Digital Light Processing of 19F MRI-Traceable Gelatin-Based Biomaterial Inks towards Bone Tissue Regeneration

. 2024 Jun 19 ; 17 (12) : . [epub] 20240619

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38930365

Grantová podpora
CZ.02.1.01/0.0/0.0/18_046/0016045 (OPVVV project) European Regional Development Fund
Large RI Project LM2023050 Czech-BioImaging Ministry of Education, Youth and Sports of the Czech Republic
1229422N Fonds Wetenschappelijk Onderzoek - Vlaanderen
FWO80227 Research Foundation Flanders SB
828835 European Union's Horizon 2020

Gelatin-based photo-crosslinkable hydrogels are promising scaffold materials to serve regenerative medicine. They are widely applicable in additive manufacturing, which allows for the production of various scaffold microarchitectures in line with the anatomical requirements of the organ to be replaced or tissue defect to be treated. Upon their in vivo utilization, the main bottleneck is to monitor cell colonization along with their degradation (rate). In order to enable non-invasive visualization, labeling with MRI-active components like N-(2,2-difluoroethyl)acrylamide (DFEA) provides a promising approach. Herein, we report on the development of a gelatin-methacryloyl-aminoethyl-methacrylate-based biomaterial ink in combination with DFEA, applicable in digital light processing-based additive manufacturing towards bone tissue regeneration. The fabricated hydrogel constructs show excellent shape fidelity in line with the printing resolution, as DFEA acts as a small molecular crosslinker in the system. The constructs exhibit high stiffness (E = 36.9 ± 4.1 kPa, evaluated via oscillatory rheology), suitable to serve bone regeneration and excellent MRI visualization capacity. Moreover, in combination with adipose tissue-derived stem cells (ASCs), the 3D-printed constructs show biocompatibility, and upon 4 weeks of culture, the ASCs express the osteogenic differentiation marker Ca2+.

Zobrazit více v PubMed

Djagny K.B., Wang Z., Xu S. Gelatin: A Valuable Protein for Food and Pharmaceutical Industries: Review. Crit. Rev. Food Sci. Nutr. 2001;41:481–492. doi: 10.1080/20014091091904. PubMed DOI

Gorgieva S., Kokol V. Biomaterials: Applications for Nanomedicine. Books on Demand; Norderstedt, Germany: 2011. Collagen-vs. Gelatine-Based Biomaterials and Their Biocompatibility: Review and Perspectives; pp. 17–52.

Kolouchova K., Herynek V., Groborz O., Karela J., Van Damme L., Kucka J., Šafanda A., Bui Q.H., Sefc L., Van Vlierberghe S. 19F MRI In Vivo Monitoring of Gelatin-Based Hydrogels: 3D Scaffolds with Tunable Biodegradation toward Regenerative Medicine. Chem. Mater. 2024;36:4417–4425. doi: 10.1021/acs.chemmater.3c03321. DOI

Kolouchova K., Groborz O., Herynek V., Petrov O.V., Lang J., Dunlop D., Parmentier L., Szabó A., Schaubroeck D., Adriaensens P., et al. Cell-Interactive Gelatin-Based 19F MRI Tracers: An In Vitro Proof-of-Concept Study. Chem. Mater. 2023;36:183–196. doi: 10.1021/acs.chemmater.3c01574. DOI

Van Hoorick J., Tytgat L., Dobos A., Ottevaere H., Van Erps J., Thienpont H., Ovsianikov A., Dubruel P., Van Vlierberghe S. (Photo-)Crosslinkable Gelatin Derivatives for Biofabrication Applications. Acta Biomater. 2019;97:46–73. doi: 10.1016/j.actbio.2019.07.035. PubMed DOI

Van Hoorick J., Gruber P., Markovic M., Tromayer M., Van Erps J., Thienpont H., Liska R., Ovsianikov A., Dubruel P., Van Vlierberghe S. Cross-Linkable Gelatins with Superior Mechanical Properties Through Carboxylic Acid Modification: Increasing the Two-Photon Polymerization Potential. Biomacromolecules. 2017;18:3260–3272. doi: 10.1021/acs.biomac.7b00905. PubMed DOI PMC

Dobos A., Van Hoorick J., Steiger W., Gruber P., Markovic M., Andriotis O.G., Rohatschek A., Dubruel P., Thurner P.J., Van Vlierberghe S., et al. Thiol–Gelatin–Norbornene Bioink for Laser-Based High-Definition Bioprinting. Adv. Healthc. Mater. 2020;9:1900752. doi: 10.1002/adhm.201900752. PubMed DOI

Szabó A., Pasquariello R., Costa P.F., Pavlovic R., Geurs I., Dewettinck K., Vervaet C., Brevini T.A.L., Gandolfi F., Van Vlierberghe S. Light-Based 3D Printing of Gelatin-Based Biomaterial Inks to Create a Physiologically Relevant In Vitro Fish Intestinal Model. Macromol. Biosci. 2023;23:2300016. doi: 10.1002/mabi.202300016. PubMed DOI

van Hoorick J., Dobos A., Markovic M., Gheysens T., van Damme L., Gruber P., Tytgat L., van Erps J., Thienpont H., Dubruel P., et al. Thiol-Norbornene Gelatin Hydrogels: Influence of Thiolated Crosslinker on Network Properties and High Definition 3D Printing. Biofabrication. 2020;13:015017. doi: 10.1088/1758-5090/abc95f. PubMed DOI

Fratzl P., Barth F.G. Biomaterial Systems for Mechanosensing and Actuation. Nature. 2009;462:442–448. doi: 10.1038/nature08603. PubMed DOI

Buxboim A., Ivanovska I.L., Discher D.E. Matrix Elasticity, Cytoskeletal Forces and Physics of the Nucleus: How Deeply Do Cells “feel” Outside and In? J. Cell Sci. 2010;123:297–308. doi: 10.1242/jcs.041186. PubMed DOI PMC

Appel A.A., Anastasio M.A., Larson J.C., Brey E.M. Imaging Challenges in Biomaterials and Tissue Engineering. Biomaterials. 2013;34:6615–6630. doi: 10.1016/j.biomaterials.2013.05.033. PubMed DOI PMC

Nam S.Y., Ricles L.M., Suggs L.J., Emelianov S.Y. Imaging Strategies for Tissue Engineering Applications. Tissue Eng. Part B Rev. 2015;21:88–102. doi: 10.1089/TEN.TEB.2014.0180. PubMed DOI PMC

Kim S.H., Lee J.H., Hyun H., Ashitate Y., Park G., Robichaud K., Lunsford E., Lee S.J., Khang G., Choi H.S. Near-Infrared Fluorescence Imaging for Noninvasive Trafficking of Scaffold Degradation. Sci. Rep. 2013;3:1198. doi: 10.1038/srep01198. PubMed DOI PMC

Gudur M.S.R., Rao R.R., Peterson A.W., Caldwell D.J., Stegemann J.P., Deng C.X. Noninvasive Quantification of In Vitro Osteoblastic Differentiation in 3D Engineered Tissue Constructs Using Spectral Ultrasound Imaging. PLoS ONE. 2014;9:e85749. doi: 10.1371/journal.pone.0085749. PubMed DOI PMC

Hetterich H., Willner M., Fill S., Herzen J., Bamberg F., Hipp A., Schüller U., Adam-Neumair S., Wirth S., Reiser M., et al. Phase-Contrast CT: Qualitative and Quantitative Evaluation of Atherosclerotic Carotid Artery Plaque. Radiology. 2014;271:870–878. doi: 10.1148/radiol.14131554. PubMed DOI

Lin C.-Y., Chang Y.-H., Kao C.-Y., Lu C.-H., Sung L.-Y., Yen T.-C., Lin K.-J., Hu Y.-C. Augmented Healing of Critical-Size Calvarial Defects by Baculovirus-Engineered MSCs That Persistently Express Growth Factors. Biomaterials. 2012;33:3682–3692. doi: 10.1016/j.biomaterials.2012.02.007. PubMed DOI

Tondera C., Hauser S., Krüger-Genge A., Jung F., Neffe A.T., Lendlein A., Klopfleisch R., Steinbach J., Neuber C., Pietzsch J. Gelatin-Based Hydrogel Degradation and Tissue Interaction In Vivo: Insights from Multimodal Preclinical Imaging in Immunocompetent Nude Mice. Theranostics. 2016;6:2114–2128. doi: 10.7150/thno.16614. PubMed DOI PMC

Patterson J., Siew R., Herring S.W., Lin A.S.P., Guldberg R., Stayton P.S. Hyaluronic Acid Hydrogels with Controlled Degradation Properties for Oriented Bone Regeneration. Biomaterials. 2010;31:6772–6781. doi: 10.1016/j.biomaterials.2010.05.047. PubMed DOI PMC

Colomb J., Louie K., Massia S.P., Bennett K.M. Self-Degrading, MRI-Detectable Hydrogel Sensors with Picomolar Target Sensitivity. Magn. Reson. Med. 2010;64:1792–1799. doi: 10.1002/mrm.22570. PubMed DOI

Berdichevski A., Shachaf Y., Wechsler R., Seliktar D. Protein Composition Alters in Vivo Resorption of PEG-Based Hydrogels as Monitored by Contrast-Enhanced MRI. Biomaterials. 2015;42:1–10. doi: 10.1016/j.biomaterials.2014.11.015. PubMed DOI

Liu J., Wang K., Luan J., Wen Z., Wang L., Liu Z., Wu G., Zhuo R. Visualization of in Situ Hydrogels by MRI In Vivo. J. Mater. Chem. B. 2016;4:1343–1353. doi: 10.1039/C5TB02459E. PubMed DOI

Sharma U., Chang E.W., Yun S.H. Long-Wavelength Optical Coherence Tomography at 1.7 Μm for Enhanced Imaging Depth. Opt. Express. 2008;16:19712–19723. doi: 10.1364/OE.16.019712. PubMed DOI PMC

Crosignani V., Dvornikov A.S., Aguilar J.S., Stringari C., Edwards R.A., Mantulin W.W., Gratton E. Deep Tissue Fluorescence Imaging and In Vivo Biological Applications. J. Biomed. Opt. 2012;17:116023. doi: 10.1117/1.JBO.17.11.116023. PubMed DOI PMC

Jirak D., Galisova A., Kolouchova K., Babuka D., Hruby M. Fluorine Polymer Probes for Magnetic Resonance Imaging: Quo Vadis? Magn. Reson. Mater. Phys. Biol. Med. 2019;32:173–185. doi: 10.1007/s10334-018-0724-6. PubMed DOI PMC

Staal X., Koshkina O., Srinivas M. Fluorine in Life Sciences: Pharmaceuticals, Medicinal Diagnostics, and Agrochemicals. Academic Press; Cambridge, MA, USA: 2019. 11—In Vivo 19-Fluorine Magnetic Resonance Imaging; pp. 397–424. DOI

Srinivas M., Heerschap A., Ahrens E.T., Figdor C.G., Vries I.J.M.D. 19F MRI for Quantitative in Vivo Cell Tracking. Trends Biotechnol. 2010;28:363–370. doi: 10.1016/j.tibtech.2010.04.002. PubMed DOI PMC

Hockett F.D., Wallace K.D., Schmieder A.H., Caruthers S.D., Pham C.T.N., Wickline S.A., Lanza G.M. Simultaneous Dual Frequency 1H and 19F Open Coil Imaging of Arthritic Rabbit Knee at 3T. IEEE Trans. Med. Imaging. 2011;30:22–27. doi: 10.1109/TMI.2010.2056689. PubMed DOI PMC

Li Q., Feng Z., Song H., Zhang J., Dong A., Kong D., Wang W., Huang P. 19F Magnetic Resonance Imaging Enabled Real-Time, Non-Invasive and Precise Localization and Quantification of the Degradation Rate of Hydrogel Scaffolds In Vivo. Biomater. Sci. 2020;8:3301–3309. doi: 10.1039/D0BM00278J. PubMed DOI

Kolouchova K., Groborz O., Slouf M., Herynek V., Parmentier L., Babuka D., Cernochova Z., Koucky F., Sedlacek O., Hruby M., et al. Thermoresponsive Triblock Copolymers as Widely Applicable 19F Magnetic Resonance Imaging Tracers. Chem. Mater. 2022;34:10902–10916. doi: 10.1021/acs.chemmater.2c02589. DOI

Groborz O., Kolouchová K., Pankrác J., Keša P., Kadlec J., Krunclová T., Pierzynová A., Šrámek J., Hovořáková M., Dalecká L., et al. Pharmacokinetics of Intramuscularly Administered Thermoresponsive Polymers. Adv. Healthc. Mater. 2022;11:2201344. doi: 10.1002/adhm.202201344. PubMed DOI PMC

Kolouchova K., Cernochova Z., Groborz O., Herynek V., Koucky F., Jaksa R., Benes J., Slouf M., Hruby M. Multiresponsive Fluorinated Polymers as a Theranostic Platform Using 19F MRI. Eur. Polym. J. 2022;175:111381. doi: 10.1016/j.eurpolymj.2022.111381. DOI

Markovic M., van Hoorick J., Hölzl K., Tromayer M., Gruber P., Nürnberger S., Dubruel P., van Vlierberghe S., Liska R., Ovsianikov A. Hybrid Tissue Engineering Scaffolds by Combination of Three-Dimensional Printing and Cell Photoencapsulation. J. Nanotechnol. Eng. Med. 2015;6:021001. doi: 10.1115/1.4031466. PubMed DOI PMC

Creff J., Courson R., Mangeat T., Foncy J., Souleille S., Thibault C., Besson A., Malaquin L. Fabrication of 3D Scaffolds Reproducing Intestinal Epithelium Topography by High-Resolution 3D Stereolithography. Biomaterials. 2019;221:119404. doi: 10.1016/j.biomaterials.2019.119404. PubMed DOI

Mondschein R.J., Kanitkar A., Williams C.B., Verbridge S.S., Long T.E. Biomaterials. Elsevier Ltd.; Amsterdam, The Netherlands: 2017. Polymer Structure-Property Requirements for Stereolithographic 3D Printing of Soft Tissue Engineering Scaffolds; pp. 170–188. PubMed DOI

Gong J., Qian Y., Lu K., Zhu Z., Siow L., Zhang C., Zhou S., Gu T., Yin J., Yu M., et al. Digital Light Processing (DLP) in Tissue Engineering: From Promise to Reality, and Perspectives. Biomed. Mater. 2022;17:062004. doi: 10.1088/1748-605X/ac96ba. PubMed DOI

Li H., Dai J., Wang Z., Zheng H., Li W., Wang M., Cheng F. Digital Light Processing (DLP)-based (Bio)Printing Strategies for Tissue Modeling and Regeneration. Aggregate. 2022;4:e270. doi: 10.1002/agt2.270. DOI

Ge Q., Jian B., Li H. Shaping Soft Materials via Digital Light Processing-Based 3D Printing: A Review. Forces Mech. 2022;6:100074. doi: 10.1016/j.finmec.2022.100074. DOI

Grigoryan B., Paulsen S.J., Corbett D.C., Sazer D.W., Fortin C.L., Zaita A.J., Greenfield P.T., Calafat N.J., Gounley J.P., Ta A.H., et al. Multivascular Networks and Functional Intravascular Topologies within Biocompatible Hydrogels. Science. 2019;364:458–464. doi: 10.1126/science.aav9750. PubMed DOI PMC

Verdile N., Szabó A., Pasquariello R., Brevini T.A.L., van Vlierberghe S., Gandolfi F. Preparation of Biological Scaffolds and Primary Intestinal Epithelial Cells to Efficiently 3D Model the Fish Intestinal Mucosa. Springer; Berlin/Heidelberg, Germany: 2021. PubMed DOI

Guimarães C.F., Gasperini L., Marques A.P., Reis R.L. The Stiffness of Living Tissues and Its Implications for Tissue Engineering. Nat. Rev. Mater. 2020;5:351–370. doi: 10.1038/s41578-019-0169-1. DOI

Kuboki Y., Jin Q., Takita H. Geometry of Carriers Controlling Phenotypic Expression in BMP-Induced Osteogenesis and Chondrogenesis. JBJS. 2001;83:S105–S115. doi: 10.2106/00004623-200100002-00005. PubMed DOI

Tsuruga E., Takita H., Itoh H., Wakisaka Y., Kuboki Y. Pore Size of Porous Hydroxyapatite as the Cell-Substratum Controls BMP-Induced Osteogenesis1. J. Biochem. 1997;121:317–324. doi: 10.1093/oxfordjournals.jbchem.a021589. PubMed DOI

Li Y., Mao Q., Yin J., Wang Y., Fu J., Huang Y. Theoretical Prediction and Experimental Validation of the Digital Light Processing (DLP) Working Curve for Photocurable Materials. Addit. Manuf. 2021;37:101716. doi: 10.1016/j.addma.2020.101716. DOI

Schneider C.A., Rasband W.S., Eliceiri K.W. NIH Image to ImageJ: 25 Years of Image Analysis. Nat. Methods. 2012;9:671–675. doi: 10.1038/nmeth.2089. PubMed DOI PMC

Lin S., Gu L. Influence of Crosslink Density and Stiffness on Mechanical Properties of Type I Collagen Gel. Materials. 2015;8:551–560. doi: 10.3390/ma8020551. PubMed DOI PMC

Engler A.J., Sen S., Sweeney H.L., Discher D.E. Matrix Elasticity Directs Stem Cell Lineage Specification. Cell. 2006;126:677–689. doi: 10.1016/j.cell.2006.06.044. PubMed DOI

Szabó A., De Vlieghere E., Costa P.F., Geurs I., Dewettinck K., Van Vlierberghe S. Increasing Hydrogel Complexity from 2D towards 3D towards Intestinal Tissue Engineering. Giant. 2023;16:100198. doi: 10.1016/j.giant.2023.100198. DOI

Štaffová M., Ondreáš F., Svatík J., Zbončák M., Jančář J., Lepcio P. 3D Printing and Post-Curing Optimization of Photopolymerized Structures: Basic Concepts and Effective Tools for Improved Thermomechanical Properties. Polym. Test. 2022;108:107499. doi: 10.1016/j.polymertesting.2022.107499. DOI

Kolouchova K., Sedlacek O., Jirak D., Babuka D., Blahut J., Kotek J., Vit M., Trousil J., Konefał R., Janouskova O., et al. Self-Assembled Thermoresponsive Polymeric Nanogels for 19F MR Imaging. Biomacromolecules. 2018;19:3515–3524. doi: 10.1021/acs.biomac.8b00812. PubMed DOI

Serafim A., Tucureanu C., Petre D.-G., Dragusin D.-M., Salageanu A., Van Vlierberghe S., Dubruel P., Stancu I.-C. One-Pot Synthesis of Superabsorbent Hybrid Hydrogels Based on Methacrylamide Gelatin and Polyacrylamide. Effortless Control of Hydrogel Properties through Composition Design. New J. Chem. 2014;38:3112–3126. doi: 10.1039/C4NJ00161C. DOI

Dragusin D.-M., Van Vlierberghe S., Dubruel P., Dierick M., Van Hoorebeke L., Declercq H.A., Cornelissen M.M., Stancu I.-C. Novel Gelatin–PHEMA Porous Scaffolds for Tissue Engineering Applications. Soft Matter. 2012;8:9589–9602. doi: 10.1039/C2SM25536G. DOI

Ma C., Li W., Li D., Chen M., Wang M., Jiang L., Mille L.S., Garciamendez C.E., Zhao Z., Zhou Q., et al. Photoacoustic imaging of 3D-printed vascular networks. Biofabrication. 2022;14:025001. doi: 10.1088/1758-5090/ac49d5. PubMed DOI PMC

Wang M., Li W., Hao J., Gonzales A., Zhao Z., Flores R.S., Kuang X., Mu X., Ching T., Tang G., et al. Molecularly cleavable bioinks facilitate high-performance digital light processing-based bioprinting of functional volumetric soft tissues. Nat. Commun. 2022;13:3317. doi: 10.1038/s41467-022-31002-2. PubMed DOI PMC

Leulescu M., Rotaru A., Pălărie I., Moanţă A., Cioateră N., Popescu M., Morîntale E., Bubulică M.V., Florian G., Hărăbor A., et al. Tartrazine: Physical, thermal and biophysical properties of the most widely employed synthetic yellow food-colouring azo dye. J. Therm. Anal. Calorim. 2018;134:209–231. doi: 10.1007/s10973-018-7663-3. DOI

Gong H., Bickham B.P., Woolley A.T., Nordin G.P. Custom 3D printer and resin for 18 μm × 20 μm microfluidic flow channels. Lab Chip. 2017;17:2899–2909. doi: 10.1039/C7LC00644F. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...