Pharmacokinetics of Intramuscularly Administered Thermoresponsive Polymers
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36153823
PubMed Central
PMC11468617
DOI
10.1002/adhm.202201344
Knihovny.cz E-zdroje
- Klíčová slova
- LCST, biodistribution, poly(2,2-difluoroethyl)acrylamide, poly(N,N-diethylacrylamide), poly(N-acryloylpyrolidine), poly(N-isopropylacrylamide), polyacrylamide, rational polymer design,
- MeSH
- myši MeSH
- polymery * MeSH
- teplota MeSH
- tkáňová distribuce MeSH
- uvolňování léčiv MeSH
- voda * MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- polymery * MeSH
- voda * MeSH
Aqueous solutions of some polymers exhibit a lower critical solution temperature (LCST); that is, they form phase-separated aggregates when heated above a threshold temperature. Such polymers found many promising (bio)medical applications, including in situ thermogelling with controlled drug release, polymer-supported radiotherapy (brachytherapy), immunotherapy, and wound dressing, among others. Yet, despite the extensive research on medicinal applications of thermoresponsive polymers, their biodistribution and fate after administration remained unknown. Thus, herein, they studied the pharmacokinetics of four different thermoresponsive polyacrylamides after intramuscular administration in mice. In vivo, these thermoresponsive polymers formed depots that subsequently dissolved with a two-phase kinetics (depot maturation, slow redissolution) with half-lives 2 weeks to 5 months, as depot vitrification prolonged their half-lives. Additionally, the decrease of TCP of a polymer solution increased the density of the intramuscular depot. Moreover, they detected secondary polymer depots in the kidneys and liver; these secondary depots also followed two-phase kinetics (depot maturation and slow dissolution), with half-lives 8 to 38 days (kidneys) and 15 to 22 days (liver). Overall, these findings may be used to tailor the properties of thermoresponsive polymers to meet the demands of their medicinal applications. Their methods may become a benchmark for future studies of polymer biodistribution.
FUJIFILM VisualSonics Inc Joop Geesinkweg 140 1114 AB Amsterdam The Netherlands
Weizmann Institute of Science Department of Brain Sciences Rehovot 7610001 Israel
Zobrazit více v PubMed
Aseyev V., Tenhu H., Winnik F. M., in Self Organized Nanostructures of Amphiphilic Block Copolymers II, (Eds: Müller A. H. E., Borisov O.), Springer, Berlin, Heidelberg: 2010, vol. 242, p. 29.
Mano J. F., Adv. Eng. Mater. 2008, 10, 515.
Chung J. E., Yokoyama M., Aoyagi T., Sakurai Y., Okano T., J. Controlled Release 1998, 53, 119. PubMed
Ward M. A., Georgiou T. K., Polymers 2011, 3, 1215.
Schmaljohann D., Adv. Drug Delivery Rev. 2006, 58, 1655. PubMed
Takezawa T., Mori Y., Yoshizato K., Nat. Biotechnol. 1990, 8, 854. PubMed
Tang Y., Oak M., Mandke R., Layek B., Sharma G., Singh J., in Active Implants and Scaffolds for Tissue Regeneration, (Ed: Zilberman M.), Springer, Berlin, Heidelberg: 2011, pp. 457–479.
Cally O., Young D. J., Loh X. J. C., in Biodegradable Thermogels, Royal Society of Chemistry, Cambridge, United Kingrom: 2018, pp 1–22.
Ruel‐Gariépy E., Leroux J.‐C., Eur. J. Pharm. Biopharm. 2004, 58, 409. PubMed
Kopeček J., Biomaterials 2007, 28, 5185. PubMed PMC
Zhu J., Marchant R. E., Expert Rev. Med. Devices 2011, 8, 607. PubMed PMC
Kolouchova K., Jirak D., Groborz O., Sedlacek O., Ziolkowska N., Vit M., Sticova E., Galisova A., Svec P., Trousil J., Hajek M., Hruby M., J. Controlled Release 2020, 327, 50. PubMed
Hruby M., Kucka J., Lebeda O., Mackova H., Babic M., Konak C., Studenovsky M., Sikora A., Kozempel J., Ulbrich K., J. Controlled Release 2007, 119, 25. PubMed
Šácha P., Knedlík T., Schimer J., Tykvart J., Parolek J., Navrátil V., Dvořáková P., Sedlák F., Ulbrich K., Strohalm J., Majer P., Šubr V.R., Konvalinka J., Angew. Chem., Int. Ed. 2016, 55, 2356. PubMed PMC
Sung Y. K., Kim S. W., Biomater. Res. 2020, 24, 12. PubMed PMC
Lan M., Zhao S., Liu W., Lee C. S., Zhang W., Wang P., Adv. Healthcare Mater. 2019, 8, 1900132. PubMed
Loukotová L., Kučka J., Rabyk M., Höcherl A., Venclíková K., Janoušková O., Páral P., Kolářová V., Heizer T., Šefc L., Štěpánek P., Hrubý M., J. Controlled Release 2017, 268, 78. PubMed
Pacifici N., Bolandparvaz A., Lewis J. S., Adv. Ther. 2020, 3, 2000129. PubMed PMC
Chen C.‐H., Chen S.‐H., Mao S.‐H., Tsai M.‐J., Chou P.‐Y., Liao C.‐H., Chen J.‐P., Carbohydr. Polym. 2017, 173, 721. PubMed
Wu D.‐Q., Zhu J., Han H., Zhang J.‐Z., Wu F.‐F., Qin X.‐H., Yu J.‐Y., Acta Biomater. 2018, 65, 305. PubMed
Elloumi‐Hannachi I., Yamato M., Okano T., J. Intern. Med. 2010, 267, 54. PubMed
Ekerdt B. L., Fuentes C. M., Lei Y., Adil M. M., Ramasubramanian A., Segalman R. A., Schaffer D. V., Adv. Healthcare Mater. 2018, 7, 1800225. PubMed PMC
Doberenz F., Zeng K., Willems C., Zhang K., Groth T., J. Mater. Chem. B 2020, 8, 607. PubMed
Van Vlierberghe S., Dubruel P., Schacht E., Biomacromolecules 2011, 12, 1387. PubMed
Scoccimarro E., Young D. J., Loh X. J., in Biodegradable Thermogels, Royal Society of Chemistry, Cambridge, United Kingrom: 2018, Vol. 5, pp. 87–101.
Talebian S., Mehrali M., Taebnia N., Pennisi C. P., Kadumudi F. B., Foroughi J., Hasany M., Nikkhah M., Akbari M., Orive G., Dolatshahiâ Pirouz A., Adv. Sci. 2019, 6, 1801664. PubMed PMC
Liechty W. B., Kryscio D. R., Slaughter B. V., Peppas N. A., Annu. Rev. Chem. Biomol. Eng. 2010, 1, 149. PubMed PMC
Kim Y. J., Choi S., Koh J. J., Lee M., Ko K. S., Kim S. W., Pharm. Res. 2001, 18, 548. PubMed
Chen S., Pederson D., Oak M., Singh J., J. Pharm. Sci. 2010, 99, 3381. PubMed PMC
Zentner G. M., Rathi R., Shih C., Mcrea J. C., Seo M.‐H., Oh H., Rhee B. G, Mestecky J., Moldoveanu Z., Morgan M., Weitman S., J. Controlled Release 2001, 72, 203. PubMed
Clinical studies of ReGel/OncoGel (copolymer of poly(lactide‐co‐glycolide) and poly(ethylene glycol)) showed that injectable thermogelling can provide high local concentrations of drugs (e.g., paclitaxel) while avoiding their systemic applications, decreasing the side effects of therapy.[ 35 , 36 ] Nevertheless, such an approach is ill‐suited for cancer therapy: single‐agent chemotherapy is obsolete for its low therapeutic efficacy.[ 84 , 85 ] Thus, clinical trials of ReGel/OncoGel in oncology were discontinued for their low treatment efficacy, but injectable thermogelling systems may be still used in other therapies aimed at prolonged drug release, e.g. local or systemic hormonal therapy.[ 7 ]
Tyler B., Fowers K. D., Li K. W., Recinos V. R., Caplan J. M., Hdeib A., Grossman R., Basaldella L., Bekelis K., Pradilla G., Legnani F., Brem H., JNS 2010, 113, 210. PubMed
Elstad N. L., Fowers K. D., Adv. Drug Delivery Rev. 2009, 61, 785. PubMed
Vukelja S. J., Anthony S. P., Arseneau J. C., Berman B. S., Casey Cunningham C., Nemunaitis J. J., Samlowski W. E., Fowers K. D., Anti‐Cancer Drugs 2007, 18, 283. PubMed
Aaron DuVall G., Tarabar D., Seidel R. H., Elstad N. L., Fowers K. D., Anti‐Cancer Drugs 2009, 20, 89. PubMed
Prasad A., Young D. J., Loh X. J., in Biodegradable Thermogels, Royal Society of Chemistry, Cambridge, United Kingrom: 2018, Vol. 8, pp. 133–144.
Kučka J., Hrubý M., Lebeda O., Appl. Radiat. Isot. 2010, 68, 1073. PubMed
Bertrand N., Fleischer J. G., Wasan K. M., Leroux J.‐C., Biomaterials 2009, 30, 2598. PubMed
Srinivas M., Heerschap A., Ahrens E. T., Figdor C. G., Vries I. J. M., Trends Biotechnol. 2010, 28, 363. PubMed PMC
Tirotta I., Dichiarante V., Pigliacelli C., Cavallo G., Terraneo G., Bombelli F. B., Metrangolo P., Resnati G., Chem. Rev. 2015, 115, 1106. PubMed
Rao J., Dragulescu‐Andrasi A., Yao H., Curr. Opin. Biotechnol. 2007, 18, 17. PubMed
Attia A. B. E., Balasundaram G., Moothanchery M., Dinish U. S., Bi R., Ntziachristos V., Olivo M., Photoacoustics 2019, 16, 100144. PubMed PMC
Kolouchová K., Lobaz V., Beneš H., De La Rosa V. R., Babuka D., Švec P., Černoch P., Hrubý M., Hoogenboom R., Petr Štěpánek P., Groborz O., Polym. Chem. 2021, 12, 5077.
Qiu X.‐P., Winnik F. M., Macromol. Rapid Commun. 2006, 27, 1648.
Use of International Standard ISO 10993‐1, ‘Biological evaluation of medical devices – Part 1: Evaluation and testing within a risk management process’ – Guidance for Industry and Food and Drug Administration Staff. 2020.
Nasongkla N., Chen B., Macaraeg N., Fox M. E., Frã©Chet J. M. J., Szoka F. C., J. Am. Chem. Soc. 2009, 131, 3842. PubMed PMC
Loukotová L., Švec P., Groborz O., Heizer T., Beneš H., Raabová H., Bělinová T., Herynek V.T., Hrubý M., Macromolecules 2021, 54, 8182.
Luxenhofer R., Sahay G., Schulz A., Alakhova D., Bronich T. K., Jordan R., Kabanov A. V., J. Controlled Release 2011, 153, 73. PubMed PMC
Bak J. M., Lee H., J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 1976.
Halperin A., Kröger M., Winnik F. M., Angew. Chem., Int. Ed. 2015, 54, 15342. PubMed
Wyffels L., Verbrugghen T., Monnery B. D., Glassner M., Stroobants S., Hoogenboom R., Staelens S., J. Controlled Release 2016, 235, 63. PubMed
Liu J., Yu M., Zhou C., Zheng J., Mater. Today 2013, 16, 477.
Fox M. E., Szoka F. C., Fréchet J. M. J., Acc. Chem. Res. 2009, 42, 1141. PubMed PMC
Naha P. C., Bhattacharya K., Tenuta T., Dawson K. A., Lynch I., Gracia A., Lyng F. M., Byrne H. J., Toxicol. Lett. 2010, 198, 134. PubMed
Akimoto J., Nakayama M., Sakai K., Okano T., Biomacromolecules 2009, 10, 1331. PubMed
Nakayama M., Chung J. E., Miyazaki T., Yokoyama M., Sakai K., Okano T., React. Funct. Polym. 2007, 67, 1398.
Swanson J. A., Yoshida S. M., Encyclopedia of Cell Biology, (Eds: Bradshaw R. A., Stahl P. D.), Academic Press, Waltham, MA: 2016, pp. 758–765.
Keller S., Berghoff K., Kress H., Sci. Rep. 2017, 7, 17068. PubMed PMC
Sakhtianchi R., Minchin R. F., Lee K.‐B., Alkilany A. M., Serpooshan V., Mahmoudi M., Adv. Colloid Interface Sci. 2013, 201–202, 18. PubMed
Sharma A., Vaghasiya K., Ray E., Verma R. K., J. Drug Targeting 2018, 26, 208. PubMed
Torchilin V. P. M., Nat. Rev. Drug Discovery 2014, 13, 813. PubMed PMC
T CP of pDFEA (particularly F2) is close to body temperature. Although the T CP of pDFEA (particularly F2) at high polymer concentrations is lower than body temperature, its T CP at low concentrations is higher than body temperature (Table S1 and Figure S2, Supporting Information). As a result, F2 initially aggregates after administration, but as this polymer dilutes and its T CP increases, F2 re‐dissolves and diffuses into the muscles, forming large depots (further discussed in ref. 83). Nevertheless, intracellular biodistributions of pDFEA resemble those of pNIPAM and pDEA, suggesting that pDFEA is localized in cells in its aggregated state.
Seymour L. W., Duncan R., Strohalm J., Kopeček J., J. Biomed. Mater. 1987, 21, 1341. PubMed
Haute D. V., Berlin J. M., Ther. Delivery 2017, 8, 763. PubMed PMC
Zhang Y.‐N., Poon W., Tavares A. J., McGilvray I. D., Chan W. C. W., J. Controlled Release 2016, 240, 332. PubMed
Longmire M., Choyke P. L., Kobayashi H., Nanomedicine 2008, 3, 703. PubMed PMC
Schreiner G. F., JASN 1992, 2, S74. PubMed
Mauer S. M., Fish A. J., Blau E. B., Michael A. F., J. Clin. Invest. 1972, 51, 1092. PubMed PMC
Schlöndorff D., Kidney Int. 1996, 49, 1583. PubMed
Schlöndorff D., Banas B., JASN 2009, 20, 1179. PubMed
Interestingly, apart from kidney and liver, we did not detect any major signal in any other organ. Kidney and liver are among the most blood‐perfused organs,[ 86 ] each accounting for ca. 40% or 20% blood flow in BALB/c mice, respectively. Furthermore, these organs also contain cells with pronounced phagocytic activity. Other organs usually lack these phagocytic cells (e.g., intestines or brain) or are too shielded (e.g., brain) or diffuse to produce a noticeable signal (e.g., lungs).
Small spheres of localized signal (e.g., in I2 at 5 h) can be ascribed to droplets of urine on the fur of the mouse.
Van Durme K., Van Assche G., Van Mele B., Macromolecules 2004, 37, 9596.
Zhao J., Hoogenboom R., Van Assche G., Van Mele B., Macromolecules 2010, 43, 6853.
Aleksandrova R., Philipp M., Müller U., Riobóo R. J., Ostermeyer M., Sanctuary R., Müller‐Buschbaum P., Krüger J. K., Langmuir 2014, 30, 11792. PubMed
Shortly after administration, the urine and stool of our mice were strongly fluorescent, further confirming that the polymers are excreted via kidneys and liver.
Sadauskas E., Wallin H., Stoltenberg M., Vogel U., Doering P., Larsen A., Danscher G., Part. Fibre Toxicol. 2007, 4, 10. PubMed PMC
Crofton R., Diesselhoff‐Den Dulk M., Furth R., J. Exp. Med. 1978, 148, 1. PubMed PMC
Pabst R., Sterzel R. B., Kidney Int. 1983, 24, 626. PubMed
Yamaoka T., Tabata Y., Ikada Y., J. Pharm. Sci. 1995, 84, 349. PubMed
Yamaoka T., Tabata Y., Ikada Y., Drug Delivery 1993, 1, 75.
Glassner M., Palmieri L., Monnery B. D., Verbrugghen T., Deleye S., Stroobants S., Staelens S., Wyffels L., Hoogenboom R., Biomacromolecules 2017, 18, 96. PubMed
The T CP should be measured at a specific polymer concentration (e.g., 1.25 mg mL−1), because T CP increases with decreasing polymer concentration (Figure S2, Supporting Information).[ 1 , 43 ] Therefore, when concentrated polymer solution is first administered, the polymer may initially aggregate, however, as polymer concentration decreased (due to its cellular uptake and its dissolution into bloodstream), its T CP at some point exceeds the body temperature and polymer aggregates re‐dissolve. This re‐dissolved polymer can subsequently freely diffuse through the muscle increasing volume of IM depot. If this re‐dissolution occurs at relatively high polymer concentrations (as seen in F2, Figure S2, Supporting Information) the polymers form diffuse IM depots (Figure 2). On the contrary, if the polymer re‐dissolution occurs only at low polymer concentration, the density of IM depot will be affected only negligibly. Thus, while the T CP of polymer solutions at high polymer concentration determines its initial aggregation, the T CP at low polymer concentrations (e.g., 1.25 mg mL−1) determines the depot diffuseness. Moreover, T CP in should be measured in biologically relevant fluids, such as serum (see ref. 87).
Corrie P. G., Medicine 2008, 36, 24.
Carrick S., Parker S., Thornton C. E., Ghersi D., Simes J., Wilcken N., Cochrane Database Syst. Rev. 2009, 2009, CD003372. PubMed
Gjedde S. B., Gjeode A., Comp. Biochem. Physiol., Part A: Mol. Integr. Physiol. 1980, 67, 671.
We have previously demonstrated that polymer's T CP in serum can be significantly lower/higher than that seen in water.[ 43 ] As a result, when designing polymers for biomedical applications, the polymer's T CP should be assessed in as relevant media as possible (e.g., serum).
Groborz O., Pharmacokinetics of Intramuscularly Administered Thermoresponsive Polyacrylamides. (Department of Organic Chemistry, Faculty of Science, Charles University, Prague, Czech Republic: 2021.