Oligosaccharide Ligands of Galectin-4 and Its Subunits: Multivalency Scores Highly

. 2023 May 11 ; 28 (10) : . [epub] 20230511

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37241779

Grantová podpora
22-00197K Czech Science Foundation

Galectins are carbohydrate-binding lectins that modulate the proliferation, apoptosis, adhesion, or migration of cells by cross-linking glycans on cell membranes or extracellular matrix components. Galectin-4 (Gal-4) is a tandem-repeat-type galectin expressed mainly in the epithelial cells of the gastrointestinal tract. It consists of an N- and a C-terminal carbohydrate-binding domain (CRD), each with distinct binding affinities, interconnected with a peptide linker. Compared to other more abundant galectins, the knowledge of the pathophysiology of Gal-4 is sparse. Its altered expression in tumor tissue is associated with, for example, colon, colorectal, and liver cancers, and it increases in tumor progression, and metastasis. There is also very limited information on the preferences of Gal-4 for its carbohydrate ligands, particularly with respect to Gal-4 subunits. Similarly, there is virtually no information on the interaction of Gal-4 with multivalent ligands. This work shows the expression and purification of Gal-4 and its subunits and presents a structure-affinity relationship study with a library of oligosaccharide ligands. Furthermore, the influence of multivalency is demonstrated in the interaction with a model lactosyl-decorated synthetic glycoconjugate. The present data may be used in biomedical research for the design of efficient ligands of Gal-4 with diagnostic or therapeutic potential.

Zobrazit více v PubMed

Elola M.T., Blindner A.G., Ferragut F., Bracalente C., Rabinovich G.A. Assembly, organization and regulation of cell-surface receptors by lectin-glycan complexes. Biochem. J. 2015;469:1–16. doi: 10.1042/BJ20150461. PubMed DOI

Cousin J.M., Cloninger M.J. The role of galectin-1 in cancer progression, and synthetic multivalent systems for the study of galectin-1. Int. J. Mol. Sci. 2016;17:1566. doi: 10.3390/ijms17091566. PubMed DOI PMC

Heine V., Dey C., Bojarová P., Křen V., Elling L. Methods of in vitro study of galectin-glycomaterial interaction. Biotechnol. Adv. 2022;58:107928. doi: 10.1016/j.biotechadv.2022.107928. PubMed DOI

Cao Z.-Q., Guo X.-L. The role of galectin-4 in physiology and diseases. Protein Cell. 2016;7:314–324. doi: 10.1007/s13238-016-0262-9. PubMed DOI PMC

Xiao Q., Ludwig A.-K., Romano C., Buzzacchera I., Sherma S.E., Vetro M., Vértesy S., Kaltner H., Reed E.H., Möller M., et al. Exploring functional pairing between surface glycoconjugates and human galectins using programmable glycodendrimersomes. Proc. Natl. Acad. Sci. USA. 2018;115:E2509–E2518. doi: 10.1073/pnas.1720055115. PubMed DOI PMC

Bum-Erdene K., Leffler H., Nilsson U.J., Blanchard H. Structural characterization of human galectin-4 N-terminal carbohydrate recognition domain in complex with glycerol, lactose, 3′-sulfolactose and 2′-fucosyllactose. Sci. Rep. 2016;6:20289. doi: 10.1038/srep20289. PubMed DOI PMC

Bum-Erdene K., Leffler H., Nilsson U.J., Blanchard H. Structural characterization of human galectin-4 C-terminal domain: Elucidating the molecular basis for recognition of glycosphingolipids, sulfated saccharides and blood group antigens. FEBS J. 2015;282:3348–3367. doi: 10.1111/febs.13348. PubMed DOI

Rustiguel J.K., Soares R.O.S., Meisburger S.P., Davis K.M., Malzbender K.L., Ando N., Dias-Baruffi M., Nonato M.C. Full-length model of the human galectin-4 and insights into dynamics of inter-domain communication. Sci. Rep. 2016;6:33633. doi: 10.1038/srep33633. PubMed DOI PMC

Danielsen E.M., Hansen G.H. Lipid raft organization and function in the small intestinal brush border. J. Physiol. Biochem. 2008;64:377–382. doi: 10.1007/BF03174093. PubMed DOI

Delacour D., Koch A., Jakob R. The role of galectins in protein trafficking. Traffic. 2009;10:1405–1413. doi: 10.1111/j.1600-0854.2009.00960.x. PubMed DOI

Delacour D., Gouyer V., Zanetta J.-P., Drobecq H., Leteurtre E., Grard G., Moreau-Hannedouche O., Maes E., Pons A., André S., et al. Galectin-4 and sulfatides in apical membrane trafficking in enterocyte-like cells. J. Cell Biol. 2005;169:491–501. doi: 10.1083/jcb.200407073. PubMed DOI PMC

Morelle W., Stechly L., André S., Van Seuningen I., Porchet N., Gabius H.J., Michalski J.-C., Huet G. Glycosylation pattern of brush border-associated glycoproteins in enterocyte-like cells: Involvement of complex-type N-glycans in apical trafficking. Biol. Chem. 2009;390:529–544. PubMed

Satelli A., Rao P.S., Thirumala S., Rao U.S. Galectin-4 functions as a tumour suppressor of human colorectal cancer. Int. J. Cancer. 2011;129:799–809. doi: 10.1002/ijc.25750. PubMed DOI PMC

Kim S.W., Park K.C., Jeon S.M., Ohn T.B., Kim T.I., Kim W.H., Cheon J.H. Abrogation of galectin-4 expression promotes tumorigenesis in colorectal cancer. Cell Oncol. 2013;36:169–178. doi: 10.1007/s13402-013-0124-x. PubMed DOI

Barrow H., Guo X., Wandall H.H., Pedersen J.W., Fu B., Zhao Q., Chen C., Rhodes J.M., Yu L.-G. Serum galectin-2, -4, and -8 are greatly increased in colon and breast cancer patients and promote cancer cell adhesion to blood vascular endothelium. Clin. Cancer Res. 2011;17:7035–7046. doi: 10.1158/1078-0432.CCR-11-1462. PubMed DOI

Barrow H., Rhodes J.M., Yu L.-G. Simultaneous determination of serum galectin-3 and -4 levels detects metastases in colorectal cancer patients. Cell Oncol. 2013;36:9–13. doi: 10.1007/s13402-012-0109-1. PubMed DOI

Huflejt M.E., Leffler H. Galectin-4 in normal tissues and cancer. Glycoconjug. J. 2003;20:247–255. doi: 10.1023/B:GLYC.0000025819.54723.a0. PubMed DOI

Hayashi T., Saito T., Fujimura T., Hara K., Takamochi K., Mitani K., Mineki R., Kazuno S., Oh S., Ueno T., et al. Galectin-4, a novel predictor for lymph node metastasis in lung adenocarcinoma. PLoS ONE. 2013;8:e81883. doi: 10.1371/journal.pone.0081883. PubMed DOI PMC

Ideo H., Seko A., Ohkura T., Matta K.L., Yamashita K. High-affinity binding of recombinant human galectin-4 to SO3−→3Galβ1→3GalNAc pyranoside. Glycobiology. 2002;12:199–208. doi: 10.1093/glycob/12.3.199. PubMed DOI

Vokhmyanina O.A., Rapoport E.M., André S., Severov V.V., Ryzhov I., Pazynina G.V., Korchagina E., Gabius H.-J., Bovin N.V. Comparative study of the glycan specificities of cell-bound human tandem-repeat-type galectin-4, -8 and -9. Glycobiology. 2012;22:1207–1217. doi: 10.1093/glycob/cws079. PubMed DOI

Quintana J.I., Delgado S., Núñez-Franco R., Cañada F.J., Jiménez-Osés G., Jiménez-Barbero J., Ardá A. Galectin-4 N-terminal domain: Binding preferences toward A and B antigens with different peripheral core presentations. Front. Chem. 2021;9:664097. doi: 10.3389/fchem.2021.664097. PubMed DOI PMC

Nielsen M.I., Stegmayr J., Grant O.C., Yang Z., Nilsson U.J., Boos I., Carlsson M.C., Woods R.J., Unverzagt C., Leffler H., et al. Galectin binding to cells and glycoproteins with genetically modified glycosylation reveals galectin-glycan specificities in a natural context. J. Biol. Chem. 2018;293:20249–20262. doi: 10.1074/jbc.RA118.004636. PubMed DOI PMC

Wu A.M., Wu J.H., Liu J.-H., Singh T., André S., Kaltner H., Gabius H.-J. Effects of polyvalency of glycotopes and natural modifications of human blood group ABH/Lewis sugars at the Galbeta1-terminated core saccharides on the binding of domain-I of recombinant tandem-repeat-type galectin-4 from rat gastrointestinal tract (G4-N) Biochimie. 2004;86:317–326. doi: 10.1016/j.biochi.2004.03.007. PubMed DOI

Bian C.-F., Zhang Y., Sun H., Li D.-F., Wang D.-C. Structural basis for distinct binding properties of the human galectins to Thomsen-Friedenreich antigen. PLoS ONE. 2011;6:e25007. doi: 10.1371/journal.pone.0025007. PubMed DOI PMC

Ito Y., Sasaki T. Cloning and characterization of the gene encoding a novel β-galactosidase from Bacillus circulans. Biosci. Biotechnol. Biochem. 1997;61:1270–1276. doi: 10.1271/bbb.61.1270. PubMed DOI

Naundorf A., Caussette M., Ajisaka K. Characterization of the immobilized β-galactosidase C from Bacillus circulans and the production of β(1→3)-linked disaccharides. Biosci. Biotechnol. Biochem. 1998;62:1313–1317. doi: 10.1271/bbb.62.1313. PubMed DOI

Ohnuma T., Taku T., Nagatani T., Horii A., Imaoka S., Tanaka T. Chemo-enzymatic synthesis of lacto-N-biose I catalyzed by β-1,3-galactosidase from Bacillus circulans using 4,6-dimethoxy-1,3,5-triazin-2-yl β-galactopyranoside as a glycosyl donor. Biosci. Biotechnol. Biochem. 2021;85:1716–1719. doi: 10.1093/bbb/zbab071. PubMed DOI

Drozdová A., Bojarová P., Křenek K., Weignerová L., Henßen B., Elling L., Christensen H., Jensen H.H., Pelantová H., Kuzma M., et al. Enzymatic synthesis of dimeric glycomimetic ligands of NK cell activation receptors. Carbohydr. Res. 2011;346:1599–1609. doi: 10.1016/j.carres.2011.04.043. PubMed DOI

Laaf D., Bojarová P., Pelantová H., Křen V., Elling L. Tailored multivalent neo-glycoproteins: Synthesis, evaluation, and application of a library of galectin-3-binding glycan ligands. Bioconjug. Chem. 2017;28:2832–2840. doi: 10.1021/acs.bioconjchem.7b00520. PubMed DOI

Šimonová A., Kupper C.E., Böcker S., Müller A., Hofbauerová K., Pelantová H., Elling L., Křen V., Bojarová P. Chemo-enzymatic synthesis of LacdiNAc dimers of varying length as novel galectin ligands. J. Mol. Catal. B Enzym. 2014;101:47–55. doi: 10.1016/j.molcatb.2013.12.018. DOI

Bojarová P., Kulik N., Hovorková M., Slámová K., Pelantová H., Křen V. The β-N-acetylhexosaminidase in the synthesis of bioactive glycans: Protein and reaction engineering. Molecules. 2019;24:599. doi: 10.3390/molecules24030599. PubMed DOI PMC

Konvalinková D., Dolníček F., Hovorková M., Červený J., Kundrát O., Pelantová H., Petrásková L., Cvačka J., Faizulina M., Varghese B., et al. Glycocalix[4]arenes and their affinity to a library of galectins: The linker matters. Org. Biomol. Chem. 2023;21:1294–1302. doi: 10.1039/D2OB02235D. PubMed DOI

Bumba L., Laaf D., Spiwok V., Elling L., Křen V., Bojarová P. Poly-N-acetyllactosamine neo-glycoproteins as nanomolar ligands of human galectin-3: Binding kinetics and modeling. Int. J. Mol. Sci. 2018;19:372. doi: 10.3390/ijms19020372. PubMed DOI PMC

Johannes L., Jacob R., Leffler H. Galectins at a glance. J. Cell Sci. 2018;131:jcs208884. doi: 10.1242/jcs.208884. PubMed DOI

Ayona D., Fournier P.E., Henrissat B., Desnues B. Utilization of galectins by pathogens for infection. Front. Immunol. 2020;11:1877. doi: 10.3389/fimmu.2020.01877. PubMed DOI PMC

Hovorková M., Červený J., Bumba L., Pelantová H., Cvačka J., Křen V., Renaudet O., Goyard D., Bojarová P. Advanced high-affinity glycoconjugate ligands of galectins. Bioorg. Chem. 2023;131:106279. doi: 10.1016/j.bioorg.2022.106279. PubMed DOI

Bojarová P., Tavares M.R., Laaf D., Bumba L., Petrásková L., Konefal R., Bláhová M., Pelantová H., Elling L., Etrych T., et al. Biocompatible glyconanomaterials based on HPMA-copolymer for specific targeting of galectin-3. J. Nanobiotechnol. 2018;16:73. doi: 10.1186/s12951-018-0399-1. PubMed DOI PMC

Compain P., Bodlenner A. The multivalent effect in glycosidase inhibition: A new, rapidly emerging topic in glycoscience. ChemBioChem. 2014;15:1239–1251. doi: 10.1002/cbic.201402026. PubMed DOI

Kamerke C., Pattky M., Huhn C., Elling L. Synthesis of nucleotide-activated disaccharides with recombinant β3-galactosidase from Bacillus circulans. J. Mol. Catal. B Enzym. 2013;89:73–81. doi: 10.1016/j.molcatb.2012.12.014. DOI

Nekvasilová P., Hovorková M., Mészáros Z., Petrásková L., Pelantová H., Křen V., Slámová K., Bojarová P. Engineered glycosidases for the synthesis of human milk oligosaccharides. Int. J. Mol. Sci. 2022;23:4106. doi: 10.3390/ijms23084106. PubMed DOI PMC

Heine V., Hovorková M., Vlachová M., Filipová M., Bumba L., Janoušková O., Hubálek M., Cvačka J., Petrásková L., Pelantová H., et al. Immunoprotective neo-glycoproteins: Chemoenzymatic synthesis of multivalent glycomimetics for inhibition of cancer-related galectin-3. Eur. J. Med. Chem. 2021;220:113500. doi: 10.1016/j.ejmech.2021.113500. PubMed DOI

Huflejt M.E., Jordan E.T., Gitt M.A., Barrondes S.H., Leffler H. Strikingly different localization of galectin-3 and galectin-4 in human colon adenocarcinoma T84 cells. Galectin-4 is localized at sites of cell adhesion. J. Biol. Chem. 1997;272:14294–14303. doi: 10.1074/jbc.272.22.14294. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...