The Effect of Surface Substrate Treatments on the Bonding Strength of Aluminium Inserts with Glass-Reinforced Poly(phenylene) Sulphide
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
IGA/FT/2021/005
Tomas Bata University
(RP/CPS/2020/003
The Ministry of Education, Youth and Sports of the Czech Republic
IGA/FT/2021/010
Tomas Bata University in Zlín
PubMed
35269158
PubMed Central
PMC8911945
DOI
10.3390/ma15051929
PII: ma15051929
Knihovny.cz E-zdroje
- Klíčová slova
- PPS–aluminium bi-component, polymer–metal bonding, surface modification,
- Publikační typ
- časopisecké články MeSH
Materials composed of a polymer matrix reinforced with carbon/glass fibres providing lightweight and superior mechanical properties are widely used as structural components for automotive and aerospace applications. However, such parts need to be joined with various metal alloys to obtain better mechanical performance in many structural elements. Many studies have reported enhancements in polymer-metal bonding using adhesives, adhesive/rivet combined joints, and different surface treatments. This study investigated the influences of various surface treatments on the adhesion between glass-reinforced poly(phenylene) sulphide (PPS) and aluminium alloy during the injection over-moulding process. Adhesion strength was evaluated via the shear test. Correlations for the shear strength of the polymer-metal with different metal-substrate treatments were studied. Since the strongest bonding was attained in the treatment with the highest roughness, this value, as it determines the level of micromechanical interlocking of connected materials, seems to be a critical factor affecting the adhesion strength. Three-dimensional (3D) topographic images characterized with a 3D optical microscope indicated that there was a meaningful influence exerted by the interface topologies of the aluminium substrates used for the over-moulding process. The results further indicated that increases in a substrate's surface energy in connection with atmospheric plasma treatments negatively influence the final level of the bonding mechanism.
Zobrazit více v PubMed
Li X., Liu F., Gong N., Yang C., Wang B. Surface Topography Induced High Injection Joining Strength of Polymer-Metal Composite and Fracture Mechanism. Compos. Struct. 2018;184:545–553. doi: 10.1016/j.compstruct.2017.10.020. DOI
Martinsen K., Hu S.J., Carlson B.E. Joining of Dissimilar Materials. CIRP Ann. Manuf. Technol. 2015;64:679–699. doi: 10.1016/j.cirp.2015.05.006. DOI
Mandolfino C., Lertora E., Gambaro C. Key Engineering Materials. Volume 554–557. Trans Tech Publications Ltd.; Bach, Switzerland: 2013. Effect of Surface Pretreatment on the Performance of Adhesive-Bonded Joints; pp. 996–1006.
Xu Z., Li N. Effects of Surface Microstructure and Molding Parameters on Injection Bonding Strength of Polyphenylenesulphide-Aluminum Alloy. Mater. Express. 2020;10:640–647. doi: 10.1166/mex.2020.1688. DOI
Iqbal H.M.S., Bhowmik S., Poulis J.A., Benedictus R. Effect of Plasma Treatment and Electron Beam Radiations on the Strength of Nanofilled Adhesive-Bonded Joints. Polym. Eng. Sci. 2010;50:1505–1511. doi: 10.1002/pen.21628. DOI
Lucchetta G., Marinello F., Bariani P.F. Aluminum Sheet Surface Roughness Correlation with Adhesion in Polymer Metal Hybrid Overmolding. CIRP Ann.—Manuf. Technol. 2011;60:559–562. doi: 10.1016/j.cirp.2011.03.073. DOI
Grujicic M., Sellappan V., Omar M.A., Seyr N., Obieglo A., Erdmann M., Holzleitner J. An Overview of the Polymer-to-Metal Direct-Adhesion Hybrid Technologies for Load-Bearing Automotive Components. J. Mater. Process. Technol. 2008;197:363–373. doi: 10.1016/j.jmatprotec.2007.06.058. DOI
Ochoa-Putman C., Vaidya U.K. Mechanisms of Interfacial Adhesion in Metal-Polymer Composites—Effect of Chemical Treatment. Compos. Part A Appl. Sci. Manuf. 2011;42:906–915. doi: 10.1016/j.compositesa.2011.03.019. DOI
Shahid M., Hashim S.A. Effect of Surface Roughness on the Strength of Cleavage Joints. Volume 22 Elsevier; Amsterdam, The Netherlands: 2002.
Iqbal H.M.S., Bhowmik S., Benedictus R. Surface Modification of High Performance Polymers by Atmospheric Pressure Plasma and Failure Mechanism of Adhesive Bonded Joints. Int. J. Adhes. Adhes. 2010;30:418–424. doi: 10.1016/j.ijadhadh.2010.02.007. DOI
Kadlečková M., Minařík A., Smolka P., Mráček A., Wrzecionko E., Novák L., Musilová L., Gajdošík R. Preparation of Textured Surfaces on Aluminum-Alloy Substrates. Materials. 2018;12:109. doi: 10.3390/ma12010109. PubMed DOI PMC
Heckert A., Zaeh M.F. Laser Surface Pre-Treatment of Aluminium for Hybrid Joints with Glass Fibre Reinforced Thermoplastics. Phys. Procedia. 2014;56:1171–1181. doi: 10.1016/j.phpro.2014.08.032. DOI
Moritz J., Götze P., Schiefer T., Stepien L., Klotzbach A., Standfuß J., López E., Brückner F., Leyens C. Additive Manufacturing of Titanium with Different Surface Structures for Adhesive Bonding and Thermal Direct Joining with Fiber-Reinforced Polyether-Ether-Ketone (PEEK) for Lightweight Design Applications. Metals. 2021;11:265. doi: 10.3390/met11020265. DOI
Gardiner G. Overmolding Expands PEEK’s Range in Composites. CompositesWorld. Jul 1, 2015. [(accessed on 5 January 2022)]. Available online: https://www.compositesworld.com/articles/overmolding-expands-peeks-range-in-composites.
Handbook of Plasma Surface Technnology—Plasma Technology. Diener Electronic GmbH Co. KG; Ebhausen, Germany: 2020.
Miturska-Barańska I., Rudawska A., Doluk E. The Influence of Sandblasting Process Parameters of Aerospace Aluminium Alloy Sheets on Adhesive Joints Strength. Materials. 2021;14:6626. doi: 10.3390/ma14216626. PubMed DOI PMC
Wurzbacher S., Gach S., Reisgen U., Hopmann C. Joining of Plastic-Metal Hybrid Components by Overmoulding of Specially Designed Form-Closure Elements (Fügen von Kunststoff-Metall-Hybridbauteilen Durch Das Hinterspritzen Gezielt Aufgebauter Formschlusselemente) Mater. Werkst. 2021;52:367–378. doi: 10.1002/mawe.202000158. DOI
Leahy W., Barron V., Buggy M., Young T., Mas A., Schue F., McCabe T., Bridge M. Plasma Surface Treatment of Aerospace Materials for Enhanced Adhesive Bonding. J. Adhes. 2001;77:215–249. doi: 10.1080/00218460108030739. DOI