Surface Treatments' Influence on the Interfacial Bonding between Glass Fibre Reinforced Elium® Composite and Polybutylene Terephthalate
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
DKRVO (RP/CPS/2024-28/003)
Ministry of Education, Youth and Sports of the Czech Republic
PubMed
38998358
PubMed Central
PMC11243668
DOI
10.3390/ma17133276
PII: ma17133276
Knihovny.cz E-zdroje
- Klíčová slova
- Elium® composite, glass fibre, insert moulding, polybutylene terephthalate, polymer insert surface treatment, resin transfer moulding,
- Publikační typ
- časopisecké články MeSH
This study examines the process of using injection moulding to join two different materials to manufacture bi-component moulded products with improved performance characteristics. The two-component process, which combines the advantages of two different technologies-the high efficiency of the injection moulding process and the excellent mechanical properties of long glass fibre composites produced by resin transfer moulding (RTM) technology-offers a particular advantage and improved applicability of the prepared lightweight products in both the automotive and aerospace sectors. The composite studied here consists of Elium® thermoplastic resin (30%) reinforced with unwoven glass fibre fabric (70%) using the RTM process. The Elium® composite sample is consequently used as an insert overmoulded with polybutylene terephthalate (PBT) homopolymer reinforced with 20% w/w of short glass fibre through injection moulding. The influence of different mould temperatures and surface treatments on the adhesion between the materials used is investigated by evaluating the mechanical performance using tensile shear strength tests. It was found that while an increase in mould temperature from 40 °C to 120 °C resulted in a doubling of the initial average bond strength between untreated Elium® RTM inserts and overmoulded PBT parts (0.9 MPa), sandblasting the inserts ensured a further tripling of the bond strength of the composites to a value of 5.4 MPa.
Zobrazit více v PubMed
Manas L., Sedlacik M., Ovsik M. Influence of Composite Lay-Up and Cyclic Load Parameters on the Fatigue Behaviour of Flexible Composite Elements. Materials. 2024;17:2402. doi: 10.3390/ma17102402. PubMed DOI PMC
Han L., Song Y., Qi H., Yang J.-S., Li S., Liu P.-A. A Comparative Study on the Mechanical Properties of Open-Hole Carbon Fiber-Reinforced Thermoplastic and Thermosetting Composite Materials. Polymers. 2023;15:4468. doi: 10.3390/polym15224468. PubMed DOI PMC
Campos B.M., Bourbigot S., Fontaine G., Bonnet F. Thermoplastic matrix-based composites produced by resin transfer molding: A review. Polym. Compos. 2022;43:2485–2506. doi: 10.1002/pc.26575. DOI
Alshammari B.A., Alsuhybani M.S., Almushaikeh A.M., Alotaibi B.M., Alenad A.M., Alqahtani N.B., Alharbi A.G. Comprehensive Review of the Properties and Modifications of Carbon Fiber-Reinforced Thermoplastic Composites. Polymers. 2021;13:2474. doi: 10.3390/polym13152474. PubMed DOI PMC
Valente M., Rossitti I., Sambucci M. Different Production Processes for Thermoplastic Composite Materials: Sustainability versus Mechanical Properties and Processes Parameter. Polymers. 2023;15:242. doi: 10.3390/polym15010242. PubMed DOI PMC
Conejo L.d.S., Neto H.R.d.M., de Oliveira J.B., Santos L.F.d.P., Nakazato R.Z., Hein L.R.d.O., Kok W., Botelho E.C. Production and characterization of carbon/carbon composites from thermoplastic matrices. J. Polym. Res. 2021;28:1–11. doi: 10.1007/s10965-021-02448-7. DOI
Pantelakis S., Tserpes K. Revolutionizing Aircraft Materials and Processes. 1st ed. Springer; Cham, Switzerland: 2020.
Karakaya N., Papila M., Özkoç G. Overmolded hybrid composites of polyamide-6 on continuous carbon and glass fiber/epoxy composites: ‘An assessment of the interface’. Compos. Part A Appl. Sci. Manuf. 2020;131:105771. doi: 10.1016/j.compositesa.2020.105771. DOI
Sauer B.B., Kampert W.G., Wakeman M.D., Yuan S. Screening method for the onset of bonding of molten polyamide resin layers to continuous fiber reinforced laminate sheets. Compos. Sci. Technol. 2016;129:166–172. doi: 10.1016/j.compscitech.2016.04.030. DOI
Aliyeva N., Sas H.S., Saner Okan B. Recent developments on the overmolding process for the fabrication of thermoset and thermoplastic composites by the integration of nano/micron-scale reinforcements. Compos. Part A Appl. Sci. Manuf. 2021;149:106525. doi: 10.1016/j.compositesa.2021.106525. DOI
Amend P., Frick T., Schmidt M. Experimental Studies on Laser-based Hot-melt Bonding of thermosetting Composites and Thermoplastics. Phys. Procedia. 2011;12:166–173. doi: 10.1016/j.phpro.2011.03.021. DOI
Xie L., Liu H., Wu W., Abliz D., Duan Y., Li D. Fusion bonding of thermosets composite structures with thermoplastic binder co-cure and prepreg interlayer in electrical resistance welding. Mater. Des. 2016;98:143–149. doi: 10.1016/j.matdes.2016.03.020. DOI
Roy S., Yue C.Y. Surface Modification of COC Microfluidic Devices: A Comparative Study of Nitrogen Plasma Treatment and its Advantages Over Argon and Oxygen Plasma Treatments. Plasma Process. Polym. 2011;8:432–443. doi: 10.1002/ppap.201000120. DOI
Bodaghi M., Park C.H., Krawczak P. Reactive Processing of Acrylic-Based Thermoplastic Composites: A Mini-Review. Front. Mater. 2022;9:931338. doi: 10.3389/fmats.2022.931338. DOI
Khalili P., Blinzler B., Kádár R., Bisschop R., Försth M., Blomqvist P. Flammability, Smoke, Mechanical Behaviours and Morphology of Flame Retarded Natural Fibre/Elium® Composite. Materials. 2019;12:2648. doi: 10.3390/ma12172648. PubMed DOI PMC
Ciardiello R., Fiumarella D., Belingardi G. Enhancement of the Mechanical Performance of Glass-Fibre-Reinforced Composites through the Infusion Process of a Thermoplastic Recyclable Resin. Polymers. 2023;15:3160. doi: 10.3390/polym15153160. PubMed DOI PMC
Kazemi M., Shanmugam L., Lu D., Wang X., Wang B., Yang J. Mechanical properties and failure modes of hybrid fiber reinforced polymer composites with a novel liquid thermoplastic resin, Elium®. Compos. Part A Appl. Sci. Manuf. 2019;125:105523. doi: 10.1016/j.compositesa.2019.105523. DOI
Zoller A., Escalé P., Gérard P. Pultrusion of Bendable Continuous Fibers Reinforced Composites with Reactive Acrylic Thermoplastic ELIUM® Resin. Front. Mater. 2019;6:290. doi: 10.3389/fmats.2019.00290. DOI
Bhudolia S.K., Gohel G., Kantipudi J., Leong K.F., Barsotti R.J.B., Jr. Ultrasonic Welding of Novel Carbon/Elium® Thermoplastic Composites with Flat and Integrated Energy Directors: Lap Shear Characterisation and Fractographic Investigation. Materials. 2020;13:1634. doi: 10.3390/ma13071634. PubMed DOI PMC
Khalili P., Kádár R., Skrifvars M., Blinzler B. Impregnation behaviour of regenerated cellulose fabric Elium® composite: Experiment, simulation and analytical solution. J. Mater. Res. Technol. 2021;10:66–73. doi: 10.1016/j.jmrt.2020.12.024. DOI
Bonpain B., Stommel M. Influence of surface roughness on the shear strength of direct injection molded plastic-aluminum hybrid-parts. Int. J. Adhes. Adhes. 2018;82:290–298. doi: 10.1016/j.ijadhadh.2018.02.003. DOI
Choudhury I., Shirley S. Laser cutting of polymeric materials: An experimental investigation. Opt. Laser Technol. 2009;42:503–508. doi: 10.1016/j.optlastec.2009.09.006. DOI
Matta A., Sedlacek T., Kadleckova M., Lengalova A. The Effect of Surface Substrate Treatments on the Bonding Strength of Aluminium Inserts with Glass-Reinforced Poly(phenylene) Sulphide. Materials. 2022;15:1929. doi: 10.3390/ma15051929. PubMed DOI PMC
Iqbal H., Bhowmik S., Benedictus R. Study on the effect of surface morphology on adhesion properties of polybenzimidazole adhesive bonded composite joints. Int. J. Adhes. Adhes. 2017;72:43–50. doi: 10.1016/j.ijadhadh.2016.10.002. DOI
Islam A., Hansen H.N., Bondo M. Experimental investigation of the factors influencing the polymer–polymer bond strength during two-component injection moulding. Int. J. Adv. Manuf. Technol. 2010;50:101–111. doi: 10.1007/s00170-009-2507-8. DOI
Grujicic M., Sellappan V., Omar M.A., Seyr N., Obieglo A., Erdmann M., Holzleitner J. An overview of the polymer-to-metal direct-adhesion hybrid technologies for load-bearing automotive components. J. Mater. Process. Technol. 2008;197:363–373. doi: 10.1016/j.jmatprotec.2007.06.058. DOI