 2018, Vol. 8, pp. 133–144.

Kučka J., Hrubý M., Lebeda O., Appl. Radiat. Isot. 2010, 68, 1073. PubMed

Bertrand N., Fleischer J. G., Wasan K. M., Leroux J.‐C., Biomaterials 2009, 30, 2598. PubMed

Srinivas M., Heerschap A., Ahrens E. T., Figdor C. G., Vries I. J. M., Trends Biotechnol. 2010, 28, 363. PubMed PMC

Tirotta I., Dichiarante V., Pigliacelli C., Cavallo G., Terraneo G., Bombelli F. B., Metrangolo P., Resnati G., Chem. Rev. 2015, 115, 1106. PubMed

Rao J., Dragulescu‐Andrasi A., Yao H., Curr. Opin. Biotechnol. 2007, 18, 17. PubMed

Attia A. B. E., Balasundaram G., Moothanchery M., Dinish U. S., Bi R., Ntziachristos V., Olivo M., Photoacoustics 2019, 16, 100144. PubMed PMC

Kolouchová K., Lobaz V., Beneš H., De La Rosa V. R., Babuka D., Švec P., Černoch P., Hrubý M., Hoogenboom R., Petr Štěpánek P., Groborz O., Polym. Chem. 2021, 12, 5077.

Qiu X.‐P., Winnik F. M., Macromol. Rapid Commun. 2006, 27, 1648.

Use of International Standard ISO 10993‐1, ‘Biological evaluation of medical devices – Part 1: Evaluation and testing within a risk management process’ – Guidance for Industry and Food and Drug Administration Staff. 2020.

Nasongkla N., Chen B., Macaraeg N., Fox M. E., Frã©Chet J. M. J., Szoka F. C., J. Am. Chem. Soc. 2009, 131, 3842. PubMed PMC

Loukotová L., Švec P., Groborz O., Heizer T., Beneš H., Raabová H., Bělinová T., Herynek V.­T., Hrubý M., Macromolecules 2021, 54, 8182.

Luxenhofer R., Sahay G., Schulz A., Alakhova D., Bronich T. K., Jordan R., Kabanov A. V., J. Controlled Release 2011, 153, 73. PubMed PMC

Bak J. M., Lee H., J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 1976.

Halperin A., Kröger M., Winnik F. M., Angew. Chem., Int. Ed. 2015, 54, 15342. PubMed

Wyffels L., Verbrugghen T., Monnery B. D., Glassner M., Stroobants S., Hoogenboom R., Staelens S., J. Controlled Release 2016, 235, 63. PubMed

Liu J., Yu M., Zhou C., Zheng J., Mater. Today 2013, 16, 477.

Fox M. E., Szoka F. C., Fréchet J. M. J., Acc. Chem. Res. 2009, 42, 1141. PubMed PMC

Naha P. C., Bhattacharya K., Tenuta T., Dawson K. A., Lynch I., Gracia A., Lyng F. M., Byrne H. J., Toxicol. Lett. 2010, 198, 134. PubMed

Akimoto J., Nakayama M., Sakai K., Okano T., Biomacromolecules 2009, 10, 1331. PubMed

Nakayama M., Chung J. E., Miyazaki T., Yokoyama M., Sakai K., Okano T., React. Funct. Polym. 2007, 67, 1398.

Swanson J. A., Yoshida S. M., Encyclopedia of Cell Biology, (Eds: Bradshaw R. A., Stahl P. D.), Academic Press, Waltham, MA: 2016, pp. 758–765.

Keller S., Berghoff K., Kress H., Sci. Rep. 2017, 7, 17068. PubMed PMC

Sakhtianchi R., Minchin R. F., Lee K.‐B., Alkilany A. M., Serpooshan V., Mahmoudi M., Adv. Colloid Interface Sci. 2013, 201–202, 18. PubMed

Sharma A., Vaghasiya K., Ray E., Verma R. K., J. Drug Targeting 2018, 26, 208. PubMed

Torchilin V. P. M., Nat. Rev. Drug Discovery 2014, 13, 813. PubMed PMC

T CP of pDFEA (particularly F2) is close to body temperature. Although the T CP of pDFEA (particularly F2) at high polymer concentrations is lower than body temperature, its T CP at low concentrations is higher than body temperature (Table S1 and Figure S2, Supporting Information). As a result, F2 initially aggregates after administration, but as this polymer dilutes and its T CP increases, F2 re‐dissolves and diffuses into the muscles, forming large depots (further discussed in ref. 83). Nevertheless, intracellular biodistributions of pDFEA resemble those of pNIPAM and pDEA, suggesting that pDFEA is localized in cells in its aggregated state.

Seymour L. W., Duncan R., Strohalm J., Kopeček J., J. Biomed. Mater. 1987, 21, 1341. PubMed

Haute D. V., Berlin J. M., Ther. Delivery 2017, 8, 763. PubMed PMC

Zhang Y.‐N., Poon W., Tavares A. J., McGilvray I. D., Chan W. C. W., J. Controlled Release 2016, 240, 332. PubMed

Longmire M., Choyke P. L., Kobayashi H., Nanomedicine 2008, 3, 703. PubMed PMC

Schreiner G. F., JASN 1992, 2, S74. PubMed

Mauer S. M., Fish A. J., Blau E. B., Michael A. F., J. Clin. Invest. 1972, 51, 1092. PubMed PMC

Schlöndorff D., Kidney Int. 1996, 49, 1583. PubMed

Schlöndorff D., Banas B., JASN 2009, 20, 1179. PubMed

Interestingly, apart from kidney and liver, we did not detect any major signal in any other organ. Kidney and liver are among the most blood‐perfused organs,[ 86 ] each accounting for ca. 40% or 20% blood flow in BALB/c mice, respectively. Furthermore, these organs also contain cells with pronounced phagocytic activity. Other organs usually lack these phagocytic cells (e.g., intestines or brain) or are too shielded (e.g., brain) or diffuse to produce a noticeable signal (e.g., lungs).

Small spheres of localized signal (e.g., in I2 at 5 h) can be ascribed to droplets of urine on the fur of the mouse.

Van Durme K., Van Assche G., Van Mele B., Macromolecules 2004, 37, 9596.

Zhao J., Hoogenboom R., Van Assche G., Van Mele B., Macromolecules 2010, 43, 6853.

Aleksandrova R., Philipp M., Müller U., Riobóo R. J., Ostermeyer M., Sanctuary R., Müller‐Buschbaum P., Krüger J. K., Langmuir 2014, 30, 11792. PubMed

Shortly after administration, the urine and stool of our mice were strongly fluorescent, further confirming that the polymers are excreted via kidneys and liver.

Sadauskas E., Wallin H., Stoltenberg M., Vogel U., Doering P., Larsen A., Danscher G., Part. Fibre Toxicol. 2007, 4, 10. PubMed PMC

Crofton R., Diesselhoff‐Den Dulk M., Furth R., J. Exp. Med. 1978, 148, 1. PubMed PMC

Pabst R., Sterzel R. B., Kidney Int. 1983, 24, 626. PubMed

Yamaoka T., Tabata Y., Ikada Y., J. Pharm. Sci. 1995, 84, 349. PubMed

Yamaoka T., Tabata Y., Ikada Y., Drug Delivery 1993, 1, 75.

Glassner M., Palmieri L., Monnery B. D., Verbrugghen T., Deleye S., Stroobants S., Staelens S., Wyffels L., Hoogenboom R., Biomacromolecules 2017, 18, 96. PubMed

The T CP should be measured at a specific polymer concentration (e.g., 1.25 mg mL−1), because T CP increases with decreasing polymer concentration (Figure S2, Supporting Information).[ 1 , 43 ] Therefore, when concentrated polymer solution is first administered, the polymer may initially aggregate, however, as polymer concentration decreased (due to its cellular uptake and its dissolution into bloodstream), its T CP at some point exceeds the body temperature and polymer aggregates re‐dissolve. This re‐dissolved polymer can subsequently freely diffuse through the muscle increasing volume of IM depot. If this re‐dissolution occurs at relatively high polymer concentrations (as seen in F2, Figure S2, Supporting Information) the polymers form diffuse IM depots (Figure 2). On the contrary, if the polymer re‐dissolution occurs only at low polymer concentration, the density of IM depot will be affected only negligibly. Thus, while the T CP of polymer solutions at high polymer concentration determines its initial aggregation, the T CP at low polymer concentrations (e.g., 1.25 mg mL−1) determines the depot diffuseness. Moreover, T CP in should be measured in biologically relevant fluids, such as serum (see ref. 87).

Corrie P. G., Medicine 2008, 36, 24.

Carrick S., Parker S., Thornton C. E., Ghersi D., Simes J., Wilcken N., Cochrane Database Syst. Rev. 2009, 2009, CD003372. PubMed

Gjedde S. B., Gjeode A., Comp. Biochem. Physiol., Part A: Mol. Integr. Physiol. 1980, 67, 671.

We have previously demonstrated that polymer's T CP in serum can be significantly lower/higher than that seen in water.[ 43 ] As a result, when designing polymers for biomedical applications, the polymer's T CP should be assessed in as relevant media as possible (e.g., serum).

Groborz O., Pharmacokinetics of Intramuscularly Administered Thermoresponsive Polyacrylamides. (Department of Organic Chemistry, Faculty of Science, Charles University, Prague, Czech Republic: 2021.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...