Poly-N-Acetyllactosamine Neo-Glycoproteins as Nanomolar Ligands of Human Galectin-3: Binding Kinetics and Modeling
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
29373511
PubMed Central
PMC5855594
DOI
10.3390/ijms19020372
PII: ijms19020372
Knihovny.cz E-zdroje
- Klíčová slova
- carbohydrate, galectin-3, galectins in diagnosis, galectins in therapy, glycosyltransferase, molecular modeling, surface plasmon resonance,
- MeSH
- galektin 3 chemie metabolismus MeSH
- glykoproteiny chemie farmakologie MeSH
- laktosa analogy a deriváty chemie MeSH
- lidé MeSH
- ligandy MeSH
- sérový albumin hovězí chemie MeSH
- simulace molekulového dockingu * MeSH
- vazba proteinů MeSH
- vazebná místa MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- galektin 3 MeSH
- glykoproteiny MeSH
- laktosa MeSH
- ligandy MeSH
- N-acetylgalactosaminyl-1-4-N-acetylglucosamine MeSH Prohlížeč
- sérový albumin hovězí MeSH
Galectin-3 (Gal-3) is recognized as a prognostic marker in several cancer types. Its involvement in tumor development and proliferation makes this lectin a promising target for early cancer diagnosis and anti-cancer therapies. Gal-3 recognizes poly-N-acetyllactosamine (LacNAc)-based carbohydrate motifs of glycoproteins and glycolipids with a high specificity for internal LacNAc epitopes. This study analyzes the mode and kinetics of binding of Gal-3 to a series of multivalent neo-glycoproteins presenting complex poly-LacNAc-based oligosaccharide ligands on a scaffold of bovine serum albumin. These neo-glycoproteins rank among the strongest Gal-3 ligands reported, with Kd reaching sub-nanomolar values as determined by surface plasmon resonance. Significant differences in the binding kinetics were observed within the ligand series, showing the tetrasaccharide capped with N,N'-diacetyllactosamine (LacdiNAc) as the strongest ligand of Gal-3 in this study. A molecular model of the Gal-3 carbohydrate recognition domain with docked oligosaccharide ligands is presented that shows the relations in the binding site at the molecular level. The neo-glycoproteins presented herein may be applied for selective recognition of Gal-3 both on the cell surface and in blood serum.
Institute of Microbiology of the Czech Academy of Sciences Vídeňská 1083 14220 Prague Czech Republic
Zobrazit více v PubMed
Hirabayashi J., Kasai K. The family of metazoan metal-independent β-galactoside-binding lectins: Structure, function and molecular evolution. Glycobiology. 1993;3:297–304. doi: 10.1093/glycob/3.4.297. PubMed DOI
Liu F.T., Rabinovich G.A. Galectins as modulators of tumour progression. Nat. Rev. Cancer. 2005;5:29–41. doi: 10.1038/nrc1527. PubMed DOI
Iurisci I., Cumashi A., Sherman A.A., Tsvetkov Y.E., Tinari N., Piccolo E. Synthetic inhibitors of galectin-1 and -3 selectively modulate homotypic cell aggregation and tumor cell apoptosis. Anticancer Res. 2009;29:403–410. PubMed
Ebrahim A.H., Alalawi Z., Mirandola L., Rakhshanda R., Dahlbeck S., Nguyen D., Jenkins M., Grizzi F., Cobos E., Figueroa J.A., et al. Galectins in cancer: Carcinogenesis, diagnosis and therapy. Ann. Transl. Med. 2014;2:88. doi: 10.3978/j.issn.2305-5839.2014.09.12. PubMed DOI PMC
Tellez-Sanz R., Garcia-Fuentes L., Vargas-Berenguel A. Human galectin-3 selective and high affinity inhibitors. Present state and future perspectives. Curr. Med. Chem. 2013;20:2979–2990. doi: 10.2174/09298673113209990163. PubMed DOI
Šimonová A., Kupper C.E., Böcker S., Müller A., Hofbauerová K., Pelantová H., Elling L., Křen V., Bojarová P. Chemo-enzymatic synthesis of LacdiNAc dimers of varying length as novel galectin ligands. J. Mol. Catal. B Enzym. 2014;101:47–55. doi: 10.1016/j.molcatb.2013.12.018. DOI
Laaf D., Bojarová P., Mikulová B., Pelantová H., Křen V., Elling L. Two-step enzymatic synthesis of β-d-N-acetylgalactosamine-(1→4)-d-N-acetylglucosamine (LacdiNAc) chitooligomers for deciphering galectin binding behavior. Adv. Synth. Catal. 2017;359:2101–2108. doi: 10.1002/adsc.201700331. DOI
Breloy I., Söte S., Ottis P., Bonar D., Grahn A., Hanisch F.-G. O-Linked LacdiNAc-modified glycans in extracellular matrix glycoproteins are specifically phosphorylated at the subterminal GlcNAc. J. Biol. Chem. 2012;287:18275–18286. doi: 10.1074/jbc.M111.280297. PubMed DOI PMC
Jin C., Kenny D.T., Skoog E.C., Padra M., Adamczyk B., Vitizeva V., Thorell A., Venkatakrishnan V., Lindén S.K., Karlsson N.G. Structural diversity of human gastric mucin glycans. Mol. Cell. Proteom. 2017;16:743–758. doi: 10.1074/mcp.M117.067983. PubMed DOI
Hirano K., Matsuda A., Shirai T., Furukawa K. Expression of LacdiNAc groups on N-glycans among human tumors is complex. Biomed. Res. Int. 2014;2014:981627. doi: 10.1155/2014/981627. PubMed DOI PMC
Haji-Ghassemi O., Gilbert M., Spence J., Schur M.J., Parker M.J., Jenkins M.L., Burke J.E., van Faassen H., Young N.M., Evans S.V. Molecular basis for recognition of the cancer glycobiomarker, LacdiNAc (GalNAc[β1→4]GlcNAc), by Wisteria floribunda agglutinin. J. Biol. Chem. 2016;291:24085–24095. doi: 10.1074/jbc.M116.750463. PubMed DOI PMC
Anugraham M., Jacob F., Everest-Dass A.V., Schoetzau A., Nixdorf S., Hacker N., Fink D., Heinzelmann-Schwarz V., Packer N.H. Tissue glycomics distinguish tumour sites in women with advanced serous adenocarcinoma. Mol. Oncol. 2017;11:1595–1615. doi: 10.1002/1878-0261.12134. PubMed DOI PMC
Wuhrer M., Koeleman C.A.M., Deelder A.M., Hokke C.H. Repeats of LacdiNAc and fucosylated LacdiNAc on N-glycans of the human parasite Schistosoma mansoni. FEBS J. 2006;273:347–361. doi: 10.1111/j.1742-4658.2005.05068.x. PubMed DOI
Hanzawa K., Suzuki N., Natsuka S. Structures and developmental alterations of N-glycans of zebrafish embryos. Glycobiology. 2017;27:228–245. doi: 10.1093/glycob/cww124. PubMed DOI
Böcker S., Laaf D., Elling L. Galectin binding to neo-glycoproteins: LacDiNAc conjugated BSA as ligand for human galectin-3. Biomolecules. 2015;5:1671–1696. doi: 10.3390/biom5031671. PubMed DOI PMC
Ahmed H., AlSadek D.M. Galectin-3 as a potential target to prevent cancer metastasis. Clin. Med. Insights Oncol. 2015;25:113–121. doi: 10.4137/CMO.S29462. PubMed DOI PMC
Collins P.M., Bum-Erdene K., Yu X., Blanchard H. Galectin-3 interactions with glycosphingolipids. J. Mol. Biol. 2014;426:1439–1451. doi: 10.1016/j.jmb.2013.12.004. PubMed DOI
Leffler H., Carlsson S., Hedlund M., Qian Y., Poirier F. Introduction to galectins. Glycoconj. J. 2004;19:433–440. doi: 10.1023/B:GLYC.0000014072.34840.04. PubMed DOI
Hsieh T.-J., Lin H.-Y., Tu Z., Lin T.-C., Wu S.-C., Tseng Y.-Y., Liu F.-T., Hsu S.-T.D., Lin C.-H. Dual thio-digalactoside-binding modes of human galectins as the structural basis for the design of potent and selective inhibitors. Sci. Rep. 2016;6:29457. doi: 10.1038/srep29457. PubMed DOI PMC
Rapoport E.M., Kurmyshkina O.V., Bovin N.V. Mammalian galectins: Structure, carbohydrate specificity, and functions. Biochemistry. 2008;73:393–405. doi: 10.1134/S0006297908040032. PubMed DOI
Morris S., Ahmad N., André S., Kaltner H., Gabius H.-J., Brenowitz M., Brewer F. Quaternary solution structures of galectins-1, -3, and -7. Glycobiology. 2004;14:293–300. doi: 10.1093/glycob/cwh029. PubMed DOI
Nieminen J., Kuno A., Hirabayashi J., Sato S. Visualization of galectin-3 oligomerization on the surface of neutrophils and endothelial cells using fluorescence resonance energy transfer. J. Biol. Chem. 2007;282:1374–1383. doi: 10.1074/jbc.M604506200. PubMed DOI
Massa S.M., Cooper D.N.W., Leffler H., Barondes S.H. L-29, an endogenous lectin, binds to glycoconjugate ligands with positive cooperativity. Biochemistry. 1993;32:260–267. doi: 10.1021/bi00052a033. PubMed DOI
Lepur A., Salomonsson E., Nilsson U.J., Leffler H. Ligand induced galectin-3 protein self-association. J. Biol. Chem. 2012;287:21751–21756. doi: 10.1074/jbc.C112.358002. PubMed DOI PMC
Ahmad N., Gabius H.J., André S., Kaltner H., Sabesan S., Roy R., Liu B., Macaluso F., Brewer C.F. Galectin-3 precipitates as a pentamer with synthetic multivalent carbohydrates and forms heterogeneous cross-linked complexes. J. Biol. Chem. 2004;279:10841–10847. doi: 10.1074/jbc.M312834200. PubMed DOI
Halimi H., Rigato A., Byrne D., Ferracci G., Sebban-Kreuzer C., ElAntak L., Guerlesquin F. Glycan dependence of galectin-3 self-association properties. PLoS ONE. 2014;9:e111836. doi: 10.1371/journal.pone.0111836. PubMed DOI PMC
Laaf D., Bojarová P., Pelantová H., Křen V., Elling L. Tailored multivalent neo-glycoproteins: Synthesis, evaluation, and application of a library of galectin-3-binding glycan ligands. Bioconjug. Chem. 2017;28:2832–2840. doi: 10.1021/acs.bioconjchem.7b00520. PubMed DOI
Lundquist J.J., Toone E.J. The cluster glycoside effect. Chem. Rev. 2002;102:555–578. doi: 10.1021/cr000418f. PubMed DOI
Wang H., Huang W., Orwenyo J., Banerjee A., Vasta G.R., Wang L.-X. Design and synthesis of glycoprotein-based multivalent glyco-ligands for influenza hemagglutinin and human galectin-3. Bioorg. Med. Chem. 2013;21:2037–2044. doi: 10.1016/j.bmc.2013.01.028. PubMed DOI PMC
Böcker S., Elling L. Biotinylated N-acetyllactosamine- and N,N-diacetyllactosamine-based oligosaccharides as novel ligands for human galectin-3. Bioengineering. 2017;4:31. doi: 10.3390/bioengineering4020031. PubMed DOI PMC
Dam T.K., Gabius H.J., André S., Kaltner H., Lensch M., Brewer C.F. Galectins bind to the multivalent glycoprotein asialofetuin with enhanced affinities and a gradient of decreasing binding constants. Biochemistry. 2005;44:12564–12571. doi: 10.1021/bi051144z. PubMed DOI
Abraham M.J., Murtola T., Schulz R., Páll S., Smith J.C., Hess B., Lindahl E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015;1:19–25. doi: 10.1016/j.softx.2015.06.001. DOI
Lindorff-Larsen K., Piana S., Palmo K., Maragakis P., Klepeis J.L., O’Dror R., Shaw D.E. Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins. 2010;78:1950–1958. doi: 10.1002/prot.22711. PubMed DOI PMC
Kirschner K.N., Yongye A.B., Tschampel S.M., Daniels C.R., Foley B.L., Woods R.J. GLYCAM06: A generalizable Biomolecular force field. Carbohydrates. J. Comput. Chem. 2008;29:622–655. doi: 10.1002/jcc.20820. PubMed DOI PMC
Sousa da Silva A.W., Vranken W.F. ACPYPE—AnteChamber PYthon Parser interfacE. BMC Res. Notes. 2012;5:367. doi: 10.1186/1756-0500-5-367. PubMed DOI PMC
Korb O., Stützle T., Exner T.E. Empirical scoring functions for advanced protein-ligand docking with PLANTS. J. Chem. Inf. Model. 2009;49:84–96. doi: 10.1021/ci800298z. PubMed DOI
Saraboji K., Hakansson M., Genheden S., Diehl C., Qvist J., Weininger U., Nilsson U.J., Leffler H., Ryde U., Akke M., et al. The carbohydrate-binding site in galectin-3 is pre-organized to recognize a sugar-like framework of oxygens: Ultra-high resolution structures and water dynamics. Biochemistry. 2012;51:296–306. doi: 10.1021/bi201459p. PubMed DOI PMC
Blanchard H., Yu X., Collins P.M., Bum-Erdene K. Galectin-3 inhibitors: A patent review (2008–present) Expert Opin. Ther. Pat. 2014;24:1053–1065. doi: 10.1517/13543776.2014.947961. PubMed DOI
Öberg C.T., Leffler H., Nilsson U.J. Inhibition of galectins with small molecules. CHIMIA Int. J. Chem. 2011;65:18–23. doi: 10.2533/chimia.2011.18. PubMed DOI
Laaf D., Steffens H., Pelantová H., Bojarová P., Křen V., Elling L. Chemo-enzymatic synthesis of branched N-acetyllactosamine glycan oligomers for galectin-3 inhibition. Adv. Synth. Catal. 2017;359:4015–4024. doi: 10.1002/adsc.201700969. DOI
Kamili N.A., Arthur C.M., Gerner-Smidt C., Tafesse E., Blenda A., Dias-Baruffi M., Stowell S.R. Key regulators of galectin–glycan interactions. Proteomics. 2016;16:3111–3125. doi: 10.1002/pmic.201600116. PubMed DOI PMC
Stowell S.R., Arthur C.M., Mehta P., Slanina K.A., Blixt O., Leffler H., Smith D.F., Cummings R.D. Galectin-1, -2, and -3 exhibit differential recognition of sialylated glycans and blood group antigens. J. Biol. Chem. 2008;283:10109–10123. doi: 10.1074/jbc.M709545200. PubMed DOI PMC
Barboni E.A.M., Bawumia S., Colin Hughes R. Kinetic measurements of binding of galectin 3 to a laminin substratum. Glycoconjug. J. 1999;16:365–373. doi: 10.1023/A:1007004330048. PubMed DOI
Jin F., Chammas R., Engel J., Reinhold V. Structure and function of laminin 1 glycans; glycan profiling. Glycobiology. 1995;5:157–158. doi: 10.1093/glycob/5.2.157. PubMed DOI
Yoshioka K., Sato Y., Murakami T., Tanaka M., Niwa O. One-step detection of galectins on hybrid monolayer surface with protruding lactoside. Anal. Chem. 2010;82:1175–1178. doi: 10.1021/ac9022346. PubMed DOI
Javier Muñoz F., Ignacio Santos J., Ardá A., André S., Gabius H.-J., Sinisterra J.V., Jiménez-Barbero J., Hernáiz M.J. Binding studies of adhesion/growth-regulatory galectins with glycoconjugates monitored by surface plasmon resonance and NMR spectroscopy. Org. Biomol. Chem. 2010;8:2986–2992. doi: 10.1039/b927139b. PubMed DOI
Sauerzapfe B., Namdjou D.J., Schumacher T., Linden N., Křenek K., Křen V., Elling L. Characterization of recombinant fusion constructs of human beta 1,4-galactosyltransferase 1 and the lipase pre-propeptide from Staphylococcus hyicus. J. Mol. Catal. B Enzym. 2008;50:128–140. doi: 10.1016/j.molcatb.2007.09.009. DOI
Kupper C.E., Rosencrantz R.R., Henssen B., Pelantová H., Thönes S., Drozdová A., Křen V., Elling L. Chemo-enzymatic modification of poly-N-acetyllactosamine (LacNAc) oligomers and N,N-diacetyllactosamine (LacDINAc) based on galactose oxidase treatment. Beilstein J. Org. Chem. 2012;8:712–725. doi: 10.3762/bjoc.8.80. PubMed DOI PMC
Fischöder T., Laaf D., Dey C., Elling L. Enzymatic synthesis of N-acetyllactosamine (LacNAc) type 1 oligomers and characterization as multivalent galectin ligands. Molecules. 2017;22:1320. doi: 10.3390/molecules22081320. PubMed DOI PMC
Sauerzapfe B., Křenek K., Schmiedel J., Wakarchuk W.W., Pelantová H., Křen V., Elling L. Chemo-enzymatic synthesis of poly-N-acetyllactosamine (poly-LacNAc) structures and their characterization for CGL2-galectin-mediated binding of ECM glycoproteins to biomaterial surfaces. Glycoconj. J. 2009;26:141–159. doi: 10.1007/s10719-008-9172-2. PubMed DOI
Rech C., Rosencrantz R.R., Křenek K., Pelantová H., Bojarová P., Römer C.E., Hanisch F.G., Křen V., Elling L. Combinatorial one-pot synthesis of poly-N-acetyllactosamine oligosaccharides with Leloir-glycosyltransferases. Adv. Synth. Catal. 2011;353:2492–2500. doi: 10.1002/adsc.201100375. DOI
Bojarová P., Chytil P., Mikulová B., Bumba L., Konefał R., Pelantová H., Krejzová J., Slámová K., Petrásková L., Kotrchová L., et al. Glycan-decorated HPMA copolymers as high-affinity lectin ligands. Polym. Chem. 2017;8:2647–2658. doi: 10.1039/C7PY00271H. DOI
Essmann U., Perera L., Berkowitz M.L., Darden T., Lee H., Pedersen L.G. A smooth particle mesh Ewald method. J. Chem. Phys. 1995;103:8577–8593. doi: 10.1063/1.470117. DOI
Bussi G., Donadio D., Parrinello M. Canonical sampling through velocity-rescaling. J. Chem. Phys. 2007;126:014101. doi: 10.1063/1.2408420. PubMed DOI
Pettersen E.F., Goddard T.D., Huang C.C., Couch G.S., Greenblatt D.M., Meng E.C., Ferrin T.E. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 2004;25:1605–1612. doi: 10.1002/jcc.20084. PubMed DOI
Hansson T., Marelius J., Åqvist J. Ligand binding affinity prediction by linear interaction energy methods. J. Comput. Aided Mol. Des. 1998;12:27–35. doi: 10.1023/A:1007930623000. PubMed DOI
Oligosaccharide Ligands of Galectin-4 and Its Subunits: Multivalency Scores Highly
Engineered Glycosidases for the Synthesis of Analogs of Human Milk Oligosaccharides
Cross-Linking Effects Dictate the Preference of Galectins to Bind LacNAc-Decorated HPMA Copolymers
The β-N-Acetylhexosaminidase in the Synthesis of Bioactive Glycans: Protein and Reaction Engineering
Biocompatible glyconanomaterials based on HPMA-copolymer for specific targeting of galectin-3