TiO2 nanoparticles (NPs) are extensively used in various applications, highlighting the importance of ongoing research into their effects. This work belongs among rare whole-body inhalation studies investigating the effects of TiO2 NPs on mice. Unlike previous studies, the concentration of TiO2 NPs in the inhalation chamber (130.8 μg/m3) was significantly lower. This 11-week study on mice confirmed in vivo the presence of TiO2 NPs in lung macrophages and type II pneumocytes including their intracellular localization by using the electron microscopy and the state-of-the-art methods detecting NPs' chemical identity/crystal structure, such as the energy-dispersed X-ray spectroscopy (EDX), cathodoluminescence (CL), and detailed diffraction pattern analysis using powder nanobeam diffraction (PNBD). For the first time in inhalation study in vivo, the alterations in erythrocyte morphology with evidence of echinocytes and stomatocytes, accompanied by iron accumulation in spleen, liver, and kidney, are reported following NP's exposure. Together with the histopathological evidence of hyperaemia in the spleen and kidney, and haemosiderin presence in the spleen, the finding of NPs containing iron might suggest the increased decomposition of damaged erythrocytes. The detection of TiO2 NPs on erythrocytes through CL analysis confirmed their potential systemic availability. On the contrary, TiO2 NPs were not confirmed in other organs (spleen, liver, and kidney); Ti was detected only in the kidney near the detection limit.
- MeSH
- aplikace inhalační MeSH
- erytrocyty * účinky léků patologie MeSH
- inhalační expozice * škodlivé účinky MeSH
- kovové nanočástice * toxicita MeSH
- myši MeSH
- nanočástice * toxicita MeSH
- plíce * účinky léků metabolismus patologie MeSH
- testy subchronické toxicity MeSH
- titan * toxicita farmakokinetika aplikace a dávkování MeSH
- tkáňová distribuce MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
PURPOSE: Prostate-specific membrane antigen (PSMA) radioligand therapy is a promising treatment for metastatic castration-resistant prostate cancer (mCRPC). Several beta or alpha particle-emitting radionuclide-conjugated small molecules have shown efficacy in late-stage mCRPC and one, [[177Lu]Lu]Lu-PSMA-617, is FDA approved. In addition to tumor upregulation, PSMA is also expressed in kidneys and salivary glands where specific uptake can cause dose-limiting xerostomia and potential for nephrotoxicity. The PSMA inhibitor 2-(phosphonomethyl)pentanedioic acid (2-PMPA) can prevent kidney uptake in mice, but also blocks tumor uptake, precluding its clinical utility. Preferential delivery of 2-PMPA to non-malignant tissues could improve the therapeutic window of PSMA radioligand therapy. METHODS: A tris(isopropoxycarbonyloxymethyl) (TrisPOC) prodrug of 2-PMPA, JHU-2545, was synthesized to enhance 2-PMPA delivery to non-malignant tissues. Mouse pharmacokinetic experiments were conducted to compare JHU-2545-mediated delivery of 2-PMPA to plasma, kidney, salivary glands, and C4-2 prostate tumor xenograft. Imaging studies were conducted in rats and mice to measure uptake of PSMA PET tracers in kidney, salivary glands, and prostate tumor xenografts with and without JHU-2545 pre-treatment. RESULTS: JHU-2545 resulted in approximately 3- and 53-fold greater exposure of 2-PMPA in rodent salivary glands (18.0 ± 0.97 h*nmol/g) and kidneys (359 ± 4.16 h*nmol/g) versus prostate tumor xenograft (6.79 ± 0.19 h*nmol/g). JHU-2545 also blocked rodent kidneys and salivary glands uptake of the PSMA PET tracers [68Ga]Ga-PSMA-11 and [18 F]F-DCFPyL by up to 85% with little effect on tumor. CONCLUSIONS: JHU-2545 pre-treatment may enable greater cumulative administered doses of PSMA radioligand therapy, possibly improving safety and efficacy.
- MeSH
- antigeny povrchové * metabolismus MeSH
- glutamátkarboxypeptidasa II * metabolismus MeSH
- krysa rodu rattus MeSH
- ledviny * diagnostické zobrazování metabolismus MeSH
- lidé MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- organofosforové sloučeniny MeSH
- slinné žlázy * diagnostické zobrazování metabolismus účinky záření MeSH
- tkáňová distribuce MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- lidé MeSH
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The cellular adhesion receptor αvβ6-integrin is highly expressed in many cancers, e.g., pancreatic, lung, head-and-neck, cervical, bladder, and esophageal carcinoma. Multimerization of αvβ6-integrin-specific RGD peptides increases the target affinity and retention but affects biodistribution and pharmacokinetics. Amide formation of the terminal carboxylic acid moieties of the square-symmetrical bifunctional chelator DOTPI with 3-azidopropylamine yields derivatives with 4, 3, and 2 terminal azides and zero, 1, and 2 remaining carboxylic acids, respectively, whereby formation of the 2-cis-isomer is preferred according to NMR investigation of the Eu(III)-complexes. Cu(II)-catalyzed alkyne-azide cycloaddition (CuAAC) of the alkyne-functionalized αvβ6-integrin binding peptide cyclo[YRGDLAYp(NMe)K(pent-4-ynoic amide)] (Tyr2) yields the respective di-, tri-, and tetrameric conjugates for Lu-177-labeling. In mice bearing αvβ6-integrin-expressing xenografts of H2009 (human lung adenocarcinoma) cells, the Lu-177-labeled trimer's tumor-to-blood ratio of 112 exceeds that of the tetramer (10.4) and the dimer (54). Co-infusion of gelofusine (succinylated gelatin) reduces the renal uptake of the trimer by 89%, resulting in a 10-fold better tumor-to-kidney ratio, while no improvement of that ratio is observed with arginine/lysine, para-aminohippuric acid (PAH), and hydroxyethyl starch (HES) coinfusions. Since the Lu-177-labeled Tyr2-trimer outperforms the dimer and the tetramer, such trimers are considered the best lead structures for the ongoing development of αvβ6-integrin targeted anticancer theranostics.
- MeSH
- antigeny nádorové * metabolismus MeSH
- chelátory * chemie MeSH
- click chemie MeSH
- integriny * metabolismus MeSH
- lidé MeSH
- lutecium * chemie MeSH
- myši nahé MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- nádory farmakoterapie MeSH
- oligopeptidy * chemie farmakokinetika MeSH
- radiofarmaka farmakokinetika chemie terapeutické užití MeSH
- radionuklidy * chemie MeSH
- teranostická nanomedicína metody MeSH
- tkáňová distribuce MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Targeted alpha therapy (TAT) is an effective option for cancer treatment. To maximize its efficacy and minimize side effects, carriers must deliver radionuclides to target tissues. Most of the nuclides used in TAT decay via the alpha cascade, producing several radioactive daughter nuclei with sufficient energy to escape from the original carrier. Therefore, studying these daughter atoms is crucial in the search for new carriers. Nanoparticles have potential as carriers due to their structure, which can prevent the escape of daughter atoms and reduce radiation exposure to non-target tissues. This work focuses on determining the released activity of 221Fr and 213Bi resulting from the decay of 225Ac labelled TiO2 nanoparticles. RESULTS: Labelling of TiO2 nanoparticles has shown high sorption rates of 225Ac and its progeny, 221Fr and 213Bi, with over 92 % of activities sorbed on the nanoparticle surface for all measured radionuclides. However, in the quasi-dynamic in vitro system, the released activity of 221Fr and 213Bi is strongly dependent on the nanoparticles concentration, ranging from 15 % for a concentration of 1 mg/mL to approximately 50 % for a nanoparticle concentration of 10 μg/mL in saline solution. The released activities of 213Bi were lower, with a maximum value of around 20 % for concentrations of 0.05, 0.025, and 0.01 mg/mL. The leakage of 225Ac and its progeny was tested in various biological matrices. Minimal released activity was measured in saline at around 10 % after 48 h, while the maximum activity was measured in blood serum and plasma at 20 %. The amount of 225Ac released into the media was minimal (<3 %). The in vitro results were confirmed in a healthy mouse model. The difference in %ID/g was clearly visible immediately after dissection and again after 6 h when 213Bi reached equilibrium with 225Ac. CONCLUSION: The study verified the potential release of 225Ac progeny from the labelled TiO2 nanoparticles. Experiments were performed to determine the dependence of released activity on nanoparticle concentration and the biological environment. The results demonstrated the high stability of the prepared 225Ac@TiO2 NPs and the potential release of progeny over time. In vivo studies confirmed our hypothesis. The data obtained suggest that the daughter atoms can escape from the original carrier and follow their own biological pathways in the organism.
- MeSH
- aktinium * chemie MeSH
- izotopové značení MeSH
- myši MeSH
- nanočástice * chemie MeSH
- radionuklidy chemie MeSH
- titan * chemie MeSH
- tkáňová distribuce MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Pulmonary hypertension is a cardiovascular disease with a low survival rate. The protein galectin-3 (Gal-3) binding β-galactosides of cellular glycoproteins plays an important role in the onset and development of this disease. Carbohydrate-based drugs that target Gal-3 represent a new therapeutic strategy in the treatment of pulmonary hypertension. Here, we present the synthesis of novel hydrophilic glycopolymer inhibitors of Gal-3 based on a polyoxazoline chain decorated with carbohydrate ligands. Biolayer interferometry revealed a high binding affinity of these glycopolymers to Gal-3 in the subnanomolar range. In the cell cultures of cardiac fibroblasts and pulmonary artery smooth muscle cells, the most potent glycopolymer 18 (Lac-high) caused a decrease in the expression of markers of tissue remodeling in pulmonary hypertension. The glycopolymers were shown to penetrate into the cells. In a biodistribution and pharmacokinetics study in rats, the glycopolymers accumulated in heart and lung tissues, which are most affected by pulmonary hypertension.
- MeSH
- arteria pulmonalis účinky léků metabolismus MeSH
- biologické markery MeSH
- fibroblasty účinky léků metabolismus MeSH
- galektin 3 * antagonisté a inhibitory metabolismus MeSH
- krysa rodu rattus MeSH
- kultivované buňky MeSH
- lidé MeSH
- plicní hypertenze * farmakoterapie metabolismus MeSH
- polymery chemie farmakologie MeSH
- tkáňová distribuce MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- lidé MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Targeted alpha therapy is one of the most powerful therapeutical modalities available in nuclear medicine. It's therapeutic potency is based on the nuclides that emit one or several alpha particles providing strong and highly localized therapeutic effects. However, some of these radionuclides, like e.g.223Ra or 225Ac decay in cascades, where the radioactive progeny originating from the consecutive alpha-decays may leave the original vector and cause unwanted irradiation of non-target organs. This progeny, even if partially retained in target tissues by internalization processes, typically do not follow the fate of originally targeted radiopharmaceutical and potentially spread over body following their own biodistribution. In this study we aimed to estimate 211Pb/211Bi progeny fate from the 223Ra surface-labelled TiO2 nanoparticles in vitro and the fate of 211Pb in vivo in a mice model. RESULTS: In vitro stability studies have shown significant differences between the release of the mother 223Ra and its progeny (211Pb, 211Bi) in all the biological matrices that have been tested. The lowest released activities were measured in saline, resulting in less than 5 % of released activity for all nuclides. Contrary to that, the highest released activity of 223Ra of up to 10 % within 48 h was observed in 5 % solution of albumin. The released activity of its progeny; the 211Pb and 211Bi was in the range of 20-40 % in this test medium. Significantly higher released activities of 211Pb and 211Bi compared to 223Ra by at least 10 % was observed in each biological medium, except saline, where no significant differences were observed. The in vivo biodistribution studies results in a mice model, show similar pattern, where it was found that even after accumulation of nanoparticles in target tissues, approximately 10 % of 211Pb is continuously released into the blood stream within 24 h, followed by its natural accumulation in kidneys. CONCLUSION: This study confirms our assumption that the progeny formed in a chain alpha decay of a certain nuclide, in this case the 223Ra, can be released from its original vector, leave the target tissue, relocate and could be deposited in non-target organs. We did not observe complete progeny wash-out from its original target tissues in our model. This indicates strong dependence of the progeny hot atom fate after its release from the original radiopharmaceutical preparation on multiple factors, like their internalization and retention in cells, cell membranes, extracellular matrices, protein binding, etc. We hypothesize, that also the primary tumour or metastasis size, their metabolic activity may significantly influence progeny fate in vivo, directly impacting the dose delivered to non-target tissues and organs. Therefore a bottom-up approach should be followed and detailed pre-/clinical studies on the release and biodistribution of radioactive progeny originating from the chain alpha emitters should be preferably performed.
- MeSH
- myši MeSH
- nanočástice * MeSH
- olovo MeSH
- radiofarmaka * terapeutické užití MeSH
- radionuklidy terapeutické užití MeSH
- tkáňová distribuce MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
In this work, we present the synthesis and evaluation of magnetic resonance (MR) properties of novel phosphorus/iron-containing probes for dual 31P and 1H MR imaging and spectroscopy (MRI and MRS). The presented probes are composed of biocompatible semitelechelic and multivalent phospho-polymers based on poly(2-methacryloyloxyethyl phosphorylcholine) (pMPC) coordinated with small paramagnetic Fe3+ ions or superparamagnetic maghemite (γ-Fe2O3) nanoparticles via deferoxamine group linked to the end or along the polymer chains. All probes provided very short 1H T1 and T2 relaxation times even at low iron concentrations. The presence of iron had a significant impact on the shortening of 31P relaxation, with the effect being more pronounced for probes based on γ-Fe2O3 and multivalent polymer. While the water-soluble probe having one Fe3+ ion per polymer chain was satisfactorily visualized by both 31P-MRS and 31P-MRI, the probe with multiple Fe3+ ions could only be detected by 31P-MRS, and the probes consisting of γ-Fe2O3 nanoparticles could not be imaged by either technique due to their ultra-short 31P relaxations. In this proof-of-principle study performed on phantoms at a clinically relevant magnetic fields, we demonstrated how the different forms and concentrations of iron affect both the 1H MR signal of the surrounding water molecules and the 31P MR signal of the phospho-polymer probe. Thus, this double contrast can be exploited to simultaneously visualize body anatomy and monitor probe biodistribution.
The emerging use of qPCR and dPCR in regulated bioanalysis and absence of regulatory guidance on assay validations for these platforms has resulted in discussions on lack of harmonization on assay design and appropriate acceptance criteria for these assays. Both qPCR and dPCR are extensively used to answer bioanalytical questions for novel modalities such as cell and gene therapies. Following cross-industry conversations on the lack of information and guidelines for these assays, an American Association of Pharmaceutical Scientists working group was formed to address these gaps by bringing together 37 industry experts from 24 organizations to discuss best practices to gain a better understanding in the industry and facilitate filings to health authorities. Herein, this team provides considerations on assay design, development, and validation testing for PCR assays that are used in cell and gene therapies including (1) biodistribution; (2) transgene expression; (3) viral shedding; (4) and persistence or cellular kinetics of cell therapies.
Androgen deprivation therapy (ADT) is known to influence the prostate-specific membrane antigen (PSMA) expression of prostate cancer, potentially complicating the interpretation of PSMA ligand PET findings and affecting PSMA radioligand therapy. However, the impact of ADT on PSMA ligand biodistribution in nontumorous organs is not well understood. Methods: Men (n = 112) with histologically proven prostate cancer who underwent 68Ga-PSMA-HBED-CC (68Ga-PSMA-11) PET/CT between November 2015 and July 2021 at the Medical University Vienna with known ADT status were retrospectively recruited. Fifty-six patients were on gonadotropin-releasing hormone-interfering ADT at the time of imaging (ADT group), whereas 56 patients with no history of ADT served as a control group. Physiologically PSMA-expressing organs (salivary glands, kidneys, liver, and spleen) were delineated, and their uptake was compared according to their data distributions. Multivariate regression analysis assessed the relationship between renal, hepatic, splenic, and salivary gland uptake and the explanatory variables metabolic tumor volume, glomerular filtration rate, and ADT status. Results: ADT was associated with lower levels of PSMA uptake in the kidneys (SUVmean: Δ[ADT - control] = -7.89; 95% CI, -10.73 to -5.04; P < 0.001), liver (SUVpeak: Δ[ADT - control] = -2.3; 95% CI, -5.72 to -0.93; P = 0.003), spleen (SUVpeak: Δ[ADT - control] = -1.27; 95% CI, -3.61 to -0.16; P = 0.033), and salivary glands (SUVmean: Δ[ADT - control] = -1.04; 95% CI, -2.48 to -0.13; P = 0.027). In a multivariate analysis, ADT was found to be associated with lower renal (SUVmean: β = -7.95; 95% CI, -11.06 to -4.84; P < 0.0001), hepatic (SUVpeak: β = -7.85; 95% CI, -11.78 to -3.91; P < 0.0001), splenic (SUVpeak: β = -5.83; 95% CI, -9.95 to -1.7; P = 0.006), and salivary gland (SUVmean: β = -1.47; 95% CI, -2.76 to -0.17; P = 0.027) uptake. A higher glomerular filtration rate was associated with a higher renal SUVmean (β = 0.16; 95% CI, 0.05 to 0.26; P = 0.0034). Conclusion: These findings suggest that ADT systemically modulates PSMA expression, which may have implications for treatment-optimizing and side-effect-minimizing strategies for PSMA radioligand therapies, particularly those using more potent 225Ac-labeled PSMA conjugates.
- MeSH
- antagonisté androgenů terapeutické užití MeSH
- EDTA MeSH
- lidé MeSH
- ligandy MeSH
- nádory prostaty * patologie MeSH
- PET/CT metody MeSH
- radioizotopy galia MeSH
- retrospektivní studie MeSH
- tkáňová distribuce MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The consideration of human and environmental exposure to dendrimers, including cytotoxicity, acute toxicity, and cell and tissue accumulation, is essential due to their significant potential for various biomedical applications. This study aimed to evaluate the biodistribution and toxicity of a novel methoxyphenyl phosphonium carbosilane dendrimer, a potential mitochondria-targeting vector for cancer therapeutics, in 2D and 3D cancer cell cultures and zebrafish embryos. We assessed its cytotoxicity (via MTT, ATP, and Spheroid growth inhibition assays) and cellular biodistribution. The dendrimer cytotoxicity was higher in cancer cells, likely due to its specific targeting to the mitochondrial compartment. In vivo studies using zebrafish demonstrated dendrimer distribution within the vascular and gastrointestinal systems, indicating a biodistribution profile that may be beneficial for systemic therapeutic delivery strategies. The methoxyphenyl phosphonium carbosilane dendrimer shows promise for applications in cancer cell delivery, but additional studies are required to confirm these findings using alternative labelling methods and more physiologically relevant models. Our results contribute to the growing body of evidence supporting the potential of carbosilane dendrimers as vectors for cancer therapeutics.
- MeSH
- dánio pruhované MeSH
- dendrimery * toxicita MeSH
- lidé MeSH
- nádory * farmakoterapie MeSH
- techniky 3D buněčné kultury MeSH
- tkáňová distribuce MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH