Engineered Glycosidases for the Synthesis of Analogs of Human Milk Oligosaccharides
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
20-00215S
Czech Science Foundation
LTC20072
Ministry of Education Youth and Sports
PubMed
35456924
PubMed Central
PMC9027921
DOI
10.3390/ijms23084106
PII: ijms23084106
Knihovny.cz E-zdroje
- Klíčová slova
- enzymatic synthesis, glycosidase, human milk oligosaccharide, mutagenesis,
- MeSH
- Bifidobacterium bifidum * metabolismus MeSH
- glykosidhydrolasy metabolismus MeSH
- glykosyltransferasy metabolismus MeSH
- lidé MeSH
- mateřské mléko * metabolismus MeSH
- novorozenec MeSH
- oligosacharidy chemie MeSH
- substrátová specifita MeSH
- Check Tag
- lidé MeSH
- novorozenec MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- glykosidhydrolasy MeSH
- glykosyltransferasy MeSH
- oligosacharidy MeSH
Enzymatic synthesis is an elegant biocompatible approach to complex compounds such as human milk oligosaccharides (HMOs). These compounds are vital for healthy neonatal development with a positive impact on the immune system. Although HMOs may be prepared by glycosyltransferases, this pathway is often complicated by the high price of sugar nucleotides, stringent substrate specificity, and low enzyme stability. Engineered glycosidases (EC 3.2.1) represent a good synthetic alternative, especially if variations in the substrate structure are desired. Site-directed mutagenesis can improve the synthetic process with higher yields and/or increased reaction selectivity. So far, the synthesis of human milk oligosaccharides by glycosidases has mostly been limited to analytical reactions with mass spectrometry detection. The present work reveals the potential of a library of engineered glycosidases in the preparative synthesis of three tetrasaccharides derived from lacto-N-tetraose (Galβ4GlcNAcβ3Galβ4Glc), employing sequential cascade reactions catalyzed by β3-N-acetylhexosaminidase BbhI from Bifidobacterium bifidum, β4-galactosidase BgaD-B from Bacillus circulans, β4-N-acetylgalactosaminidase from Talaromyces flavus, and β3-galactosynthase BgaC from B. circulans. The reaction products were isolated and structurally characterized. This work expands the insight into the multi-step catalysis by glycosidases and shows the path to modified derivatives of complex carbohydrates that cannot be prepared by standard glycosyltransferase methods.
Zobrazit více v PubMed
Bode L. Human milk oligosaccharides: Every baby needs a sugar mama. Glycobiology. 2012;22:1147–1162. doi: 10.1093/glycob/cws074. PubMed DOI PMC
Chen X. Human milk oligosaccharides (HMOS): Structure, function, and enzyme-catalyzed synthesis. Adv. Carbohydr. Chem. Biochem. 2015;72:113–190. PubMed PMC
Blank D., Dotz V., Geyer R., Kunz C. Human milk oligosaccharides and Lewis blood group: Individual high-throughput sample profiling to enhance conclusions from functional studies. Adv. Nut. 2012;3:440S–449S. doi: 10.3945/an.111.001446. PubMed DOI PMC
Mészáros Z., Nekvasilová P., Bojarová P., Křen V., Slámová K. Advanced glycosidases as ingenious biosynthetic instruments. Biotechnol. Adv. 2021;49:107733. doi: 10.1016/j.biotechadv.2021.107733. PubMed DOI
Zeuner B., Teze D., Muschiol J., Meyer A.S. Synthesis of human milk oligosaccharides: Protein engineering strategies for improved enzymatic transglycosylation. Molecules. 2019;24:2033. doi: 10.3390/molecules24112033. PubMed DOI PMC
Slámová K., Bojarová P., Petrásková L., Křen V. β-N-Acetylhexosaminidase: What’s in a name…? Biotechnol. Adv. 2010;28:682–693. doi: 10.1016/j.biotechadv.2010.04.004. PubMed DOI
Chen X., Xu L., Jin L., Sun B., Gu G., Lu L., Xiao M. Efficient and regioselective synthesis of β-GalNAc/GlcNAc-lactose by a bifunctional transglycosylating β-N-acetylhexosaminidase from Bifidobacterium bifidum. Appl. Environ. Microbiol. 2016;82:5642. doi: 10.1128/AEM.01325-16. PubMed DOI PMC
Schmölzer K., Weingarten M., Baldenius K., Nidetzky B. Glycosynthase principle transformed into biocatalytic process technology: Lacto-N-triose II production with engineered exo-hexosaminidase. ACS Catal. 2019;9:5503–5514. doi: 10.1021/acscatal.9b01288. DOI
Chen X., Jin L., Jiang X., Guo L., Gu G., Xu L., Lu L., Wang F., Xiao M. Converting a β-N-acetylhexosaminidase into two trans-β-N-acetylhexosaminidases by domain-targeted mutagenesis. Appl. Microbiol. Biotechnol. 2020;104:661–673. doi: 10.1007/s00253-019-10253-y. PubMed DOI
Teze D., Zhao J., Wiemann M., Kazi Z.G.A., Lupo R., Zeuner B., Vuillemin M., Rønne M.E., Carlström G., Duus J.Ø., et al. Rational enzyme design without structural knowledge: A sequence-based approach for efficient generation of transglycosylases. Chem. Eur. J. 2021;27:10323–10334. doi: 10.1002/chem.202100110. PubMed DOI
Liu Y.-H., Wang L., Huang P., Jiang Z.-Q., Yan Q.-J., Yang S.-Q. Efficient sequential synthesis of lacto-N-triose II and lacto-N-neotetraose by a novel β-N-acetylhexosaminidase from Tyzzerella nexilis. Food Chem. 2020;332:127438. doi: 10.1016/j.foodchem.2020.127438. PubMed DOI
Bojarová P., Křenek K., Kuzma M., Petrásková L., Bezouška K., Namdjou D.-J., Elling L., Křen V. N-Acetylhexosamine triad in one molecule: Chemoenzymatic introduction of 2-acetamido-2-deoxy-β-d-galactopyranosyluronic acid residue into a complex oligosaccharide. J. Mol. Catal. B Enzym. 2008;50:69–73. doi: 10.1016/j.molcatb.2007.09.002. DOI
Bojarová P., Slámová K., Křenek K., Gažák R., Kulik N., Ettrich R., Pelantová H., Kuzma M., Riva S., Adámek D., et al. Charged hexosaminides as new substrates for β-N-acetylhexosaminidase-catalyzed synthesis of immunomodulatory disaccharides. Adv. Synth. Catal. 2011;353:2409–2420. doi: 10.1002/adsc.201100371. DOI
Slámová K., Gažák R., Bojarová P., Kulik N., Ettrich R., Pelantová H., Sedmera P., Křen V. 4-Deoxy-substrates for β-N-acetylhexosaminidases: How to make use of their loose specificity. Glycobiology. 2010;20:1002–1009. doi: 10.1093/glycob/cwq058. PubMed DOI
Bojarová P., Kulik N., Hovorková M., Slámová K., Pelantová H., Křen V. The β-N-acetylhexosaminidase in the synthesis of bioactive glycans: Protein and reaction engineering. Molecules. 2019;24:599. doi: 10.3390/molecules24030599. PubMed DOI PMC
Nekvasilová P., Kulik N., Rychlá N., Pelantová H., Petrásková L., Bosáková Z., Cvačka J., Slámová K., Křen V., Bojarová P. How site-directed mutagenesis boosted selectivity of a promiscuous enzyme. Adv. Synt. Catal. 2020;362:4138–4150. doi: 10.1002/adsc.202000604. DOI
Murata T., Inukai T., Suzuki M., Yamagishi M., Usui T. Facile enzymatic conversion of lactose into lacto-N-tetraose and lacto-N-neotetraose. Glycoconj. J. 1999;16:189–195. doi: 10.1023/A:1007020219275. PubMed DOI
Ito Y., Sasaki T. Cloning and characterization of the gene encoding a novel β-galactosidase from Bacillus circulans. Biosci. Biotechnol. Biochem. 1997;61:1270–1276. doi: 10.1271/bbb.61.1270. PubMed DOI
Otieno D.O. Synthesis of β-galactooligosaccharides from lactose using microbial β-galactosidases. Compr. Rev. Food Sci. Food Saf. 2010;9:471–482. doi: 10.1111/j.1541-4337.2010.00121.x. PubMed DOI
Song J., Imanaka H., Imamura K., Minoda M., Katase T., Hoshi Y., Yamaguchi S., Nakanishi K. Cloning and expression of a β-galactosidase gene of Bacillus circulans. Biosci. Biotechnol. Biochem. 2011;75:1194–1197. doi: 10.1271/bbb.110014. PubMed DOI
Zeuner B., Nyffenegger C., Mikkelsen J.D., Meyer A.S. Thermostable β-galactosidases for the synthesis of human milk oligosaccharides. New Biotechnol. 2016;33:355–360. doi: 10.1016/j.nbt.2016.01.003. PubMed DOI
Ishikawa K., Kataoka M., Yanamoto T., Nakabayashi M., Watanabe M., Ishihara S., Yamaguchi S. Crystal structure of β-galactosidase from Bacillus circulans ATCC 31382 (BgaD) and the construction of the thermophilic mutants. FEBS J. 2015;282:2540–2552. doi: 10.1111/febs.13298. PubMed DOI
Henze M., You D.-J., Kamerke C., Hoffmann N., Angkawidjaja C., Ernst S., Pietruszka J., Kanaya S., Elling L. Rational design of a glycosynthase by the crystal structure of β-galactosidase from Bacillus circulans (BgaC) and its use for the synthesis of N-acetyllactosamine type 1 glycan structures. J. Biotechnol. 2014;191:78–85. doi: 10.1016/j.jbiotec.2014.07.003. PubMed DOI
Warmerdam A., Paudel E., Jia W., Boom R.M., Janssen A.E.M. Characterization of β-galactosidase isoforms from Bacillus circulans and their contribution to GOS production. Appl. Biochem. Biotechnol. 2013;170:340–358. doi: 10.1007/s12010-013-0181-7. PubMed DOI
Collins P.M., Bum-Erdene K., Yu X., Blanchard H. Galectin-3 interactions with glycosphingolipids. J. Mol. Biol. 2014;426:1439–1451. doi: 10.1016/j.jmb.2013.12.004. PubMed DOI
Bumba L., Laaf D., Spiwok V., Elling L., Křen V., Bojarová P. Poly-N-acetyllactosamine neo-glycoproteins as nanomolar ligands of human galectin-3: Binding kinetics and modeling. Int. J. Mol. Sci. 2018;19:372. doi: 10.3390/ijms19020372. PubMed DOI PMC
Krejzová J., Kulik N., Slámová K., Křen V. Expression of human β-N-acetylhexosaminidase B in yeast eases the search for selective inhibitors. Enzym. Microb. Technol. 2016;89:1–6. doi: 10.1016/j.enzmictec.2016.03.003. PubMed DOI
Slámová K., Bojarová P., Gerstorferová D., Fliedrová B., Hofmeisterová J., Fiala M., Pompach P., Křen V. Sequencing, cloning and high-yield expression of a fungal β-N-acetylhexosaminidase in Pichia pastoris. Protein Expr. Purif. 2012;82:212–217. doi: 10.1016/j.pep.2012.01.004. PubMed DOI
Li C., Kim Y.-W. Characterization of a galactosynthase derived from Bacillus circulans β-galactosidase: Facile synthesis of d-lacto- and d-galacto-N-bioside. ChemBioChem. 2014;15:522–526. doi: 10.1002/cbic.201300699. PubMed DOI
Kamerke C., Pattky M., Huhn C., Elling L. Synthesis of nucleotide-activated disaccharides with recombinant β3-galactosidase C from Bacillus circulans. J. Mol. Catal. B Enzym. 2013;89:73–81. doi: 10.1016/j.molcatb.2012.12.014. DOI
Hovorková M., Kulik N., Konvalinková D., Petrásková L., Křen V., Bojarová P. Mutagenesis of catalytic nucleophile of β-galactosidase retains residual hydrolytic activity and affords a transgalactosidase. ChemCatChem. 2021;13:4532–4542. doi: 10.1002/cctc.202101107. DOI
Viladot J.L., de Ramon E., Durany O., Planas A. Probing the mechanism of Bacillus 1,3-1,4-ß-d-glucan 4-glucanohydrolases by chemical rescue of inactive mutants at catalytically essential residues. Biochemistry. 1998;37:11332–11342. doi: 10.1021/bi980586q. PubMed DOI
Bojarová P., Bruthans J., Křen V. β-N-Acetylhexosaminidases—The wizards of glycosylation. Appl. Microbiol. Biotechnol. 2019;103:7869–7881. doi: 10.1007/s00253-019-10065-0. PubMed DOI
Castejón-Vilatersana M., Faijes M., Planas A. Transglycosylation activity of engineered Bifidobacterium lacto-N-biosidase mutants at donor subsites for lacto-N-tetraose synthesis. Int. J. Mol. Sci. 2021;22:3230. doi: 10.3390/ijms22063230. PubMed DOI PMC
Schmölzer K., Weingarten M., Baldenius K., Nidetzky B. Lacto-N-tetraose synthesis by wild-type and glycosynthase variants of the β-N-hexosaminidase from Bifidobacterium bifidum. Org. Biomol. Chem. 2019;17:5661–5665. doi: 10.1039/C9OB00424F. PubMed DOI
Vuillemin M., Holck J., Matwiejuk M., Moreno Prieto E.S., Muschiol J., Molnar-Gabor D., Meyer A.S., Zeuner B. Improvement of the transglycosylation efficiency of a lacto-N-biosidase from Bifidobacterium bifidum by protein engineering. Appl. Sci. 2021;11:11493. doi: 10.3390/app112311493. DOI
Garcia-Oliva C., Hoyos P., Petrásková L., Kulik N., Pelantová H., Cabanillas A.H., Rumbero Á., Křen V., Hernáiz M.J., Bojarová P. Acceptor specificity of β-N-acetylhexosaminidase from Talaromyces flavus: A rational explanation. Int. J. Mol. Sci. 2019;20:6181. doi: 10.3390/ijms20246181. PubMed DOI PMC
Muschiol J., Vuillemin M., Meyer A.S., Zeuner B. β-N-Acetylhexosaminidases for carbohydrate synthesis via trans-glycosylation. Catalysts. 2020;10:365. doi: 10.3390/catal10040365. DOI
Pingitore V., Martínez-Bailén M., Carmona A.T., Mészáros Z., Kulik N., Slámová K., Křen V., Bojarová P., Robina I., Moreno-Vargas A.J. Discovery of human hexosaminidase inhibitors by in situ screening of a library of mono- and divalent pyrrolidine iminosugars. Bioorg. Chem. 2022;120:105650. doi: 10.1016/j.bioorg.2022.105650. PubMed DOI
Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976;72:248–254. doi: 10.1016/0003-2697(76)90527-3. PubMed DOI
Oligosaccharide Ligands of Galectin-4 and Its Subunits: Multivalency Scores Highly