Influence of Composite Lay-Up and Cyclic Load Parameters on the Fatigue Behaviour of Flexible Composite Elements
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
RP/CPS/2022/003
Ministry of Education, Youth and Sports of the Czech Republic-DKRVO
PubMed
38793469
PubMed Central
PMC11122831
DOI
10.3390/ma17102402
PII: ma17102402
Knihovny.cz E-zdroje
- Klíčová slova
- composite, cyclical stressing, fatigue behaviour, flexible element, spring,
- Publikační typ
- časopisecké články MeSH
This work is dedicated to the design of flexible composite elements, specifically leaf springs. The design of these flexible composite elements took in consideration the technologies, materials and intermediate goods that are available and useable in laboratory manufacturing and the possibility for the transfer of gained knowledge to industrial practice. This work deals with individual types of materials and their processability and usability for the manufacturing of composite products exposed to cyclic stress. The impact of the designed lay-up diagrams and cyclic load boundary on the fatigue behaviour of manufactured specimens was used to evaluate the effect of cyclic stressing. Based on this assessment, a conclusion and recommendation were formulated for the serial manufacturing of flexible composite elements.
Zobrazit více v PubMed
Yamada Y., Kuwabara T. Materials for Springs. Springer; Berlin/Heidelberg, Germany: 2011.
Al-Qureshi H.A. Automobile Leaf Springs from Composite Materials. J. Mater. Process. Technol. 2001;118:58–61. doi: 10.1016/S0924-0136(01)00863-9. DOI
Wahl A.M. Mechanical Springs. 1. Vyd. Pentonpublishing Company; Cleveland, OH, USA: 1944.
Blažek V. Pružiny a Svazky Pružnic: Výpočet a Konstrukce. SNTL; Praha, Czech Republic: 1955.
Shigley J.E., Charles R.M., Richard G.B., Martin H., Miloš V. In: Konstruování Strojních Součástí. Hartl P.M., editor. VUTIUM; Brno, Czech Republic: 2010. Překlady Vysokoškolských Učebnic.
Rajesh K., Sushanth C. Design Analysis and Fabrication of Composite Mono Leaf Spring for Automobile Vehicle. Int. J. Curr. Eng. Technol. 2015;5:2347–5161.
Rajesh S., Nakkeran S., Bhaskar G.B. A survey of GFRP composite leaf spring. Int. J. Eng. Technol. 2014;3:185–193. doi: 10.14419/ijet.v3i2.1811. DOI
Wanberg J. Composite Materials: Fabrication Handbook 3. Wolfgang Pub.; Stillwater, MN, USA: 2012.
Sedlacek F., Bernardin P., Lasova V. Design of a Composite Leaf Spring for Railway Vehicles; Proceedings of the 27th International Daaam Symposium 2016; Mostar, Bosnia and Herzegovina. 26–29 October 2016; pp. 0493–0500. DOI
Ke J., Wu Z.Y., Chen X.Y., Ying Z.P. A Review on Material Selection, Design Method and Performance Investigation of Composite Leaf Springs. Compos. Struct. 2019;226:111277. doi: 10.1016/j.compstruct.2019.111277. DOI
Petrich M., Schrodin B., Kletzin U. Material Selection Method for Composite Springs. Universitätsbibliothek Ilmenau; Ilmenau, Germany: 2017.
Kunzarkar P.P., Gujrathi T.V. A Review on Automotive Car Composite Leaf Spring Design and Optimization. Int. J. Recent Dev. Eng. Technol. 2018;7:1–4.
Ehrenstein G.W. Polymerní Kompozitní Materiály. 1st ed. Scientia; Prague, Czech Republic: 2009.
Ehrenstein G.W., Theriault R.P. Polymeric Materials: Structure, Properties, Applications. Hanser Gardner Publications; Munich, Germany: 2001.
Gaikwad D., Sonkusare R., Wagh S. Composite Leaf Spring for Light Weight Vehicle—Materials, Manufacturing Process, Advantages & Limitations. Int. J. Eng. Technosci. 2012;3:410–413.
Regulation (EU) No 333/2014 of the European Parliament and of the Council of 11 March 2014 Amending Regulation (EC) No 443/2009 to Define the Modalities for Reaching the 2020 Target to Reduce CO2 Emissions from New Passenger Cars, Brusel, Belgium. [(accessed on 17 December 2023)]. Available online: http://data.europa.eu/eli/reg/2014/333/oj.
Regulation (EU) 2019/631 of the European Parliament and of the Council of 17 April 2019 Setting CO2 Emission Performance Standards for New Passenger Cars and for New Light Commercial Vehicles, and Repealing Regulations (EC) No 443/2009 and (EU) No 510/2011 (Text with EEA Relevance), Brusel, Belgium. [(accessed on 17 December 2023)]. Available online: http://data.europa.eu/eli/reg/2019/631/oj.
Ernst-Siebert R., Grasser S. Mass production of composite leaf springs. Lightweight Des. Worldw. 2018;11:18–21. doi: 10.1007/s41777-018-0013-0. DOI
Azhar A.B.M., Risby M.S., Sohaimi A.S., Hafizi M.N., Khalis S., Asrul S. Conceptual Mold Design for Multi-curved Natural Fiber Reinforced Composite Body Armor Panel. Procedia CIRP. 2015;37:95–100. doi: 10.1016/j.procir.2015.08.017. DOI
Thippesh L. Fabrication of Hybrid Composite Mono-Leaf Spring with Unidirectional Glass Fibers. Mater. Today Proc. 2018;5:2980–2984. doi: 10.1016/j.matpr.2018.01.096. DOI
Heckadka S.S., Nayak S.Y., Krishna Vernekar N. Fabrication and Testing of Glass/Banana Hybridized Epoxy Mono Composite Leaf Spring under Static Loading. Key Eng. Mater. 2018;777:432–437. doi: 10.4028/www.scientific.net/KEM.777.432. DOI
Mráz P., Talácko J. Konstrukce Strojů S Kompozitními Materiály. Nakladatelství ČVUT; Prague, Czech Republic: 2006.
Wanberg J. Composite Materials. Wolfgang Publications; Stillwater, MN, USA: 2009.
Fibre-Reinforcevd Plastic Composites—Determination Of Flexural Properties (640664) Český Normalizační Institut; Prague, Czech Republic: 1999.
Vassilopoulos A.P., editor. Fatigue Life Prediction of Composites and Composite Structures. Woodhead Publishing; Sawston, UK: 2010.