Preparation of Textured Surfaces on Aluminum-Alloy Substrates
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
Program NPU I (LO1504)
Ministerstvo Školství, Mládeže a Tělovýchovy
CZ.1.05/2.1.00/19.0409
European Regional Development Fund
IGA/FT/2017/011
Univerzita Tomáše Bati ve Zlíně
IGA/FT/2018/011
Univerzita Tomáše Bati ve Zlíně
PubMed
30602667
PubMed Central
PMC6337307
DOI
10.3390/ma12010109
PII: ma12010109
Knihovny.cz E-zdroje
- Klíčová slova
- adhesive bonding, alloy, aluminum, duralumin, etching, porous-like, superhydrophobic, surface texture,
- Publikační typ
- časopisecké články MeSH
The ways of producing porous-like textured surfaces with chemical etching on aluminum-alloy substrates were studied. The most appropriate etchants, their combination, temperature, and etching time period were explored. The influence of a specifically textured surface on adhesive joints' strength or superhydrophobic properties was evaluated. The samples were examined with scanning electron microscopy, profilometry, atomic force microscopy, goniometry, and tensile testing. It was found that, with the multistep etching process, the substrate can be effectively modified and textured to the same morphology, regardless of the initial surface roughness. By selecting proper etchants and their sequence one can prepare new types of highly adhesive or even superhydrophobic surfaces.
Zobrazit více v PubMed
Heinz A., Haszler A., Keidel C., Moldenhauer S., Benedictus R., Miller W.S. Recent development in aluminium alloys for aerospace applications. Mater. Sci. Eng. A. 2000;280:102–107. doi: 10.1016/S0921-5093(99)00674-7. DOI
Du Y.J., Damron M., Tang G., Zheng H., Chu C.J., Osborne J.H. Inorganic/organic hybrid coatings for aircraft aluminum alloy substrates. Prog. Org. Coat. 2001;41:226–232.
Sheasby P.G., Pinner R., Wernick S. The Surface Treatment and Finishing of Aluminium and Its Alloys. ASM International, Finishing Publications; Materials Park, OH, USA: 2001.
He M., Zhou X., Zeng X., Cui D., Zhang Q., Chen J., Li H., Wang J., Cao Z., Song Y., et al. Hierarchically structured porous aluminum surfaces for high-efficient removal of condensed water. Soft Matter. 2012;8:6680–6683. doi: 10.1039/c2sm25828e. DOI
Huang Y., Sarkar D.K., Chen X.G. Fabrication of corrosion resistance micro-nanostructured superhydrophobic anodized aluminum in a one-step electrodeposition process. Metals. 2016;6:47. doi: 10.3390/met6030047. DOI
Huang Y., Sarkar D.K., Grant Chen X. Superhydrophobic aluminum alloy surfaces prepared by chemical etching process and their corrosion resistance properties. Appl. Surf. Sci. 2015;356:1012–1024. doi: 10.1016/j.apsusc.2015.08.166. DOI
Liu Y., Sun D., You H., Chung J.S. Corrosion resistance properties of organic-inorganic hybrid coatings on 2024 aluminum alloy. Appl. Surf. Sci. 2005;246:82–89. doi: 10.1016/j.apsusc.2004.10.040. DOI
Borsellino C., Di Bella G., Ruisi V.F. Adhesive joining of aluminium AA6082: The effects of resin and surface treatment. Int. J. Adhes. Adhes. 2009;29:36–44. doi: 10.1016/j.ijadhadh.2008.01.002. DOI
Prolongo S.G., Ureña A. Effect of surface pre-treatment on the adhesive strength of epoxy-aluminium joints. Int. J. Adhes. Adhes. 2009;29:23–31. doi: 10.1016/j.ijadhadh.2008.01.001. DOI
Saleema N., Sarkar D.K., Paynter R.W., Gallant D., Eskandarian M. A simple surface treatment and characterization of AA 6061 aluminum alloy surface for adhesive bonding applications. Appl. Surf. Sci. 2012;261:742–748. doi: 10.1016/j.apsusc.2012.08.091. DOI
Boutar Y., Naïmi S., Mezlini S., Ali M.B.S. Effect of surface treatment on the shear strength of aluminium adhesive single-lap joints for automotive applications. Int. J. Adhes. Adhes. 2016;67:38–43. doi: 10.1016/j.ijadhadh.2015.12.023. DOI
Sarkar D.K., Farzaneh M., Paynter R.W. Superhydrophobic properties of ultrathin rf-sputtered Teflon films coated etched aluminum surfaces. Mater. Lett. 2008;62:1226–1229. doi: 10.1016/j.matlet.2007.08.051. DOI
Burokas V., Martushene A., Bikul’Chyus G., Ruchinskene A. Aluminum alloy etching in phosphoric acid solutions. Russ. J. Appl. Chem. 2009;82:1835–1839. doi: 10.1134/S1070427209100176. DOI
Chambers B. Etching of aluminum alloys by ferric ion. Met. Finish. 2000;98:26–29. doi: 10.1016/S0026-0576(00)81492-0. DOI
Branch L.C. Bright dipping aluminum. Met. Finish. 1998;96:24–29. doi: 10.1016/S0026-0576(98)81273-7. DOI
Oh H.J., Lee J.H., Ahn H.J., Jeong Y., Park N.J., Kim S.S., Chi C.S. Etching characteristics of high-purity aluminum in hydrochloric acid solutions. Mater. Sci. Eng. A. 2007;448–451:348–351. doi: 10.1016/j.msea.2006.01.159. DOI
Zhu H. Etching Behavior of Aluminum Alloy Extrusions. JOM. 2014;66:2222–2228. doi: 10.1007/s11837-014-1176-8. DOI
Wu R., Chao G., Jiang H., Hu Y., Pan A. The superhydrophobic aluminum surface prepared by different methods. Mater. Lett. 2015;142:176–179. doi: 10.1016/j.matlet.2014.12.007. DOI
Branzoi V., Golgovici F., Branzoi F. Aluminium corrosion in hydrochloric acid solutions and the effect of some organic inhibitors. Mater. Chem. Phys. 2003;78:122–131. doi: 10.1016/S0254-0584(02)00222-5. DOI
Wahab F.M.A.E., Khedr M.G.A., Din A.M.S.E. Effect of anions on the dissolution of Al in acid solutions. J. Electroanal. Chem. Interfacial Electrochem. 1978;86:383–393. doi: 10.1016/S0022-0728(78)80012-6. DOI
Wu R., Liang S., Pan A., Yuan Z., Tang Y., Tan X., Guan D., Yu Y. Fabrication of nano-structured super-hydrophobic film on aluminum by controllable immersing method. Appl. Surf. Sci. 2012;258:5933–5937. doi: 10.1016/j.apsusc.2011.10.029. DOI
Kamaraj A.B., Shaw V., Sundaram M.M. Novel Fabrication of Un-coated Super-hydrophobic Aluminum via Pulsed Electrochemical Surface Modification. Procedia Manuf. 2015;1:892–903. doi: 10.1016/j.promfg.2015.09.081. DOI
Adelkhani H., Nasoodi S., Jafari A.H. A study of the morphology and optical properties of electropolished aluminum in the Vis-IR region. Int. J. Electrochem. Sci. 2009;4:238–246.
Feng L., Zhang H., Mao P., Wang Y., Ge Y. Superhydrophobic alumina surface based on stearic acid modification. Appl. Surf. Sci. 2011;257:3959–3963. doi: 10.1016/j.apsusc.2010.11.143. DOI
Liu W., Sun L., Luo Y., Wu R., Jiang H., Chen Y., Zeng G., Liu Y. Facile transition from hydrophilicity to superhydrophilicity and superhydrophobicity on aluminum alloy surface by simple acid etching and polymer coating. Appl. Surf. Sci. 2013;280:193–200. doi: 10.1016/j.apsusc.2013.04.124. DOI
Saleema N., Sarkar D.K., Gallant D., Paynter R.W., Chen X.G. Chemical nature of superhydrophobic aluminum alloy surfaces produced via a one-step process using fluoroalkyl-silane in a base medium. ACS Appl. Mater. Interfaces. 2011;3:4775–4781. doi: 10.1021/am201277x. PubMed DOI
Wrzecionko E., Minařík A., Smolka P., Minařík M., Humpolíček P., Rejmontová P., Mráček A., Minaříková M., Gřundělová L. Variations of Polymer Porous Surface Structures via the Time-Sequenced Dosing of Mixed Solvents. ACS Appl. Mater. Interfaces. 2017;9:6472–6481. doi: 10.1021/acsami.6b15774. PubMed DOI
Flemming R.G., Murphy C.J., Abrams G.A., Goodman S.L., Nealey P.F. Effects of synthetic micro- and nano-structured surfaces on cell behavior. Biomaterials. 1999;20:573–588. doi: 10.1016/S0142-9612(98)00209-9. PubMed DOI
Surface Modification of Metallic Inserts for Enhancing Adhesion at the Metal-Polymer Interface