Engineered Glycosidases for the Synthesis of Analogs of Human Milk Oligosaccharides

. 2022 Apr 07 ; 23 (8) : . [epub] 20220407

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35456924

Grantová podpora
20-00215S Czech Science Foundation
LTC20072 Ministry of Education Youth and Sports

Enzymatic synthesis is an elegant biocompatible approach to complex compounds such as human milk oligosaccharides (HMOs). These compounds are vital for healthy neonatal development with a positive impact on the immune system. Although HMOs may be prepared by glycosyltransferases, this pathway is often complicated by the high price of sugar nucleotides, stringent substrate specificity, and low enzyme stability. Engineered glycosidases (EC 3.2.1) represent a good synthetic alternative, especially if variations in the substrate structure are desired. Site-directed mutagenesis can improve the synthetic process with higher yields and/or increased reaction selectivity. So far, the synthesis of human milk oligosaccharides by glycosidases has mostly been limited to analytical reactions with mass spectrometry detection. The present work reveals the potential of a library of engineered glycosidases in the preparative synthesis of three tetrasaccharides derived from lacto-N-tetraose (Galβ4GlcNAcβ3Galβ4Glc), employing sequential cascade reactions catalyzed by β3-N-acetylhexosaminidase BbhI from Bifidobacterium bifidum, β4-galactosidase BgaD-B from Bacillus circulans, β4-N-acetylgalactosaminidase from Talaromyces flavus, and β3-galactosynthase BgaC from B. circulans. The reaction products were isolated and structurally characterized. This work expands the insight into the multi-step catalysis by glycosidases and shows the path to modified derivatives of complex carbohydrates that cannot be prepared by standard glycosyltransferase methods.

Zobrazit více v PubMed

Bode L. Human milk oligosaccharides: Every baby needs a sugar mama. Glycobiology. 2012;22:1147–1162. doi: 10.1093/glycob/cws074. PubMed DOI PMC

Chen X. Human milk oligosaccharides (HMOS): Structure, function, and enzyme-catalyzed synthesis. Adv. Carbohydr. Chem. Biochem. 2015;72:113–190. PubMed PMC

Blank D., Dotz V., Geyer R., Kunz C. Human milk oligosaccharides and Lewis blood group: Individual high-throughput sample profiling to enhance conclusions from functional studies. Adv. Nut. 2012;3:440S–449S. doi: 10.3945/an.111.001446. PubMed DOI PMC

Mészáros Z., Nekvasilová P., Bojarová P., Křen V., Slámová K. Advanced glycosidases as ingenious biosynthetic instruments. Biotechnol. Adv. 2021;49:107733. doi: 10.1016/j.biotechadv.2021.107733. PubMed DOI

Zeuner B., Teze D., Muschiol J., Meyer A.S. Synthesis of human milk oligosaccharides: Protein engineering strategies for improved enzymatic transglycosylation. Molecules. 2019;24:2033. doi: 10.3390/molecules24112033. PubMed DOI PMC

Slámová K., Bojarová P., Petrásková L., Křen V. β-N-Acetylhexosaminidase: What’s in a name…? Biotechnol. Adv. 2010;28:682–693. doi: 10.1016/j.biotechadv.2010.04.004. PubMed DOI

Chen X., Xu L., Jin L., Sun B., Gu G., Lu L., Xiao M. Efficient and regioselective synthesis of β-GalNAc/GlcNAc-lactose by a bifunctional transglycosylating β-N-acetylhexosaminidase from Bifidobacterium bifidum. Appl. Environ. Microbiol. 2016;82:5642. doi: 10.1128/AEM.01325-16. PubMed DOI PMC

Schmölzer K., Weingarten M., Baldenius K., Nidetzky B. Glycosynthase principle transformed into biocatalytic process technology: Lacto-N-triose II production with engineered exo-hexosaminidase. ACS Catal. 2019;9:5503–5514. doi: 10.1021/acscatal.9b01288. DOI

Chen X., Jin L., Jiang X., Guo L., Gu G., Xu L., Lu L., Wang F., Xiao M. Converting a β-N-acetylhexosaminidase into two trans-β-N-acetylhexosaminidases by domain-targeted mutagenesis. Appl. Microbiol. Biotechnol. 2020;104:661–673. doi: 10.1007/s00253-019-10253-y. PubMed DOI

Teze D., Zhao J., Wiemann M., Kazi Z.G.A., Lupo R., Zeuner B., Vuillemin M., Rønne M.E., Carlström G., Duus J.Ø., et al. Rational enzyme design without structural knowledge: A sequence-based approach for efficient generation of transglycosylases. Chem. Eur. J. 2021;27:10323–10334. doi: 10.1002/chem.202100110. PubMed DOI

Liu Y.-H., Wang L., Huang P., Jiang Z.-Q., Yan Q.-J., Yang S.-Q. Efficient sequential synthesis of lacto-N-triose II and lacto-N-neotetraose by a novel β-N-acetylhexosaminidase from Tyzzerella nexilis. Food Chem. 2020;332:127438. doi: 10.1016/j.foodchem.2020.127438. PubMed DOI

Bojarová P., Křenek K., Kuzma M., Petrásková L., Bezouška K., Namdjou D.-J., Elling L., Křen V. N-Acetylhexosamine triad in one molecule: Chemoenzymatic introduction of 2-acetamido-2-deoxy-β-d-galactopyranosyluronic acid residue into a complex oligosaccharide. J. Mol. Catal. B Enzym. 2008;50:69–73. doi: 10.1016/j.molcatb.2007.09.002. DOI

Bojarová P., Slámová K., Křenek K., Gažák R., Kulik N., Ettrich R., Pelantová H., Kuzma M., Riva S., Adámek D., et al. Charged hexosaminides as new substrates for β-N-acetylhexosaminidase-catalyzed synthesis of immunomodulatory disaccharides. Adv. Synth. Catal. 2011;353:2409–2420. doi: 10.1002/adsc.201100371. DOI

Slámová K., Gažák R., Bojarová P., Kulik N., Ettrich R., Pelantová H., Sedmera P., Křen V. 4-Deoxy-substrates for β-N-acetylhexosaminidases: How to make use of their loose specificity. Glycobiology. 2010;20:1002–1009. doi: 10.1093/glycob/cwq058. PubMed DOI

Bojarová P., Kulik N., Hovorková M., Slámová K., Pelantová H., Křen V. The β-N-acetylhexosaminidase in the synthesis of bioactive glycans: Protein and reaction engineering. Molecules. 2019;24:599. doi: 10.3390/molecules24030599. PubMed DOI PMC

Nekvasilová P., Kulik N., Rychlá N., Pelantová H., Petrásková L., Bosáková Z., Cvačka J., Slámová K., Křen V., Bojarová P. How site-directed mutagenesis boosted selectivity of a promiscuous enzyme. Adv. Synt. Catal. 2020;362:4138–4150. doi: 10.1002/adsc.202000604. DOI

Murata T., Inukai T., Suzuki M., Yamagishi M., Usui T. Facile enzymatic conversion of lactose into lacto-N-tetraose and lacto-N-neotetraose. Glycoconj. J. 1999;16:189–195. doi: 10.1023/A:1007020219275. PubMed DOI

Ito Y., Sasaki T. Cloning and characterization of the gene encoding a novel β-galactosidase from Bacillus circulans. Biosci. Biotechnol. Biochem. 1997;61:1270–1276. doi: 10.1271/bbb.61.1270. PubMed DOI

Otieno D.O. Synthesis of β-galactooligosaccharides from lactose using microbial β-galactosidases. Compr. Rev. Food Sci. Food Saf. 2010;9:471–482. doi: 10.1111/j.1541-4337.2010.00121.x. PubMed DOI

Song J., Imanaka H., Imamura K., Minoda M., Katase T., Hoshi Y., Yamaguchi S., Nakanishi K. Cloning and expression of a β-galactosidase gene of Bacillus circulans. Biosci. Biotechnol. Biochem. 2011;75:1194–1197. doi: 10.1271/bbb.110014. PubMed DOI

Zeuner B., Nyffenegger C., Mikkelsen J.D., Meyer A.S. Thermostable β-galactosidases for the synthesis of human milk oligosaccharides. New Biotechnol. 2016;33:355–360. doi: 10.1016/j.nbt.2016.01.003. PubMed DOI

Ishikawa K., Kataoka M., Yanamoto T., Nakabayashi M., Watanabe M., Ishihara S., Yamaguchi S. Crystal structure of β-galactosidase from Bacillus circulans ATCC 31382 (BgaD) and the construction of the thermophilic mutants. FEBS J. 2015;282:2540–2552. doi: 10.1111/febs.13298. PubMed DOI

Henze M., You D.-J., Kamerke C., Hoffmann N., Angkawidjaja C., Ernst S., Pietruszka J., Kanaya S., Elling L. Rational design of a glycosynthase by the crystal structure of β-galactosidase from Bacillus circulans (BgaC) and its use for the synthesis of N-acetyllactosamine type 1 glycan structures. J. Biotechnol. 2014;191:78–85. doi: 10.1016/j.jbiotec.2014.07.003. PubMed DOI

Warmerdam A., Paudel E., Jia W., Boom R.M., Janssen A.E.M. Characterization of β-galactosidase isoforms from Bacillus circulans and their contribution to GOS production. Appl. Biochem. Biotechnol. 2013;170:340–358. doi: 10.1007/s12010-013-0181-7. PubMed DOI

Collins P.M., Bum-Erdene K., Yu X., Blanchard H. Galectin-3 interactions with glycosphingolipids. J. Mol. Biol. 2014;426:1439–1451. doi: 10.1016/j.jmb.2013.12.004. PubMed DOI

Bumba L., Laaf D., Spiwok V., Elling L., Křen V., Bojarová P. Poly-N-acetyllactosamine neo-glycoproteins as nanomolar ligands of human galectin-3: Binding kinetics and modeling. Int. J. Mol. Sci. 2018;19:372. doi: 10.3390/ijms19020372. PubMed DOI PMC

Krejzová J., Kulik N., Slámová K., Křen V. Expression of human β-N-acetylhexosaminidase B in yeast eases the search for selective inhibitors. Enzym. Microb. Technol. 2016;89:1–6. doi: 10.1016/j.enzmictec.2016.03.003. PubMed DOI

Slámová K., Bojarová P., Gerstorferová D., Fliedrová B., Hofmeisterová J., Fiala M., Pompach P., Křen V. Sequencing, cloning and high-yield expression of a fungal β-N-acetylhexosaminidase in Pichia pastoris. Protein Expr. Purif. 2012;82:212–217. doi: 10.1016/j.pep.2012.01.004. PubMed DOI

Li C., Kim Y.-W. Characterization of a galactosynthase derived from Bacillus circulans β-galactosidase: Facile synthesis of d-lacto- and d-galacto-N-bioside. ChemBioChem. 2014;15:522–526. doi: 10.1002/cbic.201300699. PubMed DOI

Kamerke C., Pattky M., Huhn C., Elling L. Synthesis of nucleotide-activated disaccharides with recombinant β3-galactosidase C from Bacillus circulans. J. Mol. Catal. B Enzym. 2013;89:73–81. doi: 10.1016/j.molcatb.2012.12.014. DOI

Hovorková M., Kulik N., Konvalinková D., Petrásková L., Křen V., Bojarová P. Mutagenesis of catalytic nucleophile of β-galactosidase retains residual hydrolytic activity and affords a transgalactosidase. ChemCatChem. 2021;13:4532–4542. doi: 10.1002/cctc.202101107. DOI

Viladot J.L., de Ramon E., Durany O., Planas A. Probing the mechanism of Bacillus 1,3-1,4-ß-d-glucan 4-glucanohydrolases by chemical rescue of inactive mutants at catalytically essential residues. Biochemistry. 1998;37:11332–11342. doi: 10.1021/bi980586q. PubMed DOI

Bojarová P., Bruthans J., Křen V. β-N-Acetylhexosaminidases—The wizards of glycosylation. Appl. Microbiol. Biotechnol. 2019;103:7869–7881. doi: 10.1007/s00253-019-10065-0. PubMed DOI

Castejón-Vilatersana M., Faijes M., Planas A. Transglycosylation activity of engineered Bifidobacterium lacto-N-biosidase mutants at donor subsites for lacto-N-tetraose synthesis. Int. J. Mol. Sci. 2021;22:3230. doi: 10.3390/ijms22063230. PubMed DOI PMC

Schmölzer K., Weingarten M., Baldenius K., Nidetzky B. Lacto-N-tetraose synthesis by wild-type and glycosynthase variants of the β-N-hexosaminidase from Bifidobacterium bifidum. Org. Biomol. Chem. 2019;17:5661–5665. doi: 10.1039/C9OB00424F. PubMed DOI

Vuillemin M., Holck J., Matwiejuk M., Moreno Prieto E.S., Muschiol J., Molnar-Gabor D., Meyer A.S., Zeuner B. Improvement of the transglycosylation efficiency of a lacto-N-biosidase from Bifidobacterium bifidum by protein engineering. Appl. Sci. 2021;11:11493. doi: 10.3390/app112311493. DOI

Garcia-Oliva C., Hoyos P., Petrásková L., Kulik N., Pelantová H., Cabanillas A.H., Rumbero Á., Křen V., Hernáiz M.J., Bojarová P. Acceptor specificity of β-N-acetylhexosaminidase from Talaromyces flavus: A rational explanation. Int. J. Mol. Sci. 2019;20:6181. doi: 10.3390/ijms20246181. PubMed DOI PMC

Muschiol J., Vuillemin M., Meyer A.S., Zeuner B. β-N-Acetylhexosaminidases for carbohydrate synthesis via trans-glycosylation. Catalysts. 2020;10:365. doi: 10.3390/catal10040365. DOI

Pingitore V., Martínez-Bailén M., Carmona A.T., Mészáros Z., Kulik N., Slámová K., Křen V., Bojarová P., Robina I., Moreno-Vargas A.J. Discovery of human hexosaminidase inhibitors by in situ screening of a library of mono- and divalent pyrrolidine iminosugars. Bioorg. Chem. 2022;120:105650. doi: 10.1016/j.bioorg.2022.105650. PubMed DOI

Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976;72:248–254. doi: 10.1016/0003-2697(76)90527-3. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Oligosaccharide Ligands of Galectin-4 and Its Subunits: Multivalency Scores Highly

. 2023 May 11 ; 28 (10) : . [epub] 20230511

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...