Digital Light Processing of 19F MRI-Traceable Gelatin-Based Biomaterial Inks towards Bone Tissue Regeneration
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/18_046/0016045 (OPVVV project)
European Regional Development Fund
Large RI Project LM2023050 Czech-BioImaging
Ministry of Education, Youth and Sports of the Czech Republic
1229422N
Fonds Wetenschappelijk Onderzoek - Vlaanderen
FWO80227
Research Foundation Flanders SB
828835
European Union's Horizon 2020
PubMed
38930365
PubMed Central
PMC11206011
DOI
10.3390/ma17122996
PII: ma17122996
Knihovny.cz E-zdroje
- Klíčová slova
- digital light processing, fluorine-19 magnetic resonance imaging, photo-crosslinkable gelatin, poly[N-(2,2-difluorethylacrylamide)], tissue engineering,
- Publikační typ
- časopisecké články MeSH
Gelatin-based photo-crosslinkable hydrogels are promising scaffold materials to serve regenerative medicine. They are widely applicable in additive manufacturing, which allows for the production of various scaffold microarchitectures in line with the anatomical requirements of the organ to be replaced or tissue defect to be treated. Upon their in vivo utilization, the main bottleneck is to monitor cell colonization along with their degradation (rate). In order to enable non-invasive visualization, labeling with MRI-active components like N-(2,2-difluoroethyl)acrylamide (DFEA) provides a promising approach. Herein, we report on the development of a gelatin-methacryloyl-aminoethyl-methacrylate-based biomaterial ink in combination with DFEA, applicable in digital light processing-based additive manufacturing towards bone tissue regeneration. The fabricated hydrogel constructs show excellent shape fidelity in line with the printing resolution, as DFEA acts as a small molecular crosslinker in the system. The constructs exhibit high stiffness (E = 36.9 ± 4.1 kPa, evaluated via oscillatory rheology), suitable to serve bone regeneration and excellent MRI visualization capacity. Moreover, in combination with adipose tissue-derived stem cells (ASCs), the 3D-printed constructs show biocompatibility, and upon 4 weeks of culture, the ASCs express the osteogenic differentiation marker Ca2+.
Zobrazit více v PubMed
Djagny K.B., Wang Z., Xu S. Gelatin: A Valuable Protein for Food and Pharmaceutical Industries: Review. Crit. Rev. Food Sci. Nutr. 2001;41:481–492. doi: 10.1080/20014091091904. PubMed DOI
Gorgieva S., Kokol V. Biomaterials: Applications for Nanomedicine. Books on Demand; Norderstedt, Germany: 2011. Collagen-vs. Gelatine-Based Biomaterials and Their Biocompatibility: Review and Perspectives; pp. 17–52.
Kolouchova K., Herynek V., Groborz O., Karela J., Van Damme L., Kucka J., Šafanda A., Bui Q.H., Sefc L., Van Vlierberghe S. 19F MRI In Vivo Monitoring of Gelatin-Based Hydrogels: 3D Scaffolds with Tunable Biodegradation toward Regenerative Medicine. Chem. Mater. 2024;36:4417–4425. doi: 10.1021/acs.chemmater.3c03321. DOI
Kolouchova K., Groborz O., Herynek V., Petrov O.V., Lang J., Dunlop D., Parmentier L., Szabó A., Schaubroeck D., Adriaensens P., et al. Cell-Interactive Gelatin-Based 19F MRI Tracers: An In Vitro Proof-of-Concept Study. Chem. Mater. 2023;36:183–196. doi: 10.1021/acs.chemmater.3c01574. DOI
Van Hoorick J., Tytgat L., Dobos A., Ottevaere H., Van Erps J., Thienpont H., Ovsianikov A., Dubruel P., Van Vlierberghe S. (Photo-)Crosslinkable Gelatin Derivatives for Biofabrication Applications. Acta Biomater. 2019;97:46–73. doi: 10.1016/j.actbio.2019.07.035. PubMed DOI
Van Hoorick J., Gruber P., Markovic M., Tromayer M., Van Erps J., Thienpont H., Liska R., Ovsianikov A., Dubruel P., Van Vlierberghe S. Cross-Linkable Gelatins with Superior Mechanical Properties Through Carboxylic Acid Modification: Increasing the Two-Photon Polymerization Potential. Biomacromolecules. 2017;18:3260–3272. doi: 10.1021/acs.biomac.7b00905. PubMed DOI PMC
Dobos A., Van Hoorick J., Steiger W., Gruber P., Markovic M., Andriotis O.G., Rohatschek A., Dubruel P., Thurner P.J., Van Vlierberghe S., et al. Thiol–Gelatin–Norbornene Bioink for Laser-Based High-Definition Bioprinting. Adv. Healthc. Mater. 2020;9:1900752. doi: 10.1002/adhm.201900752. PubMed DOI
Szabó A., Pasquariello R., Costa P.F., Pavlovic R., Geurs I., Dewettinck K., Vervaet C., Brevini T.A.L., Gandolfi F., Van Vlierberghe S. Light-Based 3D Printing of Gelatin-Based Biomaterial Inks to Create a Physiologically Relevant In Vitro Fish Intestinal Model. Macromol. Biosci. 2023;23:2300016. doi: 10.1002/mabi.202300016. PubMed DOI
van Hoorick J., Dobos A., Markovic M., Gheysens T., van Damme L., Gruber P., Tytgat L., van Erps J., Thienpont H., Dubruel P., et al. Thiol-Norbornene Gelatin Hydrogels: Influence of Thiolated Crosslinker on Network Properties and High Definition 3D Printing. Biofabrication. 2020;13:015017. doi: 10.1088/1758-5090/abc95f. PubMed DOI
Fratzl P., Barth F.G. Biomaterial Systems for Mechanosensing and Actuation. Nature. 2009;462:442–448. doi: 10.1038/nature08603. PubMed DOI
Buxboim A., Ivanovska I.L., Discher D.E. Matrix Elasticity, Cytoskeletal Forces and Physics of the Nucleus: How Deeply Do Cells “feel” Outside and In? J. Cell Sci. 2010;123:297–308. doi: 10.1242/jcs.041186. PubMed DOI PMC
Appel A.A., Anastasio M.A., Larson J.C., Brey E.M. Imaging Challenges in Biomaterials and Tissue Engineering. Biomaterials. 2013;34:6615–6630. doi: 10.1016/j.biomaterials.2013.05.033. PubMed DOI PMC
Nam S.Y., Ricles L.M., Suggs L.J., Emelianov S.Y. Imaging Strategies for Tissue Engineering Applications. Tissue Eng. Part B Rev. 2015;21:88–102. doi: 10.1089/TEN.TEB.2014.0180. PubMed DOI PMC
Kim S.H., Lee J.H., Hyun H., Ashitate Y., Park G., Robichaud K., Lunsford E., Lee S.J., Khang G., Choi H.S. Near-Infrared Fluorescence Imaging for Noninvasive Trafficking of Scaffold Degradation. Sci. Rep. 2013;3:1198. doi: 10.1038/srep01198. PubMed DOI PMC
Gudur M.S.R., Rao R.R., Peterson A.W., Caldwell D.J., Stegemann J.P., Deng C.X. Noninvasive Quantification of In Vitro Osteoblastic Differentiation in 3D Engineered Tissue Constructs Using Spectral Ultrasound Imaging. PLoS ONE. 2014;9:e85749. doi: 10.1371/journal.pone.0085749. PubMed DOI PMC
Hetterich H., Willner M., Fill S., Herzen J., Bamberg F., Hipp A., Schüller U., Adam-Neumair S., Wirth S., Reiser M., et al. Phase-Contrast CT: Qualitative and Quantitative Evaluation of Atherosclerotic Carotid Artery Plaque. Radiology. 2014;271:870–878. doi: 10.1148/radiol.14131554. PubMed DOI
Lin C.-Y., Chang Y.-H., Kao C.-Y., Lu C.-H., Sung L.-Y., Yen T.-C., Lin K.-J., Hu Y.-C. Augmented Healing of Critical-Size Calvarial Defects by Baculovirus-Engineered MSCs That Persistently Express Growth Factors. Biomaterials. 2012;33:3682–3692. doi: 10.1016/j.biomaterials.2012.02.007. PubMed DOI
Tondera C., Hauser S., Krüger-Genge A., Jung F., Neffe A.T., Lendlein A., Klopfleisch R., Steinbach J., Neuber C., Pietzsch J. Gelatin-Based Hydrogel Degradation and Tissue Interaction In Vivo: Insights from Multimodal Preclinical Imaging in Immunocompetent Nude Mice. Theranostics. 2016;6:2114–2128. doi: 10.7150/thno.16614. PubMed DOI PMC
Patterson J., Siew R., Herring S.W., Lin A.S.P., Guldberg R., Stayton P.S. Hyaluronic Acid Hydrogels with Controlled Degradation Properties for Oriented Bone Regeneration. Biomaterials. 2010;31:6772–6781. doi: 10.1016/j.biomaterials.2010.05.047. PubMed DOI PMC
Colomb J., Louie K., Massia S.P., Bennett K.M. Self-Degrading, MRI-Detectable Hydrogel Sensors with Picomolar Target Sensitivity. Magn. Reson. Med. 2010;64:1792–1799. doi: 10.1002/mrm.22570. PubMed DOI
Berdichevski A., Shachaf Y., Wechsler R., Seliktar D. Protein Composition Alters in Vivo Resorption of PEG-Based Hydrogels as Monitored by Contrast-Enhanced MRI. Biomaterials. 2015;42:1–10. doi: 10.1016/j.biomaterials.2014.11.015. PubMed DOI
Liu J., Wang K., Luan J., Wen Z., Wang L., Liu Z., Wu G., Zhuo R. Visualization of in Situ Hydrogels by MRI In Vivo. J. Mater. Chem. B. 2016;4:1343–1353. doi: 10.1039/C5TB02459E. PubMed DOI
Sharma U., Chang E.W., Yun S.H. Long-Wavelength Optical Coherence Tomography at 1.7 Μm for Enhanced Imaging Depth. Opt. Express. 2008;16:19712–19723. doi: 10.1364/OE.16.019712. PubMed DOI PMC
Crosignani V., Dvornikov A.S., Aguilar J.S., Stringari C., Edwards R.A., Mantulin W.W., Gratton E. Deep Tissue Fluorescence Imaging and In Vivo Biological Applications. J. Biomed. Opt. 2012;17:116023. doi: 10.1117/1.JBO.17.11.116023. PubMed DOI PMC
Jirak D., Galisova A., Kolouchova K., Babuka D., Hruby M. Fluorine Polymer Probes for Magnetic Resonance Imaging: Quo Vadis? Magn. Reson. Mater. Phys. Biol. Med. 2019;32:173–185. doi: 10.1007/s10334-018-0724-6. PubMed DOI PMC
Staal X., Koshkina O., Srinivas M. Fluorine in Life Sciences: Pharmaceuticals, Medicinal Diagnostics, and Agrochemicals. Academic Press; Cambridge, MA, USA: 2019. 11—In Vivo 19-Fluorine Magnetic Resonance Imaging; pp. 397–424. DOI
Srinivas M., Heerschap A., Ahrens E.T., Figdor C.G., Vries I.J.M.D. 19F MRI for Quantitative in Vivo Cell Tracking. Trends Biotechnol. 2010;28:363–370. doi: 10.1016/j.tibtech.2010.04.002. PubMed DOI PMC
Hockett F.D., Wallace K.D., Schmieder A.H., Caruthers S.D., Pham C.T.N., Wickline S.A., Lanza G.M. Simultaneous Dual Frequency 1H and 19F Open Coil Imaging of Arthritic Rabbit Knee at 3T. IEEE Trans. Med. Imaging. 2011;30:22–27. doi: 10.1109/TMI.2010.2056689. PubMed DOI PMC
Li Q., Feng Z., Song H., Zhang J., Dong A., Kong D., Wang W., Huang P. 19F Magnetic Resonance Imaging Enabled Real-Time, Non-Invasive and Precise Localization and Quantification of the Degradation Rate of Hydrogel Scaffolds In Vivo. Biomater. Sci. 2020;8:3301–3309. doi: 10.1039/D0BM00278J. PubMed DOI
Kolouchova K., Groborz O., Slouf M., Herynek V., Parmentier L., Babuka D., Cernochova Z., Koucky F., Sedlacek O., Hruby M., et al. Thermoresponsive Triblock Copolymers as Widely Applicable 19F Magnetic Resonance Imaging Tracers. Chem. Mater. 2022;34:10902–10916. doi: 10.1021/acs.chemmater.2c02589. DOI
Groborz O., Kolouchová K., Pankrác J., Keša P., Kadlec J., Krunclová T., Pierzynová A., Šrámek J., Hovořáková M., Dalecká L., et al. Pharmacokinetics of Intramuscularly Administered Thermoresponsive Polymers. Adv. Healthc. Mater. 2022;11:2201344. doi: 10.1002/adhm.202201344. PubMed DOI PMC
Kolouchova K., Cernochova Z., Groborz O., Herynek V., Koucky F., Jaksa R., Benes J., Slouf M., Hruby M. Multiresponsive Fluorinated Polymers as a Theranostic Platform Using 19F MRI. Eur. Polym. J. 2022;175:111381. doi: 10.1016/j.eurpolymj.2022.111381. DOI
Markovic M., van Hoorick J., Hölzl K., Tromayer M., Gruber P., Nürnberger S., Dubruel P., van Vlierberghe S., Liska R., Ovsianikov A. Hybrid Tissue Engineering Scaffolds by Combination of Three-Dimensional Printing and Cell Photoencapsulation. J. Nanotechnol. Eng. Med. 2015;6:021001. doi: 10.1115/1.4031466. PubMed DOI PMC
Creff J., Courson R., Mangeat T., Foncy J., Souleille S., Thibault C., Besson A., Malaquin L. Fabrication of 3D Scaffolds Reproducing Intestinal Epithelium Topography by High-Resolution 3D Stereolithography. Biomaterials. 2019;221:119404. doi: 10.1016/j.biomaterials.2019.119404. PubMed DOI
Mondschein R.J., Kanitkar A., Williams C.B., Verbridge S.S., Long T.E. Biomaterials. Elsevier Ltd.; Amsterdam, The Netherlands: 2017. Polymer Structure-Property Requirements for Stereolithographic 3D Printing of Soft Tissue Engineering Scaffolds; pp. 170–188. PubMed DOI
Gong J., Qian Y., Lu K., Zhu Z., Siow L., Zhang C., Zhou S., Gu T., Yin J., Yu M., et al. Digital Light Processing (DLP) in Tissue Engineering: From Promise to Reality, and Perspectives. Biomed. Mater. 2022;17:062004. doi: 10.1088/1748-605X/ac96ba. PubMed DOI
Li H., Dai J., Wang Z., Zheng H., Li W., Wang M., Cheng F. Digital Light Processing (DLP)-based (Bio)Printing Strategies for Tissue Modeling and Regeneration. Aggregate. 2022;4:e270. doi: 10.1002/agt2.270. DOI
Ge Q., Jian B., Li H. Shaping Soft Materials via Digital Light Processing-Based 3D Printing: A Review. Forces Mech. 2022;6:100074. doi: 10.1016/j.finmec.2022.100074. DOI
Grigoryan B., Paulsen S.J., Corbett D.C., Sazer D.W., Fortin C.L., Zaita A.J., Greenfield P.T., Calafat N.J., Gounley J.P., Ta A.H., et al. Multivascular Networks and Functional Intravascular Topologies within Biocompatible Hydrogels. Science. 2019;364:458–464. doi: 10.1126/science.aav9750. PubMed DOI PMC
Verdile N., Szabó A., Pasquariello R., Brevini T.A.L., van Vlierberghe S., Gandolfi F. Preparation of Biological Scaffolds and Primary Intestinal Epithelial Cells to Efficiently 3D Model the Fish Intestinal Mucosa. Springer; Berlin/Heidelberg, Germany: 2021. PubMed DOI
Guimarães C.F., Gasperini L., Marques A.P., Reis R.L. The Stiffness of Living Tissues and Its Implications for Tissue Engineering. Nat. Rev. Mater. 2020;5:351–370. doi: 10.1038/s41578-019-0169-1. DOI
Kuboki Y., Jin Q., Takita H. Geometry of Carriers Controlling Phenotypic Expression in BMP-Induced Osteogenesis and Chondrogenesis. JBJS. 2001;83:S105–S115. doi: 10.2106/00004623-200100002-00005. PubMed DOI
Tsuruga E., Takita H., Itoh H., Wakisaka Y., Kuboki Y. Pore Size of Porous Hydroxyapatite as the Cell-Substratum Controls BMP-Induced Osteogenesis1. J. Biochem. 1997;121:317–324. doi: 10.1093/oxfordjournals.jbchem.a021589. PubMed DOI
Li Y., Mao Q., Yin J., Wang Y., Fu J., Huang Y. Theoretical Prediction and Experimental Validation of the Digital Light Processing (DLP) Working Curve for Photocurable Materials. Addit. Manuf. 2021;37:101716. doi: 10.1016/j.addma.2020.101716. DOI
Schneider C.A., Rasband W.S., Eliceiri K.W. NIH Image to ImageJ: 25 Years of Image Analysis. Nat. Methods. 2012;9:671–675. doi: 10.1038/nmeth.2089. PubMed DOI PMC
Lin S., Gu L. Influence of Crosslink Density and Stiffness on Mechanical Properties of Type I Collagen Gel. Materials. 2015;8:551–560. doi: 10.3390/ma8020551. PubMed DOI PMC
Engler A.J., Sen S., Sweeney H.L., Discher D.E. Matrix Elasticity Directs Stem Cell Lineage Specification. Cell. 2006;126:677–689. doi: 10.1016/j.cell.2006.06.044. PubMed DOI
Szabó A., De Vlieghere E., Costa P.F., Geurs I., Dewettinck K., Van Vlierberghe S. Increasing Hydrogel Complexity from 2D towards 3D towards Intestinal Tissue Engineering. Giant. 2023;16:100198. doi: 10.1016/j.giant.2023.100198. DOI
Štaffová M., Ondreáš F., Svatík J., Zbončák M., Jančář J., Lepcio P. 3D Printing and Post-Curing Optimization of Photopolymerized Structures: Basic Concepts and Effective Tools for Improved Thermomechanical Properties. Polym. Test. 2022;108:107499. doi: 10.1016/j.polymertesting.2022.107499. DOI
Kolouchova K., Sedlacek O., Jirak D., Babuka D., Blahut J., Kotek J., Vit M., Trousil J., Konefał R., Janouskova O., et al. Self-Assembled Thermoresponsive Polymeric Nanogels for 19F MR Imaging. Biomacromolecules. 2018;19:3515–3524. doi: 10.1021/acs.biomac.8b00812. PubMed DOI
Serafim A., Tucureanu C., Petre D.-G., Dragusin D.-M., Salageanu A., Van Vlierberghe S., Dubruel P., Stancu I.-C. One-Pot Synthesis of Superabsorbent Hybrid Hydrogels Based on Methacrylamide Gelatin and Polyacrylamide. Effortless Control of Hydrogel Properties through Composition Design. New J. Chem. 2014;38:3112–3126. doi: 10.1039/C4NJ00161C. DOI
Dragusin D.-M., Van Vlierberghe S., Dubruel P., Dierick M., Van Hoorebeke L., Declercq H.A., Cornelissen M.M., Stancu I.-C. Novel Gelatin–PHEMA Porous Scaffolds for Tissue Engineering Applications. Soft Matter. 2012;8:9589–9602. doi: 10.1039/C2SM25536G. DOI
Ma C., Li W., Li D., Chen M., Wang M., Jiang L., Mille L.S., Garciamendez C.E., Zhao Z., Zhou Q., et al. Photoacoustic imaging of 3D-printed vascular networks. Biofabrication. 2022;14:025001. doi: 10.1088/1758-5090/ac49d5. PubMed DOI PMC
Wang M., Li W., Hao J., Gonzales A., Zhao Z., Flores R.S., Kuang X., Mu X., Ching T., Tang G., et al. Molecularly cleavable bioinks facilitate high-performance digital light processing-based bioprinting of functional volumetric soft tissues. Nat. Commun. 2022;13:3317. doi: 10.1038/s41467-022-31002-2. PubMed DOI PMC
Leulescu M., Rotaru A., Pălărie I., Moanţă A., Cioateră N., Popescu M., Morîntale E., Bubulică M.V., Florian G., Hărăbor A., et al. Tartrazine: Physical, thermal and biophysical properties of the most widely employed synthetic yellow food-colouring azo dye. J. Therm. Anal. Calorim. 2018;134:209–231. doi: 10.1007/s10973-018-7663-3. DOI
Gong H., Bickham B.P., Woolley A.T., Nordin G.P. Custom 3D printer and resin for 18 μm × 20 μm microfluidic flow channels. Lab Chip. 2017;17:2899–2909. doi: 10.1039/C7LC00644F. PubMed DOI PMC